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Loop functions



Loop functions

These are gauge invariant quantities measurable by lattice QCD and relevant for the
dynamics of static sources in a thermal bath at temperature T .
◦ e.g. Petreczky EPJC 43 (2005) 51

Despite their relevance, not much is known about loop functions in perturbation theory.



Loop functions

• Polyakov loop average in a thermal ensemble at a temperature T

P (T )|R ≡
1

dR
〈Tr LR〉 (R ≡ color representation)

dA = N2 − 1, dF = N and LR(x) = P exp

(

ig

∫ 1/T

0
dτA0(x, τ)

)

• Polyakov loop correlator

Pc(r, T ) ≡
1

N2
〈TrL†

F (0)TrLF (r)〉 =
1

N2

∑

e−En/T

◦ Lüscher Weisz JHEP 0207 (2002) 049

Jahn Philipsen PRD 70 (2004) 074504

• Cyclic Wilson loop

Wc(r, T ) ≡
1

N
〈TrL†

F (0)U†(1/T )LF (r)U(0)〉

where U(1/T ) = P exp

(

ig

∫ 1

0
ds r ·A(sr, 1/T )

)

= U(0).



Divergences

• Ultraviolet divergences come from regions where two or more vertices are
contracted to one point.

• In the case of internal vertices divergences are removed through renormalization.

• For loop functions one also gets divergences from the contraction of line vertices
along the contour.

The superficial degree of divergence

ω = 1−Nex smooth point

ω = −Nex cusp or intersection

Nex = number of propagators connecting the contraction point to uncontracted vertices.



Divergences

Three possible line vertex divergences.

(1) All vertices are contracted to a smooth point, which leads to a linear divergence;

Linear divergences are proportional to the length of the contour and can be
removed by a mass term.

(2) The contraction of vertices to a smooth point leaves an external propagator
connecting a contracted to an uncontracted vertex: this leads to a logarithmic
divergence that can be removed by using renormalized fields and couplings.

(3) All vertices are contracted to a singular point, which gives a logarithmically
divergent contribution; these are either cusp or intersection divergences.



Cusps

γ γ γ

The renormalization constant for a non-cyclic (time extension smaller than 1/T )
rectangular Wilson loop is determined by four right-angled cusps. In the MS-scheme:

Z = exp
[

−2CFαsµ
−2ε/(πε̄)

]

; 1̄/ε̄ ≡ 1̄/ε− γE + ln 4π

Cusp divergences are absent in a cyclic Wilson loop.

◦ Korchemsky Radyushkin NPB 283 (1987) 342



Intersections

Divergences appear when all vertices are contracted to an intersection point.

• When one vertex is on the string, if every vertex can be contracted to the
intersection, then the contribution of the diagram cancels because of cyclicity.

• If all vertices are on a quark line, then the diagram contributes equally to the
Polyakov loop, which is finite after charge renormalization.

Hence a connected diagram cannot give rise to an intersection divergence, because
either we are in one of the situations above, or it has at least one uncontracted vertex
and therefore it is finite.



Polyakov loop



Static and non-static modes

It is convenient to perform the calculation in static gauge ∂0A0(x) = 0:

L(x) = exp

(

igA0(x)

T

)

Propagators may be split into a static and a non-static component:

D00(ωn,k) = � =
δn0

k2

Dij(ωn 6= 0,k) =

�

=
1

ω2
n + k2

(

δij +
kikj

ω2
n

)

(1− δn0)

Dij(ωn = 0,k) =

�

=
1

k2

(

δij − (1− ξ)
kikj

k2

)

δn0

Dghost(ωn,k) =

�

=
δn0

k2

ωn ≡ 2πnT are the Matsubara frequencies.



Π00 at one loop

The temporal component of the gluon self-energy gets non-static

and static contributions



• The calculation is performed in dimensional regularization: d = 3− 2ǫ.

• Π00(|k| ≪ T ) = m2
D + ... where mD is the Debye mass:

m2
D ≡

g2T 2

3

(

N +
nf

2

)

.

