Low energy phenomenology and search for leptoquarks at LHC

Svjetlana Fajfer
Physics Department, University of Ljubljana and
Institute J. Stefan, Ljubljana, Slovenia

QCD@work 2014, 16-19 June 2014, Giovinazzo (Bari –Italy)

Outline

- Motivation;
- Colored scalar leptoquarks (3,2,7/6);
- Low-energy constraints "minimal model" and its extension for $b \to s \gamma$;
- Leptoquarks and GUT;
- Colored scalars at LHC;
- Summary.

Based on I.Doršner, S.F., N.Košnik, I. Nisandžić, JHEP 1311 (2013) 084 S.F. J.F. Kamenik and Nisandžić Phys.Rev. D85 (2012) 094025 I.Doršner, S.F., N.Košnik, Phys.Rev. D86 (2012) 015013;

- I.Doršner, S.F and A. Greljo, 1406.xxxx;
- I.Doršner, S. F., N.Košnik, in preparation.

Motivation

- ➤ Scalar LQ might explain small deviation: experiment ↔ SM prediction;
- LQ's are present in GUT theories;
- Scalar LQ might modify mass matrices;
- LQ intensive searches at LHC.

LHC assumption: one LQ decays into one quark and one lepton of the same generations:

ATLAS Exotics Searches* - 95% CL Exclusion Status: April 2014

ATLAS Preliminary

 $\int f dt = (1.0 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7.8 \text{ TeV}$

	Model	ℓ , γ	Jets	E _T miss	∫£ dt[fl:	⁻¹] Mass limit	$\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ leV}$ Reference
	ADD $G_{KK} + g/q$	_	1-2 j	Yes	4.7	M _D 4.37 TeV	n=2	1210.4491
	ADD non-resonant $\ell\ell/\gamma\gamma$	2γ or $2e,\mu$	_	_	4.7	M _S 4.18 TeV	n = 3 HLZ NLO	1211.1150
Extra dimensions	ADD QBH $ ightarrow \ell q$	1 e, μ	1 j	_	20.3	M _{th} 5.2 TeV	n = 6	1311.2006
	ADD BH high N_{trk}	2μ (SS)	_	-	20.3	M _{th} 5.7 TeV	$n=6,M_D=1.5{ m TeV},{ m non-rotBH}$	1308.4075
	ADD BH high $\sum p_T$	$\geq 1~e,\mu$	≥ 2 j	-	20.3	M _{th} 6.2 TeV	$n=6$, $M_D=1.5$ TeV, non-rot BH	ATLAS-CONF-2014-016
ner	RS1 $G_{KK} \to \ell\ell$	$2e, \mu$	_	_	20.3	G _{KK} mass 2.47 TeV	$k/\overline{M}_{Pl}=0.1$	ATLAS-CONF-2013-017
di	RS1 $G_{KK} \rightarrow ZZ \rightarrow \ell \ell qq / \ell \ell \ell \ell$	2 or 4 e, μ	2 j or –	-	1.0	G _{KK} mass 845 GeV	$k/\overline{M}_{Pl} = 0.1$	1203.0718
tra	RS1 $G_{KK} \to WW \to \ell \nu \ell \nu$	$2e, \mu$	_	Yes	4.7	G _{KK} mass 1.23 TeV	$k/\overline{M}_{Pl}=0.1$	1208.2880
EX	Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$	_	4 b	_	19.5	G _{KK} mass 590-710 GeV	$k/\overline{M}_{Pl} = 1.0$	ATLAS-CONF-2014-005
	Bulk RS $g_{KK} \rightarrow t\overline{t}$	1 e, μ	≥ 1 b, ≥ 1J	/2j Yes	14.3	g _{KK} mass 0.5-2.0 TeV	BR = 0.925	ATLAS-CONF-2013-052
	S^1/Z_2 ED	$2e, \mu$	_	_	5.0	$M_{KK} \approx R^{-1}$ 4.71 TeV		1209.2535
	UED	2 γ	_	Yes	4.8	Compact. scale R ⁻¹ 1.41 TeV		ATLAS-CONF-2012-072
	SSM $Z' \to \ell \ell$	2 e, μ			20.3	Z' mass 2.86 TeV	_	ATLAS-CONF-2013-017
က္လ	SSM $Z' \rightarrow \tau \tau$	2 τ	_	_	19.5	Z' mass 1.9 TeV		ATLAS-CONF-2013-066
gn	SSM $W' \rightarrow \ell \nu$	1 e, μ	_	Yes	20.3	W' mass 3.28 TeV		ATLAS-CONF-2014-017
Gauge bosons	EGM $W' \to \ell V$	3 e, μ	_	Yes	20.3	W' mass 1.52 TeV		ATLAS-CONF-2014-017
_	LRSM $W'_{P} \rightarrow t\overline{b}$	1 e, μ	2 b, 0-1 j		14.3	W' mass 1.84 TeV		ATLAS-CONF-2013-050
	, , , , , , , , , , , , , , , , , , ,							
_	CI qqqq	_	2 j	_	4.8	Λ 7.6 TeV	$\eta = +1$	1210.1718
C	CI <i>qqℓℓ</i>	2 e, μ		. –	5.0	Λ	13.9 TeV $\eta_{LL} = -1$	1211.1150
	CI uutt	2 e, μ (SS)	≥ 1 b, ≥ 1	j Yes	14.3	Λ 3.3 TeV	C = 1	ATLAS-CONF-2013-051
DM	EFT D5 operator	_	1-2 j	Yes	10.5	M. 731 GeV	at 90% CL for $m(\chi)$ < 80 GeV	ATLAS-CONF-2012-147
D	EFT D9 operator	-	1 J, \leq 1 j	Yes	20.3	M, 2.4 TeV	at 90% CL for $m(\chi)$ < 100 GeV	1309.4017
	Scalar LQ 1 st gen	2 e	≥ 2 j	_	1.0	LQ mass 660 GeV	eta=1	1112.4828
ΓQ	Scalar LQ 2 nd gen	2μ	≥ 2 j	-	1.0	LQ mass 685 GeV	eta=1	1203.3172
	Scalar LQ 3 rd gen	1 $e, \mu,$ 1 $ au$	1 b, 1 j	_	4.7	LQ mass 534 GeV	eta=1	1303.0526
	Vector-like quark $TT \rightarrow Ht + X$	1 e, μ	≥ 2 b, ≥ 4	i Yes	14.3	T mass 790 GeV	T in (T,B) doublet	ATLAS-CONF-2013-018
Heavy quarks	Vector-like quark $TT \rightarrow Wb + X$	-	≥ 1 b, ≥ 3		14.3	T mass 670 GeV	isospin singlet	ATLAS-CONF-2013-060
lea ua	Vector-like quark $BB \rightarrow Zb + X$	-	≥ 2 b	_	14.3	B mass 725 GeV	B in (B,Y) doublet	ATLAS-CONF-2013-056
4	Vector-like quark $BB \rightarrow Wt + X$			j Yes	14.3	B mass 720 GeV	B in (T,B) doublet	ATLAS-CONF-2013-051
-	Excited quark $q^* o q \gamma$	1 γ	1 j	_	20.3	q* mass 3.5 TeV	only u^* and d^* , $\Lambda=m(q^*)$	1309.3230
Excited fermions	Excited quark $q^* \rightarrow qq$		2 j	_	13.0	q* mass 3.84 TeV	only u^* and d^* , $\Lambda = m(q^*)$	ATLAS-CONF-2012-148
cit	Excited quark $q \rightarrow qg$ Excited quark $b^* \rightarrow Wt$	1 or 2 <i>e</i> , μ	-		4.7	b* mass 870 GeV	left-handed coupling	1301.1583
E (Excited quark $b \to vv\ell$ Excited lepton $\ell^* \to \ell \gamma$	2 e, μ, 1 γ	-	ij tes –	13.0	<i>ℓ</i> * mass 2.2 TeV	$\Lambda = 2.2 \text{ TeV}$	1308.1364
	<u> </u>							
	LRSM Majorana v	2 e, μ	2 j	-	2.1	N ⁰ mass 1.5 TeV	$m(W_R) = 2$ TeV, no mixing	1203.5420
Je	Type III Seesaw	2 e, μ	-	_	5.8	N [±] mass 245 GeV	$ V_e $ =0.055, $ V_{\mu} $ =0.063, $ V_r $ =0	ATLAS-CONF-2013-019
Other	Higgs triplet $H^{\pm\pm} \to \ell\ell$	2 e, μ (SS)	-	_	4.7	H ^{±±} mass 409 GeV	DY production, BR($H^{\pm\pm} \rightarrow \ell\ell$)=1	1210.5070
0	Multi-charged particles	_	-	_	4.4	multi-charged particle mass 490 GeV	DY production, $ q = 4e$	1301.5272
	Magnetic monopoles		_		2.0	monopole mass 862 GeV	DY production, $ g =1g_D$	1207.6411
		1/5 -	7 TeV	√s - '	3 TeV	40-1	40	1
		v s =	, 16v	∀ 5 = '	3 1eV	10^{-1} 1	10 Mass scale [TeV]	
				_				

