

Conventional and anarkonium at B

Valentina Santoro INFN Ferrara Representing the BaBar Collaboration QCD @ Work, 16-19 June 2014, Giovinazzo (Bari - Italy)

Outline

• Study of $B^{o, \pm} \rightarrow J/\psi K^+K^-K_s^{o,\pm}$ and search for structure in the $J/\psi\phi$ system

SOON WILL BE SUBMITTED TO THE ARXív

• Dalitz plot analysis of $\eta_c \rightarrow K^+K^-\eta$ and $\eta_c \rightarrow K^+K^-\pi^0$ in two-photon interactions

arXív:1403.7051 PAPER ACCEPTED FOR PUBLICATION BY PRD

Valentína Santoro

The BaBar detector and data sample

BaBar is a powerful *b* factory: 467 million BB pairs in the total data sample

BaBar is also a c factory: 1.3 million Charm events per fb⁻¹

Study of $B^{0,\pm} \rightarrow J/\psi K^+ K^- K_s^{0,\pm}$ and search for structure in the $J/\psi \phi$ system

A little bit of history(1)

CDF reported the study of the decay mode $B^+ \rightarrow J/\psi \phi K^+$, $\phi \rightarrow K^+K^- J/\psi \rightarrow \mu^+\mu^-$

They observe two narrow peaks that they interpreted as two resonances

$$\begin{split} M_{Y_{4143}} &= 4143^{+2.9}_{-3.0} \pm 0.6 \text{ MeV/c}^2 \\ \Gamma_{Y_{4143}} &= 15.3^{+10.4}_{-6.1} \pm 2.5 \text{ MeV} \\ M_{Y_{4274}} &= 4274.4^{+8.4}_{-6.7} \pm 1.9 \text{ MeV/c}^2 \\ \Gamma_{Y_{4274}} &= 32.3^{+21.9}_{-15.3} \pm 7.6 \text{ MeV} \end{split}$$

A year after the CDF result LHCb shows its J/ $\psi\phi$ mass spectrum. They did not observe the two resonances

A little bit of history(2

CMS showed its J/ $\psi \phi$ mass spectrum with 5.2 fb⁻¹ and confirmed the presence of the two resonances

Phys. Lett. B 734, 261 (2014)

$$\begin{split} M_{Y_{4143}} &= 4148 \pm 2.4 \pm 6.3 \ MeV/c^2 \\ \Gamma_{Y_{4143}} &= 28^{+15}_{-11} \pm 19 \ MeV \\ M_{Y_{4313}} &= 4313.8 \pm 5.3 \pm 7.3 \ MeV/c^2 \\ \Gamma_{Y_{4313}} &= 38^{+30}_{-15} \pm 16 \ MeV \end{split}$$

6

Recently DO has entered into the game With 10.4 fb⁻¹ they observe the two Y resonances $M_{V} = 4159 \pm 4.3 \pm 6.6 \text{ MeV/c}^2$

$$M_{Y_{4143}} = 4159 \pm 4.3 \pm 6.6 \text{ MeV/c}^2$$

$$\Gamma_{Y_{4143}} = 19.9 \pm 4.3 \pm 6.6 \text{ MeV}$$

$$M_{Y_{4313}} \sim 4.360$$

$$\Gamma_{Y_{4313}} = \text{fixed to 30 MeV}$$

Valentína Santoro

We performed an Unbinned Maximum likelihood fit to the m_{FS} distributions

$$m_{ES} = \sqrt{((s/2 + \vec{p} \cdot \vec{p}_b / E)^2 - \vec{p}_b^2)}$$

with a Gaussian function for the signal and an ARGUS function for the background shape Valentína Santoro

