$\Delta I=1 / 2$ Rule 2014

Andrzej J. Buras

(Technical University Munich, TUM-IAS)

Bari, June 16, 2014

$\Delta I=1 / 2$ Rule for $K \rightarrow \pi \pi$

Gell-Mann + Pais (1955), Gell-Mann + Rosenfeld (1957)

$$
\begin{aligned}
& \operatorname{Re} A_{0}=27.04 \cdot 10^{-8} \mathrm{GeV} \\
& \operatorname{Re} A_{2}=1.21 \cdot 10^{-8} \mathrm{GeV}
\end{aligned}
$$

$$
R=\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}=22.35
$$

But:

$\longmapsto Q_{2}=(\bar{s} \mathbf{u})_{v_{-A}}(\bar{u} d)_{v_{-A}}$;
$\left\langle\mathbf{Q}_{2}\right\rangle_{0}$,
$\left\langle\mathbf{Q}_{2}\right\rangle_{2} \quad \mathbf{N} \rightarrow \infty$ (factorization)
$\operatorname{Re} \mathrm{A}_{0}=3.59 \cdot 10^{-8} \mathrm{GeV}$
$\operatorname{Re} A_{2}=2.54 \cdot 10^{-8} \mathrm{GeV}$
$R=\sqrt{2} \quad$ Puzzle !
Missing 15.8 in R

Search for dynamics: enhancing $\operatorname{Re} A_{0}$ by 7.5 suppressing $\operatorname{Re} A_{2}$ by 2.1

Dual QCD Large N Team

Dominant Dynamics behind $\Delta I=1 / 2$ Rule

Bardeen, AJB, Gérard (1986), (2014) 1401.1385

Step 1	Renormalization Group Evolution	(long, slow)
$\left(Q_{1}, Q_{2}\right)$	$\mathrm{M}_{\mathrm{w}} \rightarrow \mu=0$ (1 GeV)	$\begin{aligned} & \text { Altarelli + Maiani (1974) } \\ & \text { Gaillard + Lee (1974) } \end{aligned}$
within quark-gluon picture of QCD		
Step 2	Continuation of RG Evolution	(short, fast)
$\left(Q_{1}, Q_{2}\right)$	Meson evolution BBG $(1986,2014)$	
$\binom{$ t Hooft }{ Witten }	within the dual representation of QCD as a theory of weakly interacting mesons for Large \mathbf{N}	at $\mu \approx 0$ factorization of hadronic matrix elements
Step 3	Inclusion of QCD Penguins	Shifman, Vainshtein Zakharov (1977)
	$\left\langle\mathbf{Q}_{6}\right\rangle_{0}$ calculated within Large \mathbf{N} (B)	BG, 1986)

Step 1 : Quark-Gluon Evolution ("Octet Enhancement")

\Rightarrow Enhances $\operatorname{Re} \mathrm{A}_{0}$
$>$ Suppresses $\operatorname{Re} \mathrm{A}_{2}$

Altarelli + Maiani (1974)
Gaillard + Lee (1974)

The result depends on μ and renormalization scheme.

For | $\mu=0.8 \mathrm{GeV}$ | $\begin{array}{l}\text { (Wilson } \\ \text { Coefficients) }\end{array}$ | $\mu=0$ | $\begin{array}{ll}\text { for hadronic } \\ \text { matrix elements }\end{array}$ |
| :--- | :--- | :--- | :--- |

NDR $-\overline{\mathrm{MS}}: \mathrm{R}_{\mathrm{cc}} \simeq 3$

$$
\overline{\mathrm{MOM}}: \mathrm{R}_{\mathrm{cc}} \approx 4.4
$$

$\overline{\mathrm{MOM}}$:

$$
\begin{array}{ll}
\operatorname{Re} A_{0}=7.1 \cdot 10^{-8} \mathrm{GeV} & \text { (Exp: } \left.27.0 \cdot 10^{-8} \mathrm{GeV}\right) \\
\operatorname{Re} A_{2}=1.6 \cdot 10^{-8} \mathrm{GeV} & \text { (Exp: } \left.1.2 \cdot 10^{-8} \mathrm{GeV}\right)
\end{array}
$$