^{*}Only a selection of the available mass limits on new states or phenomena is shown.

Color triplet candidates

	$(SU(3), SU(2))_Y$	spin	LQ couplings	3B	L	
	$(3,2)_{1/6}$	0	$\overline{Q}\nu_R$, \overline{d}_RL	+1	-1	✓
	$(3,2)_{7/6}$	0	$\overline{Q}\ell_R, \overline{u}_R L$	+1	-1	√
	$(3,1)_{-1/3}$	l	$\overline{Q}i\tau^2 L^C, \overline{d}_R \nu^C_R, \overline{u}_R \ell^C_R$			might destabilize
Ц	$(3,3)_{-1/3}$	0	$\overline{Q}\tau^{i}i\tau^{2}L^{C}$			proton
	$(3,1)_{2/3}$	1	$\overline{u}_R \gamma_\mu \nu_R, \overline{Q} \gamma^\mu L$	+1	-1	ID, SF, NK 1204.0674
	$(3,3)_{2/3}$	1	$\overline{Q}\tau^i\gamma^\mu L$	+1	-1	
	$(3,2)_{1/6}$	1	$\overline{u}_R \gamma_\mu i \tau^2 L^C$, $\overline{Q} \gamma_\mu \nu_R^C$	+1	-1	we do not
	$(\bar{3},2)_{5/6}$	1	$\overline{Q}\gamma^{\mu}\ell_{R}^{C}, \overline{d_{R}}i\tau^{2}\gamma_{\mu}L^{C}$	+1	-1	consider these states

 $Q=I_3+Y$

 $(3,2)_{7/6}$ and $(3,2)_{1/6}$ proper candidates among scalar LQ

Experiment – Theory in B D(D*) TV_T

In ratios there is no dependence on CKM matrix elements:

$$\mathcal{R}_{\tau/\ell}^* \equiv \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \ell \nu)} = 0.332 \pm 0.030$$

$$\mathcal{R}_{\tau/\ell} \equiv \frac{\mathcal{B}(B \to D \tau \nu)}{\mathcal{B}(B \to D \ell \nu)} = 0.440 \pm 0.072$$

BaBar: 1205.5442 Belle: 0706.4429

combined 3.40 larger than SM

Standard Model

$$\mathcal{R}_{\tau/\ell}^{*, \text{SM}} = 0.252(3)$$
 $\mathcal{R}_{\tau/\ell}^{\text{SM}} = 0.296(16)$
 $\mathcal{R}_{\tau/\ell}^{\text{SM}} = 0.296(16)$
 $\mathcal{R}_{\tau/\ell}^{\text{SM}} = 0.35$

Standard Model or New Physics?

