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What are B meson wave functions?
TMD wave function in kT factorization (Collins, 2003):

〈0|q̄(y)Wy(n)†In;y,0W0(n)Γh(0)|B̄(v)〉

=− ifBmB

4
Tr
{

1+/v
2

[
2Φ

+
B (t,y

2)+
Φ
−
B (t,y

2)−Φ
+
B (t,y

2)

t
/y
]

γ5 Γ

}
.

I Light-cone divergence regularized by the rapidity parameter ζ
2 = 4(v ·n)2/n2.

I Transverse gauge link In;y,0 to ensure a strict gauge invariance. Does not contribute
in covariant gauge, but contributes in light-cone gauge (Belitsky, Ji and Yuan, 2003).

Light-cone distribution amplitudes in collinear factorization (Grozin and Neubert, 97):

〈0|q̄β (z) [z,0]hα
v (0)|B̄(v)〉

=− if̃BmB

4

[
1+/v

2

{
2 φ̃

+
B (t)+

φ̃
−
B (t)− φ̃

+
B (t)

t
/z
}

γ5

]αβ

.

LO (naive) QCD sum rule analysis:

φ
+
B (ω) =

ω

ω2
0

e−ω/ω0 , φ
−
B (ω) =

1
ω0

e−ω/ω0 .
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Why B meson wave functions?

Universal nonperturbative quantities in exclusive B decays.

NLO kT factorization for the B→ π form factor (Li, Shen, and Wang 2012):

Fi(Q2) = ΦB⊗Φπ ⊗Hi⊗S⊗ J .

I Soft contribution suppressed by the Sudakov
mechanism (Botts and Sterman, 1989; Li and
Sterman, 1992).

I Transverse momentum dependence becomes
important at the end-points.

I Threshold resummation can suppress the
end-point contribution further.
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Radiative leptonic B→ γ`ν decay as a benchmark channel to extract B meson
wavefunctions (Charng and Li, 2005).
[For B meson LCDAs, see Beneke and Rohrwild (2011), Braun and Khodjamirian (2013)]
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Current status of B meson wave functions/LCDAs

NLO evolution kernel for φ
+
B Lange and Neubert, 2003

NLO QCD sum rule Braun, Ivanov and Korchemsky, 2005

NLO evolution kernel for φ
−
B Bell and Feldmann, 2008

NLO evolution kernel beyond WW approximation Descotes-Genon and Offen, 2009

OPE-based constraints in momentum space Lee and Neubert, 2009

Diagonalize the Lange-Neubert kernel Bell, Feldmann, Wang and Yip, 2013

Conformal symmetry of the Lange-Neubert kernel Braun and Manashov, 2014

OPE-based constraints in dual momentum space Feldmann, Lange and Wang, 2014

Rapidity resummation for B-meson wave functions Li, Shen and Wang, 2013
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Structure of B meson wavefunction at NLO
Quark-Wilson-line vertex diagrams (Li, Shen and Wang, 2013): 7
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FIG. 5: Effective diagrams.

with a choice of n2 6= 0 for the Wilson line direction to regularize the light-cone singularities. The NLO wave
functions then depend on n2 through the scale ζ21 ≡ 4(n · P1)

2/|n2| or ζ22 ≡ 4(n · P2)
2/|n2|, which is regarded as a

factorization-scheme dependence. This dependence, entering a hard kernel when taking the difference between the
quark diagrams and the effective diagrams, can be minimized by adhering to a fixed n2. Note that the soft subtraction
factor introduced in [10] is not necessary here, which is needed for a choice of n2 = 0.