$\left.\begin{array}{c}\text { Further enhancement of } \operatorname{Re} A_{0} \\ \text { suppression of } \operatorname{Re} A_{2}\end{array}\right]$ needed +

Removal of scale and renormalization scheme dependence.

```
Step 2 : Meson Evolution to \(\mu \approx 0 \quad\) (1986) + 1401.1385
```

Starting with factorizable hadronic

BBG

 matrix elements $\left\langle\mathbf{Q}_{2}\right\rangle_{0,2},\left\langle\mathbf{Q}_{1}\right\rangle_{0,2}$, at $\mu=0$ allows to calculate these matrix elements at $\mu \approx 0$ (1 GeV)These matrix elements are scale and scheme dependent and cancel approximately these dependences in WC.

2014 Significant improvements over 1986 calculations through
$>$ Inclusion of vector meson contributions in addition to pseudoscalars
$>$ Matching performed at NLO in QCD in a MOM scheme suitable for Meson Evolution

$\mu=\mathbf{M}$
 Physical cut-off of the truncated Meson Theory

Meson Evolution

(a)

(c)

(b)

(d)

Structure of Meson Evolution

$$
C_{1}\left(M^{2}\right)>0
$$

$$
\begin{aligned}
& Q_{1}\left(M^{2}\right)=Q_{1}(0)-C_{1}\left(M^{2}\right) Q_{2}(0) \\
& Q_{2}\left(M^{2}\right)=\mathbf{Q}_{2}(0)-\underbrace{C_{1}\left(M^{2}\right) Q_{1}(0)}_{Q_{1}\left(M_{1}-Q_{2}\right. \text { mixing }}+\underbrace{C_{2}\left(M^{2}\right)\left[Q_{2}(0)-Q_{1}(0)\right]}_{Q_{2}-Q_{6} \text { mixing }}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{12}^{\mathrm{M}}=\gamma_{21}^{\mathrm{M}}=\mathbf{2 \mathbf { M } ^ { 2 }}\left[\frac{\partial \mathbf{C}_{1}\left(\mathbf{M}^{2}\right)}{\partial \mathbf{M}^{2}}\right]>0 \\
& \gamma_{24}^{\mathrm{M}}=\gamma_{26}^{\mathrm{M}}=\mathbf{2 \mathbf { M } ^ { 2 }} \frac{\Lambda_{\mathrm{X}}^{2}}{\mathbf{r}^{2}-\Lambda_{\mathrm{x}}^{2}}\left[\frac{\partial \mathbf{C}_{2}\left(\mathbf{M}^{2}\right)}{\partial \mathbf{M}^{2}}\right]>0
\end{aligned}
$$

Precisely the structure of $\hat{\gamma}^{a G}$

$$
\begin{array}{ll}
\frac{\gamma_{12}^{\mathrm{M}}}{\gamma_{26}^{\mathrm{M}}}=8.7 & \frac{\gamma_{12}^{\mathrm{QG}}}{\gamma_{26}^{\mathrm{QG}}}=9 \\
\gamma_{66}^{\mathrm{M}}=\gamma_{66}^{\mathrm{QG}} & \\
\hline
\end{array}
$$

Fast Meson Evolution for $\mu<1 \mathrm{GeV}$

$0<\boldsymbol{\mu}<\mathbf{0 . 5 \mathrm { GeV }}$ Pseudoscalar Dominance

$$
1 \quad\left[\begin{array}{llll}
& \mathbf{m}_{k}^{2} & \left.\left.\left(M^{2}\right)\right] \begin{array}{ll}
\mathbf{f}_{\pi}^{2} \sim \\
\mathbf{N}
\end{array}\right]
\end{array}\right.
$$ $\mathrm{m} \approx 0.3 \mathrm{GeV}$

$$
C_{2}^{P}\left(M^{2}\right)=\frac{1}{16 \pi^{2} f_{\pi}^{2}}\left[\ln (2) M^{2}+m_{K}^{2} \ln \left(1+\frac{M^{2}}{m^{2}}\right)\right]
$$