Can observed effects be explained within SM?

New form-factors show up in $\,B o D^{(*)} au
u_{ au}$

How well do we know all form-factors?

Lattice improvements?

Lepton flavor universality violation in B semileptonic decays?

S.F. J.F. Kamenik, I. Nišandžić, J. Zupan, 1206.1872

Many proposals of NP:

P. Ko et al.,1212.4607;

A.Celis et al, 1210.8443;

D. Becirevic et al. 1206.4977;

A. Crivelin et al., 1206.2634;

P. Biancofiore et al., 1302.1042,

P. Ko et al.,1212.4607;

A.Celis et al, 1210.8443;

D. Becirevic et al. 1206.4977;

A. Crivelin et al., 1206.2634;

P. Biancofiore et al., 1302.1042,

<u>.</u>

. . .

One more proposal of NP:

Leptoquark contribution in $b \to c au
u_{ au}$

Scalar and vector leptoquark that trigger b-> c I u, I. Dorsner, S.F., N. Kosnik, 1306.6493

Color triplet bosons (scalars or vectors) with renormalizable couplings to the SM fermions

- Charge
$$\begin{aligned} |Q| &= 2/3 \\ |Q| &= 1/3 \end{aligned}$$

If LQ is a weak doublet then left down-quark fields "communicate" with up-quark fields through the CKM matrix (the same for leptons – PMNS matrix)

Interactions of $\Delta = (3,2,7/6)$ state

Interactions of
$$\Delta$$
 = (3,2,7/6) state
$$\Delta = \begin{bmatrix} \Delta^{(2/3)} \\ \Delta = \overline{\ell}_R Y \, \Delta^\dagger Q + \bar{u}_R \, Z \, \tilde{\Delta}^\dagger L + \mathrm{H.c.} \end{bmatrix}$$

$$\tilde{\Delta} = i\tau_2 \Delta^*$$

Fields are in the weak base. We use a basis in which all rotations are assigned to neutrinos and up-like quarks.

Transition to a mass base:

$$\mathcal{L}^{(2/3)} = (\bar{\ell}_R Y d_L) \, \Delta^{(2/3)*} + (\bar{u}_R [Z V_{\text{PMNS}}] \nu_L) \, \Delta^{(2/3)} + \text{H.c.}$$

$$\mathcal{L}^{(5/3)} = (\bar{\ell}_R [Y V_{\text{CKM}}^{\dagger}] u_L) \, \Delta^{(5/3)*} - (\bar{u}_R Z \ell_L) \, \Delta^{(5/3)} + \text{H.c.}.$$

Requirements:

- to explain deviation of SM prediction in $b o c au
 u_{ au}$,
- no contributions in $b \rightarrow \dot{c} l \nu_l, \ l=e, \ \mu$

We impose: b couples to T only and c quark to neutrinos

$$\Delta^{(2/3)}$$
 couplings

$$\mathcal{L}^{(2/3)} = (\bar{\ell}_R Y d_L) \, \Delta^{(2/3)*} + (\bar{u}_R [ZV_{\text{PMNS}}] \nu_L) \, \Delta^{(2/3)} + \text{H.c.}$$

$$Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{33} \end{pmatrix}, \qquad ZV_{\text{PMNS}} = \begin{pmatrix} 0 & 0 & 0 \\ z_{21} & z_{22} & z_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Delta^{(5/3)}$$
 couplings

$$\mathcal{L}^{(5/3)} = (\bar{\ell}_R [YV_{\text{CKM}}^{\dagger}] u_L) \, \Delta^{(5/3)*} - (\bar{u}_R Z \ell_L) \, \Delta^{(5/3)} + \text{H.c.}$$

$$YV_{\text{CKM}}^{\dagger} = y_{33} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ V_{ub}^* & V_{cb}^* & V_{tb}^* \end{pmatrix}, \qquad Z = \begin{pmatrix} 0 & 0 & 0 \\ \tilde{z}_{21} & \tilde{z}_{22} & \tilde{z}_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

scalar and tensor operators have anomalous dimension contrary to V and A currents

$$g_T(m_b) \simeq 0.14 g_S(m_b)$$

1σ range

$$g_S(m_b) = -0.37^{+0.10}_{-0.07}$$

$$m_b, m_c \ll v$$

Effective hamiltonian for $b \to c au
u_{ au}$ transition induced by LQ transition

$$\mathcal{H}^{(2/3)} = \frac{y_{33}z_{2i}}{2m_{\Delta}^2} \left[(\bar{\tau}_R \nu_{iL})(\bar{c}_R b_L) + \frac{1}{4} (\bar{\tau}_R \sigma^{\mu\nu} \nu_{iL})(\bar{c}_R \sigma_{\mu\nu} b_L) \right]$$

(Fierz's transformation are used)