• We keep order ǫ corrections of the type

T |k|1−2ǫǫ

because the Fourier transform of |k|1−2ǫ/|k|4, coming from a self-energy
insertion in a temporal-gluon propagator, is divergent.

• Static loops contribute only through the scale mD .

◦ Curci Menotti ZPC 21 (1984) 281

Heinz Kajantie Toimela AP 176 (1987) 218

Rebhan PRD 48 (1993) 3967, NPB 430 (1994) 319



The Polyakov loop at NNLO

We assume the following hierarchy of scales:

T ≫ mD

Up to NNLO the contributing diagrams are

+ + + . . .

giving

P (T )|R = 1 +
CRαs

2

mD

T
+

CRα2
s

2

[

CA

(

ln
m2

D

T 2
+

1

2

)

− nf ln 2

]

+O(g5)



• At the scale mD , the gluon-self energies get resummed in the propagator

1

k2 +m2
D

• The logarithm, lnm2
D/T 2, signals that an infrared divergence at the scale T has

canceled against an ultraviolet divergence at the scale mD .



Comparison with the literature I

In 1981, Gava and Jengo obtained:

P (T )GJ = 1 +
CRαs

2

mD

T
+

CRCAα2
s

2

(

ln
m2

D

T 2
− 2 ln 2 +

3

2

)

+O(g5)

This result disagrees with ours. The origin of the disagreement has been traced back to
not having resummed the Debye mass in the temporal gluons contributing to the static
gluon self energy.
◦ Gava Jengo PLB 105 (1981) 285



Comparison with the literature II

Our result agrees with the determination of Burnier, Laine and Vepsäläinen, who use a
dimensionally reduced EFT framework in a covariant or Coulomb gauge.
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◦ Burnier Laine Veps äl äinen JHEP 1001 (2010) 054

◦ lattice data from Gupta H übner Kaczmarek PRD 77 (2008) 034503



The Polyakov loop: some higher order terms

• Non-static modes at the scale mD :

δP (T )NS,mD
=

3g4CR

4(4π)3
mD

T

[

β0 ln
( µ

4πT

)2
+ 2β0γE +

11

3
CA −

2

3
nf (4 ln 2− 1)

]

This contribution fixes the renormalization scale of g3 in the LO term to µ ∼ 4πT .

•

δP (T ) =

(

3C2
R −

CRCA

2

)

α2
s

24

(mD

T

)2

This contribution comes from the scale mD : it is the leading contribution whose
color structure is non linear in CR.



Polyakov loop correlator



The correlator of two Polyakov loops
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◦ Petreczky Petrov PRD 70 (2004) 054503



The Polyakov loop correlator at NNLO

We assume the following hierarchy of scales:

1

r
≫ T ≫ mD ≫

g2

r
.

We calculate the Polyakov loop correlator up to order g6(rT )0:

I II III IV

V VI



The Polyakov loop correlator at NNLO

We assume the following hierarchy of scales:

1

r
≫ T ≫ mD ≫

g2

r
.

We calculate the Polyakov loop correlator up to order g6(rT )0:

Pc(r, T ) = P (T )2|F +
N2 − 1

8N2

{

αs(1/r)2

(rT )2
− 2

α2
s

rT

mD

T

+
α3
s

(rT )3
N2 − 2

6N
+

1

2π

α3
s

(rT )2

(

31

9
CA −

10

9
nf + 2γEβ0

)

+
α3
s

rT

[

CA

(

−2 ln
m2

D

T 2
+ 2−

π2

4

)

+ 2nf ln 2

]

+α2
s

m2
D

T 2
−

2

9
πα3

sCA

}

+O

(

g6(rT ),
g7

(rT )2

)



Comparison with the literature I

In 1986, Nadkarni calculated the Polyakov loop correlator at NNLO assuming the
hierarchy:

T ≫ 1/r ∼ mD

Whenever the previous results do not involve the hierarchy rT ≪ 1, they agree with
Nadkarni’s ones, expanded for mDr ≪ 1.