0.5 GeV $<\mu<1 \mathrm{GeV}$

Contribution of Vector Mesons
\mathbf{M}^{2} dependence significantly softened in both C_{1} and C_{2}

$M=\mu[\mathrm{GeV}]$	0.6	0.7	0.8	0.9	1.0	Exp
$10^{8} \mathrm{Re} \mathrm{A}_{2}[\mathrm{GeV}]$	1.11	1.11	1.07	1.00	0.91	1.21
$\left(10^{8} \operatorname{Re} \mathrm{~A}_{0}\right)_{\mathrm{cc}}[\mathrm{GeV}]$	13.9	13.4	13.3	13.4	13.6	27.0
$\underset{\text { Bario614 }}{\text { No QCD Penguins }}$			Inclusion of heavier resonances would help			

Step 3

QCD Penguins

Dominant QCD Penguin
$\left(\varepsilon^{\prime} / \varepsilon\right) \quad\left\langle\mathbf{Q}_{8}(\mu)\right\rangle_{2}=-1.74\left[\frac{\mathbf{B}_{8}^{(3 / 4)}}{\mathbf{B}_{6}^{(1 / 2)}}\right]^{2}\left\langle\mathbf{Q}_{6}(\mu)\right\rangle_{0}$
Dominant Electroweak
Penguin

Large \mathbf{N}-Limit

$$
\mathbf{B}_{6}^{1 / 2}=\mathbf{B}_{8}^{3 / 4}=1
$$

Very weak μ-dependence of $\mathbf{B}_{6}^{(1 / 2)}$ and $\mathbf{B}_{8}^{(3 / 4)}$:

$$
\gamma_{66} \approx \gamma_{88} \approx 2 \gamma_{m}
$$

BBG 86 : Incomplete GIM for $\mu>\mathbf{m}_{\mathrm{c}}$ allows to enhance Q_{6} contribution to $\operatorname{Re} A_{0}$ at $\mu \approx 0.8 \mathrm{GeV}$ by a factor of 2.

Contribution of QCD Penguin : $\sim 15 \%$ of Exp. Value to $\operatorname{Re} A_{0}$

Budgets for $\operatorname{Re} A_{2}$ and $\Delta \operatorname{Re} A_{0}$

 (2014)$$
\operatorname{Re} A_{2}
$$

$\Delta \operatorname{Re} A_{0}$

Re $A_{0} \approx 17.0 \cdot 10^{-8} \mathrm{GeV}$ (Exp: 27.0.10 $0^{-8} \mathrm{GeV}$) $R e A_{2} \approx 1.07 \cdot 10^{-8} \mathrm{GeV}$
($\operatorname{Exp}: 1.21 \cdot 10^{-8} \mathrm{GeV}$)
$R \approx 16.0$
(Exp : 22.4)

Comments on Lattice QCD Results

Very important progress in last five years: inclusion of dynamical fermions

Precise values for weak decay constants $\left(F_{\pi}, F_{K}, F_{B_{s}}, F_{B_{d}}\right.$ and B_{i} parameters for $\Delta F=2$

2 Two important results:

Relevant
for
$\varepsilon^{\prime} / \varepsilon$

$$
B_{8}^{3 / 2}(3 \mathrm{GeV})=0.65 \pm 0.05 \quad \text { (RBC }- \text { UKQCD) }
$$

Relevant for

$$
\hat{\mathbf{B}}_{\mathrm{k}}=0.766 \pm 0.010
$$

(Lattice Average 2013)
(BBG 1986) : $\hat{B}_{\mathrm{K}}=0.66 \pm 0.07 \rightarrow \hat{B}_{\mathrm{K}}=0.73 \pm 0.02$ (BBG 2014)

Why is \hat{B}_{k} so close to $3 / 4$?