SM + NP operators

$$\mathcal{H} = \frac{4G_F}{\sqrt{2}} V_{cb} \Big[(\bar{\tau}_L \gamma^\mu \nu_L) (\bar{c}_L \gamma_\mu b_L) + g_S(\bar{\tau}_R \nu_L) (\bar{c}_R b_L) + g_T(\bar{\tau}_R \sigma^{\mu\nu} \nu_L) (\bar{c}_R \sigma_{\mu\nu} b_L) \Big]$$

$$g_S(m_\Delta) = 4g_T(m_\Delta) \equiv \frac{1}{4} \frac{y_{33} z_{23}}{2m_\Delta^2} \frac{\sqrt{2}}{G_F V_{cb}}$$

this relation holds on the mass scale of Δ

The model is constrained by:

$$Z o bar b$$
 (au in the loop)
$$(g-2)_{\mu} \ ext{ (c-quark in the loop)}$$
 $au o \mu\gamma$ $\mu o e\gamma$

MEG experiment result on muon BR for LFV decay is much strongert hen for bound on tau LFV decay rate. The μ liftime and the strong bound on LFV $\mathcal{B}(\mu \to e \gamma) < 5.7 \times 10^{-13}$ compensate for a helicity suppression.

Lepton electromagnetic current

$$-ie\,\bar{u}_{\ell}(p+q)\gamma^{\mu}u_{\ell}(p)$$

$$\downarrow$$

$$-ie\,\bar{u}_{\ell}(p+q)\left[F_{E}(q^{2})\gamma^{\mu} + \frac{F_{M}^{\ell}(q^{2})}{2m_{\ell}}i\sigma^{\mu\nu}q_{\nu} + F_{d}^{\ell}(q^{2})\,\sigma^{\mu\nu}q_{\nu}\gamma_{5}\right]u_{\ell}(p)$$

Muon anomalous magnetic moment

 $\Delta^{(5/3)}$ enters loop functions charm quark in the loop

$$\delta a_{\mu} \equiv F_{M}^{\mu}(q^{2}=0) = -\frac{N_{c}|\tilde{z}_{22}|^{2}m_{\mu}^{2}}{16\pi^{2}m_{\Delta}^{2}} \left[Q_{c}F_{q}(x) + Q_{\Delta}F_{\Delta}(x)\right]$$

Is our low-energy Yukawa ansatz compatible with the idea of GUT?

GUT models contain such a state in an extended SU(5), SO(10).

Georgi-Glashow (1974) proposed
$$SU(5)$$
 \longrightarrow $SU(3) \times SU(2) \times U(1)$

Two problems:

- ➤ Minimal SU(5) GUT fails!
- > M_E ≈ M_D at GUT scale

Our assumption: $(3,2)_{7/6}$ in 45 of SU(5) with 45 : $M_E \approx M_D$ at GUT scale with 45 : $M_E \approx -3$ M_D at GUT scale

Representation 45 with its vev modifies mass relation for down-like quarks and charged leptons

$$2M_D^{\text{diag}}D_R^T = -2Y_1v_{45} - Y_3v_5$$

$$2E_R M_E^{\text{diag}} = 6Y_1 v_{45} - Y_3 v_5$$

We assume that D_R , U_R , E_R are real!

$$M_D^{\mathrm{diag}} D_R^T - E_R M_E^{\mathrm{diag}} = 4U_R Z v_{45}$$
 this equation should be satisfied at GUT scale!

this equation should be

11 parameters and 9 equations only parameter ξ can not be fixed!

$$\tilde{z}_{21} : \tilde{z}_{22} : \tilde{z}_{23} = 0.024 : 0.32 : 1$$

Proton decay amplitude depends on one parameter! necessary to know:

- all unitary transformations in the charged fermion sector;
- masses of all proton mediated gauge bosons and
- a gauge coupling constant;

In some part of parameter space $p\to\pi^0e^+$ is suppressed in comparison with $p\to K^+\bar\nu,\, p\to K^0e^+$

 $f_{\rm RGE} \, 5.0 \, {\rm GeV} < v_{45} < f_{\rm RGE} \, 7.6 \, {\rm GeV} \quad (f_{\rm RGE} \in [1.1, 3.7])$

Predictions

$$BR_{SM+LQ}(B_c \to \tau \nu_{\tau}) \simeq \begin{bmatrix} 0.36BR_{SM}(B_c \to \tau \nu_{\tau}) \\ g_S = -0.37 \\ 84BR_{SM}(B_c \to \tau \nu_{\tau}) \\ g_s \simeq 1.8 \pm 0.4i \end{bmatrix}$$

SM: $\mathcal{B}(B_c \to \tau \nu) = 0.0194(18)$

generate $t \to c \tau^+ \tau^-$ & $\bar{D}^0 \to \tau^- e^+$

 $BR_{LQ}(t \to c\tau^+\tau^-) \sim 10^{-8}$ $BR_{LQ}(\bar{D}^0 \to \tau^-e^+) \sim 10^{-14}$

Can this model be used to induce $b \to s l^+ l^-$?

$$\mathcal{L}^{(2/3)} = (\bar{\ell}_R Y d_L) \, \Delta^{(2/3)*} + (\bar{u}_R [Z V_{\text{PMNS}}] \nu_L) \, \Delta^{(2/3)} + \text{H.c.} \,,$$

$$\mathcal{L}^{(5/3)} = (\bar{\ell}_R [Y V_{\text{CKM}}^{\dagger}] u_L) \, \Delta^{(5/3)*} - (\bar{u}_R Z \ell_L) \, \Delta^{(5/3)} + \text{H.c.} \,.$$