K⁺K⁻ invariant mass and BR measurements

There is a small φ signal which does not saturate the K⁺K⁻ channel

B channel	Event yield	$\mathcal{B}(\times 10^{-5})$	Efficiency (%)
$B^+ \to J/\psi K^+ K^- K^+$	595^{+32}_{-31}	$6.05 \pm 0.33 \text{ (stat)} \pm 0.24 \text{ (sys)}$	17.96 ± 0.08
$B^+ \to J/\psi \phi K^+$	200 ± 14	$4.57 \pm 0.32 \text{ (stat)} \pm 0.13 \text{ (sys)}$	16.20 ± 0.03
$B^0 \to J/\psi K^- K^+ K_S^0$	74 ± 12	$3.55 \pm 0.57 \text{ (stat)} \pm 0.15 \text{ (sys)}$	11.31 ± 0.10
$B^0 \to J/\psi \phi K_S^0$	50 ± 7	$2.53 \pm 0.35 \text{ (stat)} \pm 0.09 \text{ (sys)}$	10.73 ± 0.04
$B^0 \to J/\psi\phi$	6 ± 4	< 0.101	31.12 ± 0.07

CDF, DO and CMS do not obtain BF measurements

Valentína Santoro

Search for resonances(1)

We searched for the resonant states claimed by CDF in the J/ $\psi\phi$ mass spectrum

We perform an unbinned maximum likelihood fit using:

- a uniform distribution (i.e. phase space)
- two incoherent Breit –Wigner distributions with parameter values fixed to the values found by CDF arXiv:1101.6058

The fit function is weighted by the 2-D efficiency map over the Dalitz plot.

Mass Squared projections and fit results

Events/ 0.07 GeV²/c⁴

preliminary

BABAR

preliminary

 $m^2_{J/\psi\phi}$ (GeV²/c⁴)

Events/ 0.16 GeV²/c⁴

(a)

QCD @ Work - International Workshop on QCD

 $m_{\phi K^*}^2$ (GeV²/c⁴)

 $m_{J/w K^{+}}^{2}$ (GeV²/c⁴)

Search for resonances(2)

The fit fractions obtained in the fit with the assumption of two resonances are:

BABAR preliminary

From the other experiments

Experiments	f (4140) [%]	f (4270) [%]
CDF	$14.9\pm2.9\pm2.4$	_
LHCb	<7	< 8
D0	$19\pm7\pm4$	-
CMS	13.4 ± 3.0 (*)	18.0 ± 7.3 (*)

(*) Estimated from the number of signal events quoted

With the present statistics we cannot access the presence of resonant behaviour; higher statistics and a full Dalitz plot analysis are needed

Search for the decay $B^0 \rightarrow J/\psi \phi$

 $BF(B^{o} \rightarrow J/\psi \phi) < 1.01 \text{ x } 10^{-6} @ 90\% \text{ C.L.}$

LHCb limit <1.9x 10⁻⁷ @ 90% C.L.

PRD 88, 072005 (2013)

No evidence found for this decay mode

Valentína Santoro

Dalitz Plot analyses of $\eta_c \rightarrow \eta \mathcal{K}^+ \mathcal{K}^-$ and $\eta_c \rightarrow \mathcal{K}^+ \mathcal{K}^- \pi^0$

Valentína Santoro

Analysis strategy

With 519 fb⁻¹ we study the reactions $\gamma_1\gamma_2 \rightarrow K^+K^-\eta^+$ with $\eta \rightarrow \gamma\gamma$, $\eta \rightarrow \pi^+\pi^-\pi^0$ and $\gamma_1\gamma_2 \rightarrow K^+K^-\pi^0$

Only states with even $J^{\pm+}$ or odd J^{++} with J>1 are allowed $J^{P} = 0^{+}$ states cannot decay strongly to 3 pseudoscalar mesons

Final state e^+ and e^- produced at low angle \rightarrow the γ_i are quasi-real Outgoing e^+ and e^- are not detected $\eta_{c}(1S) \otimes \eta_{c}(2S)$ current status