Large \mathbf{N}-Limit :
$\hat{B}_{\mathrm{K}}=\frac{3}{4}$

Scheme and scale independent

Answer in Dual QCD Approach

Answer in Lattice QCD

Cancellation between pseudoscalar and vector meson loop contributions at $1 / \mathbf{N}$ level.

Contractions

$\Delta I=1 / 2$ Rule and Lattice QCD (Rвc-икасд)

$$
\begin{aligned}
\operatorname{Re} A_{2}= & (1.13 \pm 0.21) \cdot 10^{-8} \mathrm{GeV} \\
& (\text { Exp: } 1.21)
\end{aligned}
$$

$R \approx 11$
(Exp : 22.4)

Re A_{0} not yet for physical kinematics $B_{6}^{(1 / 2)}$ unknown but QCD-Penguins small at $\mu \approx 2-3 \mathrm{GeV}$

The suppression of $\operatorname{Re} A_{2}$ and enhancement of $\operatorname{Re} A_{0}$ originate in:

$$
\text { (2) } \approx-0.7 \text { (1) (2), (1) contractions }
$$

But can this result be explained physically within Lattice QCD?

Explanation from Large N approach : $(1986,2014)$

$$
(\mu \approx 0.8 \mathrm{GeV})(1)=\frac{\mathrm{X}_{\mathrm{F}}}{\sqrt{2}} \quad \text { (2) }=-\mathrm{C}_{1} \frac{\mathrm{X}_{\mathrm{F}}}{\sqrt{2}} \quad \begin{array}{ll}
\mathrm{X}_{\mathrm{F}}=\sqrt{2} \mathrm{~F}_{\pi}\left(\mathrm{m}_{\mathrm{K}}^{2}-\mathrm{m}_{\pi}^{2}\right) \\
\mathrm{C}_{1} \approx 0.33
\end{array}
$$

$\Longrightarrow \quad \operatorname{Re} A_{2} \simeq 1.07 \cdot 10^{-8} \mathrm{GeV}$

Personal View on the Importance of Lattice QCD for $\mathrm{K} \rightarrow \pi \pi$

> As long as Lattice calculations of hadronic matrix elements are performed at $\mu \simeq 2-3 \mathrm{GeV}$, understanding of the dynamics (physics) behind $\Delta I=1 / 2$ rule will not be possible within Lattice QCD

All the physics happening for $\mu<2 \mathrm{GeV}$: QCD penguin effects and meson evolution for $\mu<1 \mathrm{GeV}$ hidden in two black boxes : $\operatorname{Re} A_{2}$ and $\operatorname{Re} A_{0}$ or numerical values of (1) and (2).

But Lattice QCD is the only existing non-perturbative framework which can tell us one day with high accuracy whether there is any room for New Physics contributions in $\operatorname{Re} A_{0}, \operatorname{Re} A_{2}$, and $\varepsilon^{\prime} / \varepsilon$.

2014 Question in the context of the $\Delta I=1 / 2$ Rule

> Dual QCD approach and Lattice QCD reproduce well Re A_{2} within the Standard Model but seem both to fail at present in obtaining fully $\operatorname{Re} \mathrm{A}_{0}$.

Could the missing piece of 30\% (Dual QCD) in $\operatorname{Re} A_{0}$ be due to some special kind of New Physics, still consistent with other constraints?

Dual QCD Large N Team

Dual QCD Large N Team

New Physics in $\Delta I=1 / 2$ Rule Team

Constraints from
$\Delta \mathrm{M}_{\mathrm{K}}, \varepsilon^{\prime} / \varepsilon, \mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$

Basic Idea

Enhance QCD Penguin

$$
\mathbf{Q}_{6}=\left(\overline{\mathbf{s}}_{\alpha} \mathbf{d}_{\beta}\right) \sum_{\mathbf{q}}\left(\overline{\mathbf{q}}_{\beta} \mathbf{q}_{\alpha}\right)_{\mathbf{v}+\mathrm{A}}
$$

through

Flavour
Universal
Challenge
How to enhance $\operatorname{Re} A_{0}$ while being consistent with $\Delta \mathrm{M}_{\mathrm{K}}$?