The presented model should be adjusted by introducing new couplings

N. Košnik, 1206.2970;

R. Mohanta 1310.0713

New Y:

$$Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \epsilon_{22} & \epsilon_{23} \\ 0 & 0 & y_{33} \end{pmatrix} \qquad YV_{\text{CKM}}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ V_{us}^{*} \epsilon_{22} & V_{cs}^{*} \epsilon_{22} & V_{tb}^{*} \epsilon_{23} \\ V_{ub}^{*} y_{33} & V_{cb}^{*} y_{33} & V_{tb}^{*} y_{33} \end{pmatrix}$$

Dominant contributions; others are suppressed by CKM

SM and NP in $b \to s \mu^+ \mu^-$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \lambda_t \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S} (C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu)) + \sum_{i=7,8,9,10,P,S} (C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu)) + C_T \mathcal{O}_T + C_{T5} \mathcal{O}_{T5} \right],$$

$$\mathcal{O}_9 = \frac{e^2}{g^2} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell),$$

$$\mathcal{O}_{10} = \frac{e^2}{g^2} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma_5 \ell), \quad \mathcal{O}_S = \frac{e^2}{16\pi^2} (\bar{s} P_R b) (\bar{\ell} \ell),$$

$$\mathcal{O}_P = \frac{e^2}{16\pi^2} (\bar{s} P_R b) (\bar{\ell} \gamma_5 \ell), \quad \mathcal{O}_T = \frac{e^2}{16\pi^2} (\bar{s} \sigma^{\mu\nu} b) (\bar{\ell} \sigma_{\mu\nu} \ell),$$

$$\mathcal{O}_{T5} = \frac{e^2}{16\pi^2} (\bar{s} \sigma^{\mu\nu} b) (\bar{\ell} \sigma_{\mu\nu} \gamma_5 \ell).$$

The (3,2,7/6) LQ contributes to effective hamiltonian for

$$b \to s\mu^+\mu^-$$

$$\mathcal{H}_{\text{LQ}} = -\frac{G_F \alpha}{\sqrt{2} \pi} V_{tb} V_{ts}^* (C_9^{\text{NP}} O_9 + C_{10}^{\text{NP}} O_{10}) \\ C_9^{NP} = C_{10}^{NP} = \frac{-\pi}{2 \sqrt{2} G_F V_{tb} V_{ts}^*} \frac{\epsilon_{22} \epsilon_{23}^*}{m_{\Delta}^2} \quad \text{can be constrained by} \\ \begin{bmatrix} B \to K^* l^+ l^- \\ B \to K \ l^+ l^- \\ B \to X_s l^+ l^- \\ B_s \to l^+ l^- \end{bmatrix}$$

$$B_s \to \mu^+ \mu^- \longrightarrow C_9^{NP}$$

$$B_s \to K \mu^+ \mu^- \longrightarrow C_{10}^{NP}$$

$$B_s \to K^* \mu^+ \mu^- \longrightarrow C_9^{NP} C_{10}^{NP}$$

$$B_s \to X_s \mu^+ \mu^- \longrightarrow C_9^{NP} C_{10}^{NP}$$

N. Košnik, 1206.2970;

R. Mohanta 1310.0713;

I. Doršner, S.F. N. Košnik. in preparation.

Global fit of NP contributions (S. Decotes-Genot et al.,1307.5683)

47 observables

$$BR(B \to X_s \gamma), \quad BR(B \to X_s \mu^+ \mu^-)_{Low \ q^2}$$
 $BR(B_s \to \mu^+ \mu^-), \quad A_I(B \to K^* \gamma), \quad S(B \to K^* \gamma)$ $B \to K^* \mu^+ \mu^- : \langle P_1 \rangle, \langle P_2 \rangle, \langle P_4' \rangle, \langle P_5' \rangle, \langle P_6' \rangle, \langle P_8' \rangle, \langle A_{\rm FB} \rangle$

Coefficient	1σ	2σ	3σ
$\mathcal{C}_7^{ ext{NP}}$	[-0.05, -0.01]	[-0.06, 0.01]	[-0.08, 0.03]
$\mathcal{C}_{9}^{ ext{NP}}$	[-1.6, -0.9]	[-1.8, -0.6]	[-2.1, -0.2]
$\mathcal{C}_{10}^{ ext{NP}}$	[-0.4, 1.0]	[-1.2, 2.0]	[-2.0, 3.0]
$\mathcal{C}^{ ext{NP}}_{\mathbf{7'}}$	[-0.04, 0.02]	[-0.09, 0.06]	[-0.14, 0.10]
$\mathcal{C}^{ ext{NP}}_{ ext{q}'}$	[-0.2, 0.8]	[-0.8, 1.4]	[-1.2, 1.8]
$\mathcal{C}_{10'}^{ ext{NP}}$	[-0.4, 0.4]	[-1.0, 0.8]	[-1.4, 1.2]

Most likely modifications of SM Wilson coefficients; confirmed also by Altmannshofer and Straub 1308.1501, Beujean, Bobeth, van Dyk 1310.2478, Horgan et al., 1310.3887

$$B_s \to \mu^+ \mu^-$$

$$BR(B_s \to \mu^+ \mu^-)_{LHCb} = (2.9^{+1.1}_{-1.0}) \times 10^{-9}$$

$$BR(B_s \to \mu^+ \mu^-)_{CMS} = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$$
 Experimental results 2013
$$BR(B_s \to \mu^+ \mu^-)_{SM} = (3.23 \pm 0.23) \times 10^{-9}$$

Buras et al, 1208.0934

$$C_{10}^{SM} \to C_{10}^{SM} + C_{10}^{NP}$$

$$C_{10}^{NP} \sim \frac{\epsilon_{22}\epsilon_{23}^*}{m_{\Lambda}^2}$$

The same coupling contribute at loop level to $B_s - ar{B}_s$

$$B_s - \bar{B}_s$$

$$C_{box}^{SM} \to C_{box}^{SM} + C_{box}^{NP}$$

$$C_{box}^{NP} \sim rac{\epsilon_{22}^2 \epsilon_{23}^{*2}}{m_{\Lambda}^2}$$

 ${\rm BR}(B_s o \mu^+ \mu^-)$ most constraining!