The self-energy corrections from Figs. 5(a) and 5(b) are written as

Φ(1)
a ⊗ H(0) = Φ

(1)
b ⊗ H(0) = −αsCF

8π

(
1

ε
+ ln

4πµ2
f

δ1Q2eγE
+ 2

)
H(0), (25)

H(0) ⊗ Φ(1)
a = H(0) ⊗ Φ

(1)
b = −αsCF

8π

(
1

ε
+ ln

4πµ2
f

δ2Q2eγE
+ 2

)
H(0), (26)

whose expressions are similar to those from the quark diagrams but with the factorization scale µf . The contribution
from the box diagram in Fig. 5(c) is power-suppressed in the small x region:

Φ(1)
c ⊗ H(0) = H(0) ⊗ Φ(1)

c = 0. (27)

The sign of the plus component n+ of the vector n is arbitrary, which could be positive or negative (n− has a
positive sign, the same as of P−

2 ). Choosing n+ < 0, i.e., n2 < 0 as in [5, 38, 39], Fig. 5(d) leads, in the small x
region, to

Φ
(1)
d ⊗ H(0) =

αsCF

4π

(
1

ε
+ ln

4πµ2
f

k2
1T eγE

− ln2 ζ21
k2
1T

+ ln
ζ21
k2
1T

+ 2 − π2

3

)
H(0),

H(0) ⊗ Φ
(1)
d =

αsCF

4π

(
1

ε
+ ln

4πµ2
f

k2
2T eγE

− ln2 ζ22
k2
2T

+ ln
ζ22
k2
2T

+ 2 − π2

3

)
H(0), (28)

which reproduces the Sudakov logarithm in the form of ln2(ζ2/k2
T ). As computing the convolution of Φ

(1)
e with H(0),

the momentum fraction appearing in the hard kernel should be restricted between 0 and 1. The expression for Fig. 5(e)
is given, in the small x region, by

Φ(1)
e ⊗ H(0) =

αsCF

4π

[
ln2

(
x1ζ

2
1

k2
1T

)
+

2π2

3

]
H(0),

H(0) ⊗ Φ(1)
e =

αsCF

4π

[
ln2

(
δ12ζ

2
2

x1k2
2T

)
+

2π2

3

]
H(0), (29)

where terms vanishing with k2
T → 0 have been dropped. It is observed that Fig. 5(e) also generates a double logarithm,

whose importance is attenuated by the small x.

Φ
(1)
5d ⊗H(0) = −αsCF

4π
ln

ζ 2
1

m2
B

(
1
ε
+ ln

4πµ2
f

m2
geγE

)
H(0),

Φ
(1)
5e ⊗H(0) =

αsCF

4π
ln

ζ 2
1

m2
B

(
ln

ζ 2
1

m2
g
− 1

2
ln

ζ 2
1

m2
B
+2lnx1

)
H(0) .

The double rapidity logarithm ln2
ζ

2
1 arises from the overlap of the collinear

enhancement from a loop momentum l collinear to n and the soft enhancement.

Mixed logarithm ln µf ln(ζ 2/k2
T) calls for simultaneous rapidity and scale evolutions.

Similar to the joint resummation for Sudakov and threshold ecolutions (Li, 1998; Laenen,
Sterman, Vogelsang, 2000, 2001).
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How to resum the rapidity logarithms?
Rapidity resummation of the light-meson wavefunctions (Collins, Soper, 1981; Li, 1998):

ζ
2 d

dζ 2 Φ =− u2

n− ·u
nα
−
2

d
duα

Φ .

I The collinear divergence arises from the region with a loop momentum collimated
to the light meson momentum, and is insensitive to the Wilson line vector u.

I The variation of u suppresses this collinear region, such that the differentiated
gluon does not generate the collinear divergence.

I The differentiated gluon can be factorized out of the light meson wave functions.

What is different for B meson wave functions?
I The collinear divergence arises from the region with a loop momentum collinear to

the Wilson line vector n.
I The differentiated gluon with respect to n can not be factorized out of the B meson

wave functions.
I Key insight: The collinear divergence is insensitive to the heavy-quark velocity v,

the variation of v suppresses this collinear region such that the differentiated gluon
can be factorized out.
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Construction of evolution equation
Velocity derivative under the constraint of EOM:

v+
d

dv+
ΦB =

(
v+

∂

∂v+
− v−

∂

∂v−

)
ΦB ≡ εαβ vα ∂

∂vβ

ΦB .

εαβ is the anti-symmetric tensor: ε+− =−ε−+ = 1.

Rapidity derivative of the rescaled b quark interaction:

ζ
2 d

dζ 2 ΦB =
v ·n

2εαβ vα nβ
v+

d
dv+

ΦB ,

v ·n
2εαβ vα nβ

v+
d

dv+
vµ

v · l =
v̂µ

v · l ,

v̂µ ≡ v ·n
2εαβ vα nβ

ερλ vρ

(
gµλ − vµ lλ

v · l

)
.