- Many $\eta_c(1S)$ and $\eta_c(2S$) decays are still missing or studied with low statistics
- Even though the $\eta_c(1S)$ has been discovered more than 30 years ago the sum of its measured BFs is only ~20 % while for the $\eta_c(2S)$ is < 5%
- BESIII has obtained measurement of the η_c branching fraction via the decay $\psi(2S) \rightarrow \pi^0 h_c \rightarrow \gamma \eta_c$, but they obtained only

 $N(\eta_c \rightarrow K^+K^-\eta) = 6.7 \pm 3.2 \text{ events}$ $N(\eta_c \rightarrow K^+K^-\pi^0) = 54.9 \pm 9.2 \text{ events}$

Valentína Santoro

PRD 86, 010001 (2012)

- No Dalitz plot analysis has been published for η_c (JPC=0-+) three body decays
- Searches for gluonium state have been performed in the past using J/ψ decays

arXiv:1403.705

K⁺K⁻ η ⁺ and K⁺K⁻ π ⁰ mass spectra

After we applied the selection criteria we obtain the following mass spectra

- **Signal:** Breit-Wigner Convolved with resolution (the resolution functions are described by Crystal Ball for the K⁺K⁻ η with $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ and a sum of Crystal Ball and a Gaussian for the the K⁺K⁻ η with $\eta \rightarrow \gamma\gamma$ and K⁺K⁻ π^{0} final state)
- **Background**: 2nd-order polynomial

Resonance	Mass (MeV/c^2)	$\Gamma ~({ m MeV})$
$\eta_c \to K^+ K^- \eta$	$2984.1 \pm 1.1 \pm 2.1$	$34.8 \pm 3.1 \pm 4.0$
$\eta_c \rightarrow K^+ K^- \pi^0$	$2979.8 \pm 0.8 \pm 3.5$	$25.2 \pm 2.6 \pm 2.4$
$\eta_c(2S) \rightarrow K^+ K^- \eta$	$3635.1 \pm 5.8 \pm 2.1$	11.3 (fixed)
$\eta_c(2S) \rightarrow K^+ K^- \pi^0$	$3637.0 \pm 5.7 \pm 3.4$	11.3 (fixed)

arXiv:1403.7051

Branching-ratio Measurements arXiv:1403.7051

Channel	Event Yield	Weights	${\cal R}$	Significance
$\eta_c \rightarrow K^+ K^- \pi^0$	$4518 \pm 131 \pm 50$	17.0 ± 0.7		32σ
$\eta_c \to K^+ K^- \eta \ (\eta \to \gamma \gamma)$	$853\pm38\pm11$	21.3 ± 0.6		21 σ
$\mathcal{B}(\eta_c \to K^+ K^- \eta) / \mathcal{B}(\eta_c \to K^+ K^- \pi^0)$			$0.602 \pm 0.032 \pm 0.065$	
$\eta_c \to K^+ K^- \eta \ (\eta \to \pi^+ \pi^- \pi^0)$	$292\pm20\pm7$	31.2 ± 2.1		14 σ
$\mathcal{B}(\eta_c \to K^+ K^- \eta) / \mathcal{B}(\eta_c \to K^+ K^- \pi^0)$			$0.523 \pm 0.040 \pm 0.083$	
$\eta_c(2S) \rightarrow K^+ K^- \pi^0$	$178\pm29\pm39$	14.3 ± 1.3		3.7σ
$\eta_c(2S) \rightarrow K^+ K^- \eta$	$47\pm9\pm3$	17.4 ± 0.4		4.9σ
$\mathcal{B}(\eta_c(2S) \rightarrow K^+ K^- \eta) / \mathcal{B}(\eta_c(2S) \rightarrow K^+ K^- \pi^0)$			$0.82 \pm 0.21 \pm 0.27$	
$\chi_{c2} \rightarrow K^+ K^- \pi^0$	$88\pm27\pm23$			2.5σ
$\chi_{c2} \rightarrow K^+ K^- \eta$	$2 \pm 5 \pm 2$			0.0σ