Constraints from charm physics: $D^0 o \mu^+ \mu^-$ and $D^0 - \bar{D}^0$

LHCb 2013: $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 6.2 \times 10^{-9}$

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) = \tau_D \frac{f_D^2 m_D^5}{256\pi m_c^2} |V_{us}|^2 \left| \frac{\epsilon_{22} \tilde{z}_{22}}{m_\Delta^2} \right|^2$$

$$|\epsilon_{22}\tilde{z}_{22}| < 0.016 \frac{m_{\Delta}^2}{1 \text{ TeV}^2}$$

Stronger constraints from LFV process $\;\mu
ightarrow e \gamma$

 ϵ_{22}^2 contributes too, but helicity suppressed contribution!

Couplings with $\Delta^{5/3}$

$$\bar{\tau}c: i(V_{cb}^*y_{33}P_L - \tilde{z}_{23}^*P_R)$$

$$\bar{\mu}c: i(V_{cs}^*\epsilon_{22}P_L - \tilde{z}_{22}^*P_R)$$

$$\bar{u}\tau: iV_{ub}y_{33}^*P_R$$

$$\bar{u}\mu : iV_{us}\epsilon_{22}^*P_R$$

$$\mathcal{H}_{\Delta C=2} = (\bar{u}_{\alpha} \gamma^{\mu} P_L c_{\alpha}) (\bar{u}_{\beta} \gamma_{\mu} P_L c_{\beta}) \left[C_{\mu\mu} + C_{\tau\tau} + C_{\tau\mu} \right]$$

$$C_{\tau\tau} = \frac{(V_{ub}V_{cb}^*)^2 |y_{33}|^4}{128\pi^2 m_{\Delta}^2} \sim \lambda^{10} y_{33}^4,$$

$$C_{\mu\mu} = \frac{(V_{us}V_{cs}^*)^2 |\epsilon_{22}|^4}{128\pi^2 m_{\Lambda}^2} \sim \lambda^2 \epsilon_{22}^4,$$

$$C_{\mu\tau} = \frac{V_{us}V_{ub}V_{cs}^*V_{cb}^*|\epsilon_{22}|^2|y_{33}|^2}{64\pi^2 m_{\Delta}^2} \sim \lambda^6 \epsilon_{22}^2 y_{33}^2$$

Wolfenstein's parameter $\lambda = 0.225$

$$\mu \to e \gamma$$

$$\mathcal{A}_{\mu \to \ell \gamma} = \bar{e}(p')\sigma^{\mu\nu} \,\epsilon_{\mu}^*(q)q_{\nu} \,(AP_R + BP_L)\,\mu(p)$$

$$A = \frac{-N_c e}{48\pi^2 m_{\Delta}^2} \left[m_c V_{cs} \epsilon_{22} \tilde{z}_{21}^* (1 + 4\log x_c) + \frac{m_{\mu}}{2} \tilde{z}_{22} \tilde{z}_{21}^* (3 + 4x_c \log x_c) \right]$$

 $B \sim \mathcal{O}(m_e)$.

If ϵ_{22} is constrained by charm data, then \tilde{z}_{21}^* has to be very small!

Additional constraints

$$Z \to b\bar{b}$$

• is not affected due to -1/3 charge of quarks and 2/3 charge of the LQ;

$$(g-2)_{\mu}$$

muon and tau in the loop –negligible modification of the g_L coupling

Is GUT possible with such extension?

The small $~\tilde{z}_{12}\sim 10^{-5}$ coupling implies vev of representation 45 v₄₅ to be large!

Low energy constraints and searches for LQ at LHC

What do we achieve obtaining bounds from low energy phenomenology?

-If leptoquarks are relatively light (mass ~ 1 TeV) one might check if unification is possible within SU(5) and SO(10)!

- ATLAS and CMS search for LQ. Are these bounds relevant for their searches?

Experimental searches for LQ

ATLAS

	Scalar LQ 1 st gen	2 e	≥ 2 j	_	1.0	LQ mass	660 GeV
7	Scalar LQ 2 nd gen	2 μ	≥ 2 j	_	1.0	LQ mass	685 GeV
	Scalar LQ 3 rd gen	1 e, μ , 1 $ au$	1 b, 1 j	_	4.7	LQ mass	534 GeV

Single LQ production

$$\sigma_{\text{single}}(y_i, m_{\text{LQ}}) = a(m_{\text{LQ}})|y_i|^2$$

n

Double LQ production

$$\sigma_{\text{pair}}(y_i, m_{\text{LQ}}) = a_0(m_{\text{LQ}}) + a_2(m_{\text{LQ}})|y_i|^2 + a_4(m_{\text{LQ}})|y_i|^4$$

- Sizable Yukawa couplings of LQ with SM fermions could influence pair production at LHC;
- For small Yukawas LQ production is the same as within QCD.

For simplicity we assume only diagonal couplings in the search for LQ at LHC!

