

Quarkonium production in pp, p-Pb, Pb-Pb collisions with ALICE at LHC

Indranil Das on behalf of the **ALICE collaboration**

IPN d'Orsay, Paris, France

QCD@Work - 7th International Workshop on QCD – Theory and Experiment

- Physics motivation
- ALICE setup
- ALICE results
 - Quarkonium in pp collisions at \sqrt{s} =2.76 TeV
 - Pb-Pb measurements at $\sqrt{s_{NN}}$ = 2.76 TeV
 - nuclear modification factor
 - p-Pb measurements at $\sqrt{s_{NN}}$ = 5.02 TeV
 - cold nuclear matter effects
- Conclusion and outlook

Probing the QGP : Quarkonium suppression and enhancement

- Quarkonium (J/ψ) suppression [Matsui,Satz; PLB 178 (1986) 416]
 - Color screening of strong interactions in QGP
 - Higher states are more easily dissociated, sequential suppression of resonances
- J/ψ enhancement [Braun-Munzinger, Stachel; PLB 490(2000) 196]
 - The $c\bar{c}$ production increases strongly with

In most central collisions [0-10%]	RHIC 200 GeV	LHC 2.76 TeV
N _{ccbar} /event	13	115
N _{bbbar} /event	0.1	3

 A (re)combination of cc̄ pairs to produce quarkonia may take place during the QGP stage or at the phase boundary

energy

4

Different sources of medium effects

• Nuclear modification factor R_{AA} : Ratio of the quarkonium yield in AA (Y_{AA}) with respect to the pp one, scaled by the overlap factor T_{AA} (from Glauber model)

If yield scales with the number of binary collisions

 $\rightarrow R_{AA} = 1$

and if,

AI TCF

 $\rightarrow R_{AA} \neq 1$

there are medium effects

Hot Medium effects:

- Quarkonium suppression
- Enhancement due to recombination

Cold Nuclear Matter effects (CNM):

- Nuclear parton shadowing/gluon saturation
- Parton energy loss
- $c\bar{c}$ in medium break-up

 $R_{AA} = \frac{I_{AA}}{\langle T_{...} \rangle \sigma}$

ALICE ALICE Results : Reference set pp collisions

Data taking at $\sqrt{s}=2.76$ TeV essential to build the R_{AA} reference, result based on L_{int}^e=1.1 nb⁻¹ and L_{int}^µ=19.9 nb⁻¹

$$\begin{split} \sigma_{J/\psi}(|y|<0.9) = & 7.75 \pm 1.78(\text{stat.}) \pm 1.39(\text{syst.}) + 1.16(\lambda_{HE}=1) - 1.63(\lambda_{HE}=-1)\,\mu\text{b} \text{ and} \\ \sigma_{J/\psi}(2.5 < y < 4) = & 3.34 \pm 0.13(\text{stat.}) \pm 0.27(\text{syst.}) + 0.53(\lambda_{CS}=1) - 1.07(\lambda_{CS}=-1)\,\mu\text{b}. \end{split}$$

ALICE Coll., PLB 718 (2012) 295

(Note the updated high precision results of pp at $\sqrt{s=7}$ TeV is available at arXiv:1403.3648) ^{6/17/2014} Results in agreement with NLO NRQCD calculations

 $J/\psi R_{AA}$ in Pb-Pb

A reduction of the J/ ψ yield wrt to pp collisions is observed at SPS ($\sqrt{s}=17$ GeV), RHIC ($\sqrt{s}=200$ GeV) and finally LHC ($\sqrt{s}=2.76$ TeV)! [ALICE central and forward rapidity luminosities are $23\mu b^{-1}$ and $70\mu b^{-1}$, respectively]

Statistical hadronization and transport models which respectively feature a full and a partial J/ ψ suppression of charm quarks at hadronization or in the QGP phase can describe the data. Note that both models take into account the recombination of $c\bar{c}$ pair to J/ ψ during the QGP stage or at the phase boundary. 6/17/2014

 $J/\psi R_{AA}$ in Pb-Pb

Another signature of recombination is visible when the R_{AA} is plotted as function of p_T . For central events, the model prediction of ~50% low- $p_T J/\psi$ production via recombination and no recombination at high- p_T well reproduces the data in left plot for mid-rapidity and right plot for forward rapidity.

 $J/\psi R_{AA}$ in Pb-Pb

Inclusive J/ ψ measured also as a function of rapidity: R_{AA} decreases by 40% from y=2.5 to y=4

 $\Upsilon(1S)R_{AA}$ in Pb-Pb

A strong suppression have been observed in the inclusive measurement of $\Upsilon(1S)$ state in heavy-ion collision at forward rapidity (2.5 < y < 4.0)

M. Strickland, [arXiv:1207.5327]

- Thermal suppression of bottomonium states
- Anisotropic hydro model
- Two temperature rapidity profiles: Boost invariant or Gaussian •
- Three shear viscosities
- Feed down from higher mass states included
- No CNM included
- No regeneration included

6/17/2014

In all cases the model underestimates the measured Y(1S)suppression at forward rapidity

arXiv:1405.4493

arXiv:1405.4493

A. Emerick et al., [EPJ A48 (2012) 72]

- Transport model
- Suppression of $\Upsilon(1S)$ resonances by the QGP
 - Mainly of the higher mass states
- Small regeneration component included ٠
- Feed down from higher mass states included ٠
- CNM included via an "effective" $\sigma_{ABS} = 0-2$ mb

Model does not reproduce the strong rapidity dependence of the RAA and underestimates the $\Upsilon(1S)$ suppression at forward rapidity

v

R_{pA} in p-Pb

ALICE collected p-Pb/Pb-p data at $\sqrt{s_{NN}}$ =5.02TeV at the beginning of 2013