The rapidity evolution equation:

ζ
2 d

dζ 2 ΦB(x,kT ,ζ
2,µf ) = Γ(x,kT ,ζ

2)⊗ΦB(x,kT ,ζ
2,µf ) .

The vertex v̂µ contracted to the vertex in Φ.
I Suppression of collinear dynamics associated with the Wilson link.
I No hard dynamics involved in the HQET B meson wave functions.
I Only soft gluon radiations are relevant in the kernel Γ(x,kT ,ζ

2,µf ).
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Rapidity evolution and UV renormaliztion

Overlapping rapidity and UV divergence from b-quark-Wilson-line vertex correction:

−αsCF

4π
lnζ

2

(
1
ε
+ ln

4πµ2
f

m2
geγE

)
.

Rapidity evolution equation for un-renormalized B meson wave function:

1
ZΦ

ζ
2 d

dζ 2 Φ
(b)
B (x,kT ,ζ

2,µf ) =
1

ZΦ

K(b,1)⊗Φ
(b)
B (x,kT ,ζ

2,µf )

= K(b,1)⊗ΦB(x,kT ,ζ
2,µf ) .

Rapidity evolution equation for renormalized B meson wave function:

ζ
2 d

dζ 2 ΦB(x,kT ,ζ
2,µf ) =

1
ZΦ

ζ
2 d

dζ 2 Φ
(b)
B (x,kT ,ζ

2,µf )−
1

ZΦ

(
ζ

2 d
dζ 2 ZΦ

)
ΦB(x,kT ,ζ

2,µf )

≡ K(1)⊗ΦB(x,kT ,ζ
2,µf ) .
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Soft function I
Soft gluon radiations:

BB

v

k

The reducible diagram:

K(b,1)
1 = −ig2CF

∫ d4l
(2π)4

v̂ ·n
(v · l+ iε)(l2 + iε)(n · l+ iε)

,

= −αsCF

4π
Γ(ε)

(
4πµ2

f

λ 2

)ε (
v ·n

εαβ vα nβ

)2

.

IR divergence regularized by the gluon mass λ .
Cancels between reducible and irreducible diagrams.

Renormalized reducible kernel:

K(1)
1 = K(b,1)

1 − 1
ZΦ

(
ζ

2 d
dζ 2 ZΦ

)

= −αsCF

4π
ln

(
µ2

f

λ 2

)(
v ·n

εαβ vα nβ

)2

.
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Soft function II
The irreducible diagram:

K(1)
2 ⊗ΦB = ig2CF

∫ d4l
(2π)4

v̂ ·n
(v · l+ iε)(l2 + iε)(n · l+ iε)

×ΦB(x+ l+/P+,kT + lT ,ζ 2,µf ) .

Fourier and Mellin transformations of K2⊗ΦB:

K̃(1)
2 (N,b,ζ 2) =

αsCF

2π

(
v ·n

εαβ vα nβ

)2 [
K0 (λb)−K0

(√
ζ 2 mBb

N

)]
.

Renormalized soft function:

K̃(1)(N,b,ζ 2,µf ) = K(1)
1 (µf )+ K̃(1)

2 (N,b,ζ 2)

= −αsCF

2π

[
ln

µf b
2

+ γE +K0

(√
ζ 2 mBb

N

)]
.

I Confirm infrared finite soft kernel.
I The soft function approaches lnb in the limit ζ mBb� N, and ln(N/ζ ) in the limit

N� ζ mBb.
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RG improved evolution kernel

The ultraviolet and the light-cone divergences are from different kinematical region.
I The scheme and scale evolutions are commutable:

µf
d

dµf
ζ

2 d
dζ 2 ΦB = ζ

2 d
dζ 2 µf

d
dµf

ΦB .

I Independence of QCD evolution paths.

RGE of the soft function:

µf
d

dµf
K(1) =−λK =−αsCF

2π
.