I generation couplings: best constraints come from atomic parity violation

$$\mathcal{L}_{PV} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d} (C_{1q} \bar{e} \gamma^{\mu} \gamma_5 e \bar{q} \gamma_{\mu} q + C_{2q} \bar{e} \gamma^{\mu} e \bar{q} \gamma_{\mu} \gamma_5 q)$$

$$C_{1d} = C_{1d}^{\text{SM}} + \delta C_{1d}$$

$$K_L \to \mu^- e^+$$

$$\delta C_{1u(d)} = \frac{\sqrt{2}}{G_F} \frac{|y_{u(d)e}|^2}{8m_{\text{LQ}}^2} \begin{cases} |y_{de}| \le 0.34 \left(\frac{m_{\text{LQ}}}{1 \text{ TeV}}\right) \\ |y_{ue}| \le 0.36 \left(\frac{m_{\text{LQ}}}{1 \text{ TeV}}\right) \end{cases}$$

Bounds on II generation LQ

$$BR(K_L \to \mu^{\pm} e^{\mp}) < 4.7 \times 10^{-12}$$

Experimental bound:

$$|y_{s\mu}y_{de}^*| < 2.1 \times 10^{-5} \left(\frac{m_{LQ}}{1\text{TeV}}\right)^2$$

The LQ of the first generation is fully constrained by APV, hence couplings of R_2 to a down quark and an electron is very small.

We assume in the further analysis that coupling of s and μ to R_2 is of the order 1.

If Yukawa couplings are large, one also needs to take into consideration a single leptoquark production and t-channel leptoquark pair production.

This study shows importance of the t-channel pair production and the single LQ production through the recast of an existing CMS search at LHC for the LQ coupling to s and μ .

Summary

- (3,2,7/6) state introduced to explain R(D) and R(D*);
- scalar with charge 2/3 introduces scalar and tensor operator into effective Lagrangian;
- charge 5/3 state induces quark and lepton flavor changing processes;
- constraints from $Z \to \bar b b, \ , (g-2)_\mu, \ d_\tau, \ au \to \mu \gamma$, $\mu \to e \gamma$;
- (3,2,7/6) can adjust b-> s data;
- Model with (3,2,7/6) LQ state can be accommodated with SU(5) GUT by adding 45 scalar representation.
- Searches of LQ at LHC do depend on LQ couplings to quark and lepton, for large Yukawa couplings a single leptoquark production and t-channel leptoquark pair production are important IMPORTANCE OF FLAVOUR PHYSICS FOR LHC!

(3,2,1/6) LQ

$$\mathcal{L}_{Y} = -y_{ij}\bar{d}_{R}^{i}\tilde{R}_{2}^{a}\epsilon^{ab}L_{L}^{j,b} + \text{h.c.},$$

$$\mathcal{L}_{Y} = -y_{ij}\bar{d}_{R}^{i}e_{L}^{j}\tilde{R}_{2}^{2/3} + (yV_{PMNS})_{ij}\bar{d}_{R}^{i}\nu_{L}^{j}\tilde{R}_{2}^{-1/3} + \text{h.c.}$$

N. Košnik, 1206.2970;

R. Mohanta 1310.0713

$$\mathcal{H}_{LQ} = \frac{y_{22}y_{23}^*}{8M_{LQ}}\bar{s}\gamma^{\mu}(1+\gamma_5)b\mu\gamma_{\mu}(1-\gamma_5)\mu \qquad C_9^{'NP} = -C_{10}^{'NP}$$

(3,2,1/6) LQ can influence
$$\begin{bmatrix} Z \to b \overline{b} \\ (g-2)_{\mu} \end{bmatrix}$$

$$Z \to b\bar{b}$$

$$\delta g_L^b = 0.001 \pm 0.001$$
, $\delta g_R^b = (0.016 \pm 0.005) \cup (-0.17 \pm 0.005)$

(3,2,1/6) can accommodate this value

 $(g-2)_{\mu}$ down quarks and 2/3 charged LQ give vanishing contribution!

Constraints from charm physics: $D^0 o \mu^+ \mu^-$ and $D^0 = \bar{D}^0$

LHCb 2013:
$$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 6.2 \times 10^{-9}$$

New physics contribution:

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) = \tau_D \frac{f_D^2 m_D^3}{32\pi} \, \beta(m_\mu) \, [|S|^2 \beta(m_\mu)^2 + |P|^2]$$

$$S = \frac{m_D}{m_c} (C_S - C_S'), \qquad P = \frac{m_D}{m_c} (C_P - C_P') + \frac{2m_\mu}{m_D} (C_{10} - C_{10}')$$

$$\mathcal{O}_S = (\bar{u}P_Rc)(\bar{\mu}\mu), \qquad \mathcal{O}_P = (\bar{u}P_Rc)(\bar{\mu}\gamma_5\mu),$$

$$\mathcal{O}_{10} = (\bar{u}\gamma_\mu P_Lc)(\bar{\mu}\gamma^\mu \gamma_5\mu).$$

$$C_S = C_P = -\frac{V_{us}\epsilon_{22}^* \tilde{z}_{22}^*}{4m_{\Delta}^2}$$
 $C_9 = C_{10} = \frac{|\epsilon_{22}|^2 V_{us} V_{cs}^*}{8m_{\Delta}^2}$

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) = \tau_D \frac{f_D^2 m_D^5}{256\pi m_c^2} |V_{us}|^2 \left| \frac{\epsilon_{22} \tilde{z}_{22}}{m_\Delta^2} \right|$$

$$|\epsilon_{22}\tilde{z}_{22}| < 0.016 \frac{m_{\Delta}^2}{1 \text{ TeV}^2}$$

Scalar in SU(5) with SU(3)xSU(2)xU(1) quantum numbers

Inclusion of 45 Higgs representation SU(5) GUT

Higgs in 45 modifies: ${\cal M}_E^T = -3 {\cal M}_D$

Both are needed: Higgses in 5 and 45!