◦ Nadkarni PRD 33 (1986) 3738



Comparison with the literature II

EFT approaches for the calculation of the correlator of Polyakov loops for the situation
mD >

∼
1/r and T ≫ 1/r were developed in the past. In that situation, the scale 1/r was

not integrated out, and the Polyakov-loop correlator was described in terms of
dimensionally reduced effective field theories of QCD, while the complexity of the
bound-state dynamics remained implicit in the correlator.

Those descriptions are valid for largely separated Polyakov loops when the correlator is
either screened by the Debye mass, for mDr ∼ 1, or the mass of the lowest-lying
glueball, for mDr ≫ 1.

◦ Braaten Nieto PRL 74 (1995) 3530

Nadkarni PRD 33 (1986) 3738



Comparison with the literature III

In an EFT framework Pc(r, T ) can be put in the form

Pc(r, T ) =
1

N2

[

e−fs(r,T,mD)/T + (N2 − 1)e−fo(r,T,mD)/T +O
(

α3
s (rT )4

)

]

fs = QQ̄-color singlet free energy; fo = QQ̄-color octet free energy.

The color-singlet quark-antiquark potential has been calculated in real-time formalism in
the same thermodynamical situation considered here.

• The real part of the real-time potential differs from fs(r, T,mD) by

1

9
πNCFα2

s rT
2 −

π

36
N2CFα3

sT

• The real-time potential has also an imaginary part that is absent in the free energy.

◦ Brambilla Ghiglieri Petreczky Vairo PRD 78 (2008) 014017



Comparison with the literature IV

Jahn and Philipsen have analyzed the gauge structure of the allowed intermediate states
in the correlator of Polyakov loops: the quark-antiquark component, ϕ, of an intermediate
state made of a quark located in x1 and an antiquark located in x2 should transform as

ϕ(x1,x2) → g(x1)ϕ(x1,x2)g
†(x2)

under a gauge transformation g.

• The decomposition of the Polyakov loop correlator in terms of a color singlet and a
color octet correlator is in accordance with that result for both a QQ̄ singlet and
octet field transform in that way.

• We remark, however, a difference in language: singlet and octet in fs and fo refer
to the gauge transformation properties of the quark-antiquark fields, while, in Jahn
and Philipsen, they refer to the gauge transformation properties of the physical
states. In that last sense, of course, octet states cannot exist as intermediate
states in the correlator of Polyakov loops.

◦ Jahn Philipsen PRD 70 (2004) 074504



Comparison with the literature V

Burnier, Laine and Vepsäläinen have performed a weak-coupling calculation of the
untraced Polyakov-loop correlator in Coulomb gauge and of the cyclic Wilson loop up to
order g4.

Both these objects may be seen as contributing to the correlator of two Polyakov loops.
The first quantity is gauge dependent. We will discuss the relation of the cyclic Wilson
loop with the Polyakov-loop correlator.

◦ Burnier Laine Veps äl äinen JHEP 1001 (2010) 054



Cyclic Wilson loop



Divergences of the cyclic Wilson loop

Differently from P (T ) and Pc(r, T ), Wc(r, T ) is divergent after charge and field
renormalization. This divergence is due to intersection points.

Although it may seem that the cyclic Wilson loop has a continuously infinite number of
intersection points, one needs to care only about the two endpoints, for the Wilson loop
contour does not lead to divergences in the other ones.



How to renormalize intersection divergences

For intersection points connected by 2 Wilson lines (angles θk) and cusps (angles ϕl):

W
(R)
i1i2...ir

= Zi1j1 (θ1)Zi2j2 (θ2) · · ·Zirjr (θr)Z(ϕ1)Z(ϕ2) · · ·Z(ϕs)Wj1j2...jr

• The indices ik and jk label the different possible path-ordering prescriptions.
• The loop functions are color-traced and normalized by the number of colours.
• This ensures that all loop functions are gauge invariant.

• The coupling in W
(R)
i1i2...ir

is the renormalized coupling.
• The matrices Z are the renormalization matrices.

◦ Brandt Neri Sato PRD 24 (1981) 879



How to renormalize the cyclic Wilson loop





W
(R)
c

Pc



 =





Z 1− Z

0 1









Wc

Pc



 .