 $\Delta y = 0.465$ towards the direction of p-beam

Nuclear modification factor R_{pA}:

The full coverage of the ALICE muon spectrometer $2.5 < y_{LAB} < 4$ can be exploited

Modification factor *Q*_{pA}**:**

For centrality dependent studies Q_{pA} instead of R_{pA}

[Phys Lett B 727 (2013) 371–380]

In LHC there were no data for pp collision at $\sqrt{s}=5.02$ TeV, therefore the reference cross section σ_{pp} is obtained by means of an interpolation procedure based on ALICE data at $\sqrt{s_{NN}}=7$ and 2.76 TeV

 J/ψ and $\psi(2S) R_{pA} vs y$

Theoretical models including initial state effects as shadowing and parton energy loss predict the same suppression (within <5%) for J/ ψ and ψ (2S). However, while they are qualitatively in agreement with the J/ ψ results they cannot reproduce the ψ (2S) suppression.

possible if formation time ($\tau_f \sim 0.05 - 0.15 \text{ fm/c}$) < crossing time (τ_c)

forward-y: $\tau_c \sim 10^{-4} \text{ fm/c}$ backward-y: $\tau_c \sim 7.10^{-2} \text{ fm/c}$

D. McGlinchey, A. Frawley and R.Vogt, PRC 87,054910 (2013)

break-up effects excluded at forward-y

at backward-y, since $\tau_f \sim \tau_c$, break-up in CNM can hardly explain the very strong difference between J/ ψ and ψ (2S) suppressions

_{6/17/2014} May be the final state effects can explain the observed difference.

J/ ψ and ψ (2S) R_{pA} vs p_T

As already observed for the $p_{\rm T}\text{-integrated}$ results, $\psi(\text{2S})$ is more suppressed than the J/ψ

Theoretical models are in fair agreement with the J/ ψ , but clearly overestimate the ψ (2S) results

6/17/2014

The CNM effects in AA is extrapolated using the pA results. The R_{AA} is compared to $R_{pA} \times R_{Ap} (R_{pA}^2 \text{ at midrapidity})$ one can see that CNM effects are not enough to describe the high p_T suppression in AA and that at low p_T there is an enhancement which may be a hint for recombination

forward-y: J/ ψ and ψ (2S) show a similar decreasing pattern vs event activity

backward-y: the J/ ψ and ψ (2S) behaviour is different, with the ψ (2S) significantly more suppressed for larger event activity classes

\mathbf{R}_{pA} of $\Upsilon(1S)$

- Comparison with ALICE J/ ψR_{pPb}
- Forward: similar suppression
- Backward: slightly lower R_{pPb} for $\Upsilon(1S)$, but compatible within uncertainties

- Ferreiro et al. [EPJC 73 (2013) 2427]
- $-2 \rightarrow 2$ production model at LO
- EPS09 shadowing parameterization at LO
- Fair agreement with measured R_{pPb}
 - Although slightly overestimates it in the
 - antishadowing region

17

- Vogt [arXiv:1301.3395]
- CEM production model at NLO
- EPS09 shadowing parameterization at NLO
- Fair agreement with measured *R*_{pPb} within uncertainties
 - Although slightly overestimates it

R_{pA} of $\Upsilon(1S)$

- Arleo et al. [JHEP 1303 (2013) 122]
- Model including a contribution from coherent parton energy loss
- With or without shadowing (EPS09)
- Forward: Better agreement with ELoss and shadowing
- Backward: Better agreement with ELoss only

Summary

• ALICE findings in Pb-Pb collisions:

- Two main mechanisms at play
 - Suppression by color screening or dissociation in QGP
 - Re-generation (for charmonium only!) at high $\sqrt{\rm s}$ can qualitatively explain the main features of the results
- R_{AA} exhibits a weak centrality dependence at all y for charmonium, however Y(1S) shows centrality dependence.
- Less suppression at low p_T with respect to high p_T , with stronger p_T dependence for central events
- Stronger suppression when rapidity increases for J/ψ , whereas there is no rapidity dependence for $\Upsilon(1S)$.

• ALICE p-Pb results :

- R_{pA} result shows an increasing suppression of the J/ ψ and $\Upsilon(1S)$ yield towards forward y
- pure nuclear shadowing and/or energy loss seem to reasonably describe the data, indicating that final state absorption for the J/ ψ may indeed be negligible at LHC energies
- $-\psi(2S)$ is significantly more suppressed than the J/ ψ in both y regions
 - A similar p_T dependence of ψ (2S) suppression, with respect to the J/ ψ , is observed within uncertainties at forward rapidity
 - at backward-y, $\psi(\text{2S})$ suppression shows an increase, with event activity, stronger than J/ψ
 - initial state nuclear effects (shadowing, energy loss) alone cannot account for the modification of the $\psi(\text{2S})$ yields
 - final state effects, as the resonance break-up with interactions with CNM, are unlikely, because of short cc pair crossing time. Other final states effects as the cc pair interaction with the hadronic medium created in p-Pb collisions should be considered

Thank You

ALICE coll, Phys. Rev. Lett. 111, 162301 (2013)

- Hint of non-zero v_2
- Complement R_{AA} results: a significant v_2 and less suppression with respect to RHIC, SPS are indications for an observation of (re)combination from charm quarks in the QGP phase
- In qualitative agreement with transport models with 50% regeneration

$J/\psi R_{FB}$ in p-Pb

The *R*_{FB} rapidity dependence has also been investigated

ALICE Coll. JHEP02(2014)073

- Comparison with theoretical models confirms previous observations done on the *y*-integrated results
- Calculations including both shadowing and energy loss seem consistent with the data

6/17/2014

ALICE

ORSAY