RG improvement:

K (1)(N,b,ζ 2,µf ) = K̃(1)(N,b,ζ 2,µc)−
∫

µf

µc

dµ

µ
λK(αs(µ))θ(µf −µc) .

I Choose µc = aζ mB/N to diminish K̃(1)(N,b,ζ 2,µc) in the large N limit.
I The small x suppression due to the resummation effect is independent of a.
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Solution in Mellin and impact-parameter spaces
Evolution equation in N and b spaces:

ζ
2 d

dζ 2 Φ̃B(N,b,ζ 2,µf ) = K (1)(N,b,ζ 2,µf ) Φ̃B(N,b,ζ 2,µf ) .

Solution:

Φ̃B(N,b,ζ 2,µf ) = exp

[∫
ζ 2

ζ 2
0

dζ̃ 2

ζ̃ 2
K (1)(N,b, ζ̃ 2,µf )

]
Φ̃B(N,b,ζ 2

0 ,µf ) .

RGE for µf evolution:

µf
d

dµf
Φ̃B(N,b,ζ 2,µf ) =−

αsCF

2π

(
lnζ

2−2
)

Φ̃B(N,b,ζ 2,µf ) .

Combined evolution:

Φ̃B(N,b) = exp

[∫
ζ 2

ζ 2
0

dζ̃ 2

ζ̃ 2
K (1)(N,b, ζ̃ 2,µf )−

∫
µf

µ0

dµ

µ

αs(µ)

2π
CF

(
lnζ

2
0 −2

)]

×Φ̃B(N,b,ζ 2
0 ,µ0) .

Choose µf = aζ0 mB and the upper rapidity bound needs to be replaced by N2
ζ

2
0 .
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Resummation improved wave functions I
Inverse Mellin transformation:

Φ
±
B (x,kT ) =

∫ c+i∞

c−i∞

dN
2πi

(1− x)−N
Φ̃
±
B (N,kT ) .

Resummation with frozen αs:

Φ̃
±
B (N,kT ) = exp

[
−αsCF

2π
lnN

(
lna2 + lnN

)]
Φ̃
±
B (N,kT ,ζ

2
0 ) .

Factorized model for the initial condition:

Φ
±
B (x,kT ,ζ

2
0 ) = φ

±
B (x,ζ 2

0 )φ(kT) .

Free-parton model for φ
±
B (x,ζ 2

0 ):

φ
−
B (x,ζ 2

0 ) =
2x0− x

2x2
0

θ(2x0− x) ⇒ (1−2x0)
N+1 +2x0N +2x0−1
2x2

0N(N +1)
,

Φ̃
+
B (N,kT ,ζ

2
0 ) =

x
2x2

0
θ(2x0− x) ⇒ 1− (1−2x0)

N(1+2x0N)

2x2
0N(N +1)

.

Choose the contour to avoid the poles at N = 0 and −1 as well as the branching cut on
the negative real axis of N.
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Resummation improved wave functions II

Resummation effect in B meson wave functions:

ΦB
- HxL

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

x

ΦB
+
HxL

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

x

I Variation of a is not important because of ln2 N� lna2 lnN.
I Smooth B meson wave functions after the resummation.
I Strong suppression of small x region due to rapidity resummation.

I Normalization conditions
∫ 1

0
dxφ

±
B (x) = 1 are respected.
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Resummation improved wave functions III

Analytical parametrization (Solovtsov and Shirkov, 1999):

αs(µ) =
4π

β0

[
1

ln(µ2/Λ2
QCD)

−
Λ2

QCD

µ2−Λ2
QCD

]
.

Resummation with running αs:
I Shift the peak positions towards large x a bit.
I More effective suppression at small x.
I Maintain the normalization conditions.

Models of B meson wave functions in PQCD approach satisfy the above features:

φB(x,b) = NBx2(1− x)2 exp
[
−m2

B x2

2ω2
b
− 1

2
(ωbb)2

]
.

“Wandzura-Wilczek" relations of the two B meson wave functions do not hold after the
rapidity resummation.
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B→ π form factors

B→ π form factors in QCD:

〈π(p′)|q̄γ
µ b|B̄(p)〉 = f+(q2)

[
pµ +p′µ − m2

B−m2
π

q2 qµ

]
+ f0(q2)

m2
B−m2

π

q2 qµ ,

〈π(p′)|q̄σ
µν qν b|B̄(p)〉 =

ifT(q2)

mB +mπ

[
q2(pµ +p′µ )− (m2

B−m2
π )qµ

]
.

