Rapidity resummation for B meson wave functions

Yu-Ming Wang

RWTH Aachen and TUM

Talk based on:
Hsiang-nan Li, Yue-Long Shen, YMW, JHEP 02 (2013) 008.
QCD@ Work, Giovinazzo, 18. 06. 2014

What are B meson wave functions?

- TMD wave function in k_{T} factorization (Collins, 2003):

$$
\begin{aligned}
& \langle 0| \bar{q}(y) W_{y}(n)^{\dagger} I_{n ; y, 0} W_{0}(n) \Gamma h(0)|\bar{B}(v)\rangle \\
& =-\frac{i f_{B} m_{B}}{4} \operatorname{Tr}\left\{\frac{1+\not v}{2}\left[2 \Phi_{B}^{+}\left(t, y^{2}\right)+\frac{\Phi_{B}^{-}\left(t, y^{2}\right)-\Phi_{B}^{+}\left(t, y^{2}\right)}{t} \not b\right] \gamma_{5} \Gamma\right\} .
\end{aligned}
$$

- Light-cone divergence regularized by the rapidity parameter $\zeta^{2}=4(v \cdot n)^{2} / n^{2}$.
- Transverse gauge link $I_{n ; y, 0}$ to ensure a strict gauge invariance. Does not contribute in covariant gauge, but contributes in light-cone gauge (Belitsky, Ji and Yuan, 2003).
- Light-cone distribution amplitudes in collinear factorization (Grozin and Neubert, 97):

$$
\begin{aligned}
& \langle 0| \bar{q}^{\beta}(z)[z, 0] h_{v}^{\alpha}(0)|\bar{B}(v)\rangle \\
& =-\frac{i \tilde{f}_{B} m_{B}}{4}\left[\frac{1+\psi}{2}\left\{2 \tilde{\phi}_{B}^{+}(t)+\frac{\tilde{\phi}_{B}^{-}(t)-\tilde{\phi}_{B}^{+}(t)}{t} \not \approx\right\} \gamma_{5}\right]^{\alpha \beta} .
\end{aligned}
$$

- LO (naive) QCD sum rule analysis:

$$
\phi_{B}^{+}(\omega)=\frac{\omega}{\omega_{0}^{2}} e^{-\omega / \omega_{0}}, \quad \phi_{B}^{-}(\omega)=\frac{1}{\omega_{0}} e^{-\omega / \omega_{0}}
$$

Why B meson wave functions?

- Universal nonperturbative quantities in exclusive B decays.
- NLO k_{T} factorization for the $B \rightarrow \pi$ form factor (Li, Shen, and Wang 2012):

$$
F_{i}\left(Q^{2}\right)=\Phi_{B} \otimes \Phi_{\pi} \otimes H_{i} \otimes S \otimes J
$$

- Soft contribution suppressed by the Sudakov mechanism (Botts and Sterman, 1989; Li and Sterman, 1992).
- Transverse momentum dependence becomes important at the end-points.
- Threshold resummation can suppress the end-point contribution further.

- Radiative leptonic $B \rightarrow \gamma \ell \nu$ decay as a benchmark channel to extract B meson wavefunctions (Charng and Li, 2005).
[For B meson LCDAs, see Beneke and Rohrwild (2011), Braun and Khodjamirian (2013)]

Current status of B meson wave functions/LCDAs

NLO evolution kernel for ϕ_{B}^{+}	Lange and Neubert, 2003
NLO QCD sum rule	Braun, Ivanov and Korchemsky, 2005
NLO evolution kernel for ϕ_{B}^{-}	Bell and Feldmann, 2008
NLO evolution kernel beyond WW approximation	Descotes-Genon and Offen, 2009
OPE-based constraints in momentum space	Lee and Neubert, 2009
Diagonalize the Lange-Neubert kernel	Bell, Feldmann, Wang and Yip, 2013
Conformal symmetry of the Lange-Neubert kernel	Braun and Manashov, 2014
OPE-based constraints in dual momentum space	Feldmann, Lange and Wang, 2014
Rapidity resummation for B-meson wave functions	Li, Shen and Wang, 2013

Structure of B meson wavefunction at NLO

- Quark-Wilson-line vertex diagrams (Li, Shen and Wang, 2013):