Weighted mean of the BR values for the two η decay modes

$$\mathcal{R}(\eta_c) = \frac{\mathcal{B}(\eta_c \to K^+ K^- \eta)}{\mathcal{B}(\eta_c \to K^+ K^- \pi^0)} = 0.571 \pm 0.025 \pm 0.051,$$

BESIII $\mathcal{R}(\eta_c) = 0.46 \pm 0.24$ PRD 86, 092009 (2012)

For the $\eta(2S)$ using only $\eta \rightarrow \gamma \gamma$

$$\mathcal{R}(\eta_c(2S)) = \frac{\mathcal{B}(\eta_c(2S) \to K^+ K^- \eta)}{\mathcal{B}(\eta_c(2S) \to K^+ K^- \pi^0)} = 0.82 \pm 0.21 \pm 0.27.$$

Valentína Santoro

Dalítz plot analyses

arXiv:1403.7051

Signals for $f_0(980)$, $f_0(1500)$, $K^*_{o}(1430)$ and $f_{o}(1710)$

Signals for $a_0(980)$, $a_0(1450)$, $a_2(1320)$ and $K^*_0(1430)$ $K^*(892)$ mostly from background

Valentína Santoro

Dalitz plot analysis of $\eta_c \rightarrow K^+K^-\eta$: Fit Results arXiv:1403.7051

We perform an unbinned maximum likelihood fit which takes into account background from the η_c sideband regions (yellow histograms)

The K⁺K⁻ amplitudes must have I=0

First evidence for the decay $K^*_{o}(1430)^{\pm} \rightarrow K^{\pm}\eta$ Observation of the $K^*_{o}(1430)$ as a Breit-Wigner peak Not so in $K\pi$ scattering [see Fig. 12 in LASS Collaboration, NPB 296, 492 (1988)]

Z	Final state	Fraction %	Phase (radians)
	$f_0(1500)\eta$	$23.7 \pm 7.0 \pm 1.8$	0.
7	$f_0(1710)\eta$	$8.9 \pm 3.2 \pm 0.4$	$2.2 \pm 0.3 \pm 0.1$
	$K_0^*(1430)^+K^-$	$16.4 \pm 4.2 \pm 1.0$	$2.3 \pm 0.2 \pm 0.1$
	$f_0(2200)\eta$	$11.2 \pm 2.8 \pm 0.5$	$2.1 \pm 0.3 \pm 0.1$
	$K_0^*(1950)^+K^-$	$2.1 \pm 1.3 \pm 0.2$	-0.2 \pm 0.4 \pm 0.1
	$f_2'(1525)\eta$	$7.3 \pm 3.8 \pm 0.4$	$1.0\pm0.1\pm0.1$
	$f_0(1350)\eta$	$5.0 \pm 3.7 \pm 0.5$	$0.9 \pm 0.2 \pm 0.1$
	$f_0(980)\eta$	$10.4 \pm 3.0 \pm 0.5$	-0.3 \pm 0.3 \pm 0.1
	NR	$15.5 \pm 6.9 \pm 1.0$	$-1.2 \pm 0.4 \pm 0.1$
	Sum	$100.0 \pm 11.2 \pm 2.5$	
CD	χ^2/ν	87/65	

Results from the Dalitz plot analysis and fit projections

 $f_o(1500)$ and $f_o(1710)$ are gluonium candidates

Valentína Santoro

Dalitz plot analysis of $\eta_c \rightarrow K^+K^-\pi^0$: Fit Results arXiv:1403.7051

We perform an unbinned maximum likelihood fit which takes into account background from the η_c sideband regions (yellow histograms)

The K⁺K⁻ amplitudes must have I=1

QC

The $K^{\pm}\pi^{o}$ mass spectrum is dominated by the $K^{*}_{o}(1430)$ resonance