Non-lattice approaches to compute B→M form factors:
I QCD factorization:

Fi(q2) = Ci(E)ξa(E)+ΦB(ω)⊗Ti(E; lnω,u)⊗ΦM(u) .

I SCET factorization:

Fi(q2) = Ci(E)ξa(E)+C(B1)
i (E,τ)⊗Ξa(τ,E) ,

Ξa(τ,E) = Ja(τ;u,ω)⊗ΦB(M)⊗ΦM(u) .

I TMD (PQCD) factorization:

Fi(Q2) = ΦB⊗ΦM⊗Hi⊗S⊗ J .

I QCD and SCET sum rules: dispersion relation and quark-hadron duality.
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NLO corrections in PQCD factorization
Vertex corrections:

5

(a) (b) (c)

(d) (e)

FIG. 3: Vertex corrections to Fig. 1(a).

(d) (e) (f)

(b)(a) (c)

FIG. 4: Box and pentagon diagrams.

The amplitude from Fig. 3(a) depends only on the regulator δ2, because the radiative gluon attaches to the virtual b
quark line. The double logarithm 2 ln δ2 lnx2 leads to the known Sudakov logarithm ln2 δ2 and the known threshold
logarithm ln2 x2 [13, 15], as reexpressed in the form

2 ln δ2 lnx2 = ln2 δ2 + ln2 x2 − ln2
δ2
x2

. (20)

The radiative gluon in Fig. 3(b) attaches to the massive valence b quark and the virtual b quark, so Eq. (16) is infrared
finite. The radiative gluon in Fig. 3(c) attaches to the light valence anti-quarks, such that both the collinear and soft
divergences are produced, with the latter being denoted by the product ln δ1 ln δ2. This term can be absorbed neither
into the B meson wave function nor into the pion wave function. Since the radiative gluon attaches to the virtual LO
hard gluon in Fig. 3(d), the soft divergence does not appear Eq. (18). Equations (17) and (18) are symmetric under
the exchange of the regulators δ1 and δ2, as they should. Similar to Fig. 3(b), Fig. 3(e) also gives an infrared finite
contribution.
The box diagrams and the pentagon diagrams in Fig. 4 lead to the amplitudes

G
(1)
4a = −αsNc

4π

[
ln

(
x2η

2

δ2

)
+ 1

]
x2H

(0), (21)

G
(1)
4c = − αs

4πNc

[
ln

(
x1η

δ1

)
ln

(
δ12
δ2

)
+

π2

6

]
H(0), (22)

G
(1)
4d = −αsCF

4π

[
ln2
(
δ1
x2
1

)
− ln2 x1 −

7π2

3

]
H(0), (23)
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4a = −αsNc

4π
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)
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]
x2H
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[
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)
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)
+
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Rapidity resummation improved in B→ π form factors

Resummation effect in B→ π form factors:

fBΠ
+
Hq2L

fBΠ, r
+
Hq2L

fBΠ
0
Hq2L

fBΠ, r
0
Hq2L

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

q2HGeV2
L

I Both form factors decreased by
about 25% at q2 = 0.

I Resummation effect on the
shape is mild.

I f+Bπ
(0) = 0.24 to be compared

with LCSR prediction
0.28±0.03.

I Improving the accuracy of f+Bπ

for the extraction of |Vub|.
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Conclusion and outlook

Constructed an evolution equation to resum the double rapidity logarithm ln2
ζ .

Strong suppression at end points and the normalization conditions respected.

Resummation effect results in 25% suppression for B→ π form factors at q2 = 0.

More efforts are in demand on theory side:

I Rapidity resummation for the hard scattering kernel.
I OPE-based constraints on the B meson wave functions.
I Relations between B meson wave functions and LCDAs.
I Include the soft contribution in kT factorization.

Applications of rapidity resummation in B→ γ`ν decay and extraction of the shape
parameters in B meson wavefunctions.
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