(d)

(e)

$$
\begin{aligned}
\Phi_{5 d}^{(1)} \otimes H^{(0)} & =-\frac{\alpha_{s} C_{F}}{4 \pi} \ln \frac{\zeta_{1}^{2}}{m_{B}^{2}}\left(\frac{1}{\varepsilon}+\ln \frac{4 \pi \mu_{\mathrm{f}}^{2}}{m_{g}^{2} e^{\gamma_{E}}}\right) H^{(0)} \\
\Phi_{5 e}^{(1)} \otimes H^{(0)} & =\frac{\alpha_{s} C_{F}}{4 \pi} \ln \frac{\zeta_{1}^{2}}{m_{B}^{2}}\left(\ln \frac{\zeta_{1}^{2}}{m_{g}^{2}}-\frac{1}{2} \ln \frac{\zeta_{1}^{2}}{m_{B}^{2}}+2 \ln x_{1}\right) H^{(0)}
\end{aligned}
$$

- The double rapidity logarithm $\ln ^{2} \zeta_{1}^{2}$ arises from the overlap of the collinear enhancement from a loop momentum l collinear to n and the soft enhancement.
- Mixed logarithm $\ln \mu_{\mathrm{f}} \ln \left(\zeta^{2} / k_{T}^{2}\right)$ calls for simultaneous rapidity and scale evolutions.
- Similar to the joint resummation for Sudakov and threshold ecolutions (Li, 1998; Laenen, Sterman, Vogelsang, 2000, 2001).

How to resum the rapidity logarithms?

- Rapidity resummation of the light-meson wavefunctions (Collins, Soper, 1981; Li, 1998):

$$
\zeta^{2} \frac{d}{d \zeta^{2}} \Phi=-\frac{u^{2}}{n_{-} \cdot u} \frac{n_{-}^{\alpha}}{2} \frac{d}{d u^{\alpha}} \Phi
$$

- The collinear divergence arises from the region with a loop momentum collimated to the light meson momentum, and is insensitive to the Wilson line vector u.
- The variation of u suppresses this collinear region, such that the differentiated gluon does not generate the collinear divergence.
- The differentiated gluon can be factorized out of the light meson wave functions.
- What is different for B meson wave functions?
- The collinear divergence arises from the region with a loop momentum collinear to the Wilson line vector n.
- The differentiated gluon with respect to n can not be factorized out of the B meson wave functions.
- Key insight: The collinear divergence is insensitive to the heavy-quark velocity v, the variation of v suppresses this collinear region such that the differentiated gluon can be factorized out.

Construction of evolution equation

- Velocity derivative under the constraint of EOM:

$$
v^{+} \frac{d}{d v^{+}} \Phi_{B}=\left(v^{+} \frac{\partial}{\partial v^{+}}-v^{-} \frac{\partial}{\partial v^{-}}\right) \Phi_{B} \equiv \varepsilon_{\alpha \beta} v^{\alpha} \frac{\partial}{\partial v_{\beta}} \Phi_{B}
$$

$\varepsilon_{\alpha \beta}$ is the anti-symmetric tensor: $\varepsilon_{+-}=-\varepsilon_{-+}=1$.

- Rapidity derivative of the rescaled b quark interaction:

$$
\begin{array}{r}
\zeta^{2} \frac{d}{d \zeta^{2}} \Phi_{B}=\frac{v \cdot n}{2 \varepsilon_{\alpha \beta} v^{\alpha} n^{\beta}} v^{+} \frac{d}{d v^{+}} \Phi_{B}, \\
\frac{v \cdot n}{2 \varepsilon_{\alpha \beta} v^{\alpha} n^{\beta}} v^{+} \frac{d}{d v^{+}} \frac{v^{\mu}}{v \cdot l}=\frac{\hat{v}^{\mu}}{v \cdot l} \\
\hat{v}^{\mu} \equiv \frac{v \cdot n}{2 \varepsilon_{\alpha \beta} v^{\alpha} n^{\beta}} \varepsilon_{\rho \lambda} v^{\rho}\left(g^{\mu \lambda}-\frac{v^{\mu} l^{\lambda}}{v \cdot l}\right)
\end{array}
$$

- The rapidity evolution equation:

$$