$$\begin{array}{l} \mathbf{45_{H}} = (\boldsymbol{\Delta_{1}}, \boldsymbol{\Delta_{2}}, \boldsymbol{\Delta_{3}}, \boldsymbol{\Delta_{4}}, \boldsymbol{\Delta_{5}}, \boldsymbol{\Delta_{6}}, \boldsymbol{\Delta_{7}}) = \\ (8, \mathbf{2}, 1/2) \oplus (\overline{\mathbf{6}}, \mathbf{1}, -1/3) \oplus (\mathbf{3}, \mathbf{3}, -1/3) \oplus (\overline{\mathbf{3}}, \mathbf{2}, -7/6) \oplus (\mathbf{3}, \mathbf{1}, -1/3) \oplus (\overline{\mathbf{3}}, \mathbf{1}, 4/3) \oplus \\ (\mathbf{1}, \mathbf{2}, 1/2) \end{array}$$

 Δ_3 , Δ_4 , Δ_5 studied by I. Doršner, S.F, N. Košnik, J.F. Kamenik, 0906.5585 for the first two generations, based on the experimental results from K and D

Is unification possible with some of light scalars in 45?

Yes!

I.Doršner, S.F. J.F. Kamenik and N. Košnik, 0906.5585; 1007.2604;

Unification possible with 2 light scalars!

Up-quarks

5 45

$$(Y_2')_{ij} 10_i 10_j 5$$
 $(Y_2)_{ij} 10_i 10_j 45$
$$M_U = \left[4(Y_2'^T + Y_2')v_5 - 8(Y_2^T - Y_2)v_{45}\right]/\sqrt{2}$$

$$\langle 5 \rangle^5 = \sqrt{2}v_5$$

$$2|v_5|^2 + 48|v_{45}|^2 = v^2$$

$$\langle 45 \rangle_1^{51} = \langle 45 \rangle_2^{52} = \langle 45 \rangle_3^{53} = \sqrt{2}v_{45}$$

$$v = 246 \text{ GeV}$$

Down-quarks and charged lepton

$$(Y_1)_{ij} 10_i \bar{5}_j 45*$$
 $(Y_3)_{ij} 10_i \bar{5}_j 5*$

$$M_E = 3Y_1^T v_{45}^* - \frac{1}{2} Y_3^T v_5^*$$

$$M_D = -Y_1 v_{45}^* - \frac{1}{2} Y_3 v_5^*$$

without 45: M_E ≈ M_D at GUT scale

with 45 : $M_E = \approx -3 M_D$ at GUT scale

$$B \to X_s l^+ l^-$$

BR(
$$B_d^0 \to X_s \mu^+ \mu^-$$
) = $(1.60 \pm 0.50) \times 10^{-6}$ low q^2
= $(0.44 \pm 0.12) \times 10^{-6}$ high q^2 ,

Bounds from $B \to X_s l^+ l^-$

N. Košnik, 1206.2970;

R. Mohanta 1310.0713

$$C_9^{NP} = C_9^{NP}$$

 $(3,2)_{7/6}$ in GUT

 $(3,2)_{7/6}$ can be found in representations 45 and 50 of SU(5)

has both couplings Z and Y

has only Y couplings

In SO(10) scenario: 120 and 126

anti-symmetric couplings to matter

symmetric couplings to matter fields

Is our low-energy Yukawa ansatz compatible with the idea of GUT?

Scalar in 120 and 126 of SO(10) can realize the same coupling as scalar in 45 of SU(5);

Scalar in 50 of SU(5) can be only in 126 of SO(10).

Our assumption: $(3,2)_{7/6}$ in 45 of SU(5)

Higgs doublet is in 5 and in 45

Couplings to matter fields

Transition from weak to mass basis for down-like quarks (up-like, charged lepton);

Unitary transformations D_L and D_R , U_L and U_R , E_R and $E_{L;}$ (assumption: neutrinos are Majorana fermions)

$$u_L \to V_{\rm PMNS} \nu_L \qquad u_L \to V_{\rm CKM}^\dagger u_L \quad (D_L, E_L \text{ are diagonal})$$

D_R, U_R, E_R are unknown

$$2M_D^{\text{diag}}D_R^T = -2Y_1v_{45} - Y_3v_5$$

$$Y_1 = -U_RZ.$$

$$2E_RM_E^{\text{diag}} = 6Y_1v_{45} - Y_3v_5$$

We assume that D_R , U_R , E_R are real!

All angles in D_R , U_R , E_R are specified with our ansatz, except one in U_R within proposed framework (restrictive nature of our Z!)

$$M_D^{\text{diag}} D_R^T - E_R M_E^{\text{diag}} = 4U_R Z v_{45}$$

this equation should be satisfied at GUT scale!

11 parameters and 9 equations

$$U_R = (O_2(\xi) O_3(\phi) O_1(\theta))^T$$

$$O_3(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 - \sin \theta & \cos \theta \end{pmatrix}$$

only parameter ξ can not be fixed!

Input: masses of down-like quarks and charged leptons at GUT Scale. Satisfactory solution (up to v_{45} VEV) leads to:

$$\tilde{z}_{21} \, : \, \tilde{z}_{22} \, : \, \tilde{z}_{23} = 0.024 \, : \, 0.32 \, : \, 1$$