Results from the Dalitz plot analysis and fit projections

Final state	Fraction $\%$	Phase (radians)
$K_0^*(1430)^+K^-$	$33.8 \pm 1.9 \pm 0.4$	0.
$K_0^*(1950)^+K^-$	$6.7 \pm 1.0 \pm 0.3$	-0.67 \pm 0.07 \pm 0.03
$a_0(980)\pi^0$	$1.9 \pm 0.1 \pm 0.2$	$0.38\pm0.24\pm0.02$
$a_0(1450)\pi^0$	$10.0~{\pm}~2.4~{\pm}~0.8$	$-2.4 \pm 0.05 \pm 0.03$
$a_2(1320)\pi^0$	$2.1 \pm 0.1 \pm 0.2$	$0.77\pm0.20\pm0.04$
$K_2^*(1430)^+K^-$	$6.8 \pm 1.4 \pm 0.3$	-1.67 \pm 0.07 \pm 0.03
NR	$24.4 \pm 2.5 \pm 0.6$	$1.49 \pm 0.07 \pm 0.03$
Sum	$85.8 \pm 3.6 \pm 1.2$	
χ^2/ν	212/130	

Valentína Santoro

19

K* (1430) Branching Ratio

arXiv:1403.7051

From the Dalitz plot analysis of $\eta_c \rightarrow K^+ K^- \pi^0$ we perform a likelihood scan to obtain the best-fit parameter values for the $K^*_o(1430)$

 $m(K_{o}^{*}(1430))=1438 \pm 8 \pm 4 \text{ MeV/c}^{2}$ $\Gamma(K_{o}^{*}(1430))=210 \pm 20 \pm 12 \text{ MeV}$

The mass value agrees well with that from the LASS experiment (Nucl. Phys. B 296, 493 (1988)), but the measured width is smaller than the LASS result and the significance of the difference is 3 sigma

We obtain also the $K^*_{o}(1430)$ branching ratio:

$$\frac{B(K_0^*(1430) \to \eta K)}{B(K_0^*(1430) \to \pi K)} = 0.092 \pm 0.025^{+0.010}_{-0.025}$$

This negative systematic error is due to strong interference effects involving the ad hoc NR amplitude in the estimation of the $K\pi$ and ηK fractions

Valentína Santoro

QCD @ Work - International Workshop on QCD

20

Conclusion

✓ We have presented new results on the B→J/ψK+K⁻K decay, measuring branching fractions and branching ratios and searching for J/ψφ mass structure
 ✓ We perform for the first time Dalitz plot analyses of η_c decay to K+K⁻η and to K+K⁻π⁰
 ✓ We observe a dominance of the decay η_c→pseudoscalar + scalar

✓The decay η_c→K⁺K⁻η has a large contribution from η_c→ f_o(1500)η (f_o(1500) is a possible glueball candidate)

✓ The K^{*}_o(1430) has been observed for the first time as a peak in the K[±] π^0 and K[±] η mass distributions ✓ First observation of the decay K^{*}_o(1430) → K η

BACK-UP SLIDES

Valentina Santoro

CDF reported the study of the decay mode $B^+ \rightarrow J/\psi \phi K^+$, ϕ $\rightarrow K^+K^- J/\psi \rightarrow \mu^+\mu^-$ PRL 102, 242002 (2009) 9 MeV/c²

2.7 fb⁻¹

2

 ΔM (GeV/c²)

4.4 4.5 (J/ψ φ) (GeV/c²)

1.1

Preliminar

Candidates/10

They observe a narrow peak near the threshold in the J/ $\psi \phi$ mass spectrum

 $M_{Y_{4143}} = 4143 \pm 2.9 \pm 1.2 \text{ MeV/c}^2$

 $\Gamma_{Y_{4143}} = 11.7^{+8.3} \pm 3.7 \text{ MeV}$

Soon after its discovery there were several theoretical interpretation about the nature of this state

arXiv: 0903:3107, 0903:2529 ecc...

Some months after the CDF result BELLE shows its J/ $\psi \phi$ mass spectrum using 772 x10⁶ **BB** pairs **NEVER PUBLISHED** They did not observe the Y(4140) in B decays or in two-photon production