Z = 1 + Z1αsµ
−2ε + Z2

(

αsµ
−2ε

)2
+O(α3

s )



Z1

Z1 = −
CA

π

1

ε



Z2

Z1αs×

Z2 reabsorbs all divergences of the type α3
s/(rT ).

All other divergences at O(α3
s ) are reabsorbed by Z1 (combined with Pc(r, T ) at O(α2

s ))!



Renormalization group equation at one loop















µ
d

dµ

(

W
(R)
c − Pc

)

= γ
(

W
(R)
c − Pc

)

µ
d

dµ
αs = −

α2
s

2π
β0

γ is the anomalous dimension of W (R)
c − Pc:

γ ≡
1

Z
µ

d

dµ
Z = 2CA

αs

π
+O(α2

s )

(

W
(R)
c − Pc

)

(µ) =
(

W
(R)
c − Pc

)

(1/r)

(

αs(µ)

αs(1/r)

)−4CA/β0



Wc: final result

In MS at NLO and LL accuracy (i.e. including all terms αs/(rT )× (αs lnµr)n),

assuming the hierarchy of scales
1

r
≫ T ≫ mD ≫

g2

r
, we obtain

lnW
(R)
c =

CFαs(1/r)

rT

{

1 +
αs

4π

[(

31

9
CA −

10

9
nf

)

+ 2β0γE

]

+
αsCA

π

[

1 + 2γE − 2 ln 2 +

∞
∑

n=1

2(−1)nζ(2n)

n(4n2 − 1)
(rT )2n

]}

+
4παsCF

T

∫

d3k

(2π)3

(

eir·k − 1
)

[

1

k2 +Π
(T )
00 (0,k)

−
1

k2

]

+ CFCAα2
s

+
CFαs

rT

[

(

αs(µ)

αs(1/r)

)−4CA/β0

− 1

]

+O
(

g5
)

Π
(T )
00 (0,k) = (known) thermal part of the gluon self-energy in Coulomb gauge.



Long distance

We have compute Wc for 1/r ≫ T ≫ mD ≫ αs/r, but the renormalization of Wc is
general and not bound to this hierarchy. In particular, the renormalization equation must
hold also at large distances, rmD ∼ 1. There

Wc = 1 +
4πCFαs(µ)

T

e−mDr

4πr
+

4CFCAα2
s

T

e−mDr

4πr

1

ε
+ . . .

The term exp(−mDr)/(4πr) comes from the screened temporal gluon propagator,
D00(0,k) = 1/(k2 +m2

D), and the dots stand for finite terms or for h.o. terms.

This expression is renormalized by the same renormalization equation with the same
renormalization constant Z as computed at short distances.

This corrects previous analyses finding different UV behaviours at long distances.
◦ Burnier Laine Veps äl äinen JHEP 1001 (2010) 054



Linear divergences

In general, loop functions have power divergences, which factorize and exponentiate to
give a factor exp [ΛL(C)], where L(C) is the length of the contour and Λ is some
linearly divergent constant. In dimensional regularization such linear divergences are
absent, but they would be present in other schemes such as e.g. lattice regularization.
◦ Polyakov NPB 164 (1980) 171

An efficient way to calculate the exponent of Wilson loops is the so-called replica trick:

〈W1 ·W2 · · ·WN 〉 = 1 +N ln〈W 〉+O(N2)

Wi = ith copy of W in a replicated theory of QCD not interacting with the others.
◦ Gardi Laenen Stavenga White JHEP 1011 (2010) 155

Gardi Smillie White JHEP 1306 (2013) 088

exp
[

−2ΛF /T − ΛAr
]

× Z ×
(

Wc(r)− Pc(r)
)

is finite

Z is in the same renormalization scheme as the linear divergences.



Implication for lattice determinations

The renormalization of Wc allows the proper calculation of this quantity on the lattice.

The right quantity to compute is the multiplicatively renormalizable combination

Wc − Pc

Alternatively a finite quantity is

(Wc − Pc)(r)

(Wc − Pc)(r0)
×

(Wc − Pc)(2r0 − r)

(Wc − Pc)(r0)

where r0 is a given fixed distance.
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