LR operators being enhanced through RG and chiral structure allow to keep (with some fine-tuning) ΔM_{K} under control.

Z'with very special Properties can do it $\quad R \simeq 18 \pm 2$

AJB, De Fazio, Girrbach 1404.3824
Enhancement of \mathbf{Q}_{6} through tree-level \mathbf{Z}^{\prime}
exchange : Renormalization Group ($M_{z^{\prime}} \rightarrow \mu \simeq 0(1 G e V)$) + Chiral Enhancement of $\left\langle\mathbf{Q}_{6}\right\rangle_{0}$ allow for 20\% Effect in $\operatorname{Re} \mathrm{A}_{0}$ for $\mathbf{M}_{\mathbf{Z}} \approx \mathbf{3} \mathbf{~ T e V}$

$\operatorname{Re} g_{\mathrm{L}}^{\text {sd }}\left(\mathrm{Z}^{\prime}\right) \approx 3-4$	$\operatorname{Re} \mathrm{~g}_{\mathrm{R}}^{\text {qq }}\left(\mathrm{Z}^{\prime}\right) \approx 1$
Small couplings to $\mu \bar{\mu}, v \bar{v}$ $\operatorname{Re} g_{\mathrm{R}}^{\text {sd }}\left(Z^{\prime}\right) \approx 10^{-z}$	
	LR operators in ΔM_{K} help but fine-tuning

Z'and G' with Tree Level FCNC's enhancing QCD Penguins can do it

AJB, De Fazio, Girrbach 1404.3824

Constraints from $\varepsilon^{\prime} / \varepsilon, \varepsilon_{\mathrm{K}}$, $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}, \mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$

$\varepsilon^{\prime} / \varepsilon$ and ε_{K} imply that in this NP-scenario

$$
\begin{array}{|l}
\left|\mathbf{V}_{\mathrm{ub}}\right| \approx 3.9 \cdot 10^{-3}, \quad\left|\mathrm{~V}_{\mathrm{cb}}\right| \approx 42.0 \cdot 10^{-3} \\
\text { favoured (inclusive determinations) }
\end{array}
$$

$$
0.75 \leq \mathrm{B}_{6}^{(1 / 2)} \leq 1.0
$$

favoured;
in SM $B_{6}^{(1 / 2)} \approx 1.0$
(3) $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ (tiny effects) $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ (can be sizably enhanced over SM)

Very non-MFV pattern

More Results with and without $\Delta \mathbf{I}=1 / 2$ Rule constraint in 1404.3824

Finale: Vivace !

New Physics beyond the SM must exist !!!

It is our duty to find it. If not at the LHC then through high precision experiments.

Quark Flavour Physics Lepton Flavour Violation EDMs + (g-2) $)_{\text {, }}$

Exciting Times are just ahead of us !!!

Backup

Pattern of Z' Effects in 331 Models

(1311.6729)

$$
\begin{aligned}
& \left.\begin{array}{l}
\beta=-\frac{2}{\sqrt{3}} \\
\beta=-\frac{1}{\sqrt{3}}
\end{array}\right\} \\
& \text { Significant effects in } B_{d} \rightarrow K^{*} \mu^{+} \mu^{-} \\
& \text {(but small in } B_{\mathrm{s}, \mathrm{~d}} \rightarrow \mu^{+} \mu^{-} \text {) } \\
& \beta=\frac{1}{\sqrt{3}} \\
& \beta=\frac{2}{\sqrt{3}} \\
& \text { Significant effects in } B_{\mathrm{s}, \mathrm{~d}} \rightarrow \mu^{+} \mu^{-} \\
& \text {(but small in } \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-} \text {) }
\end{aligned}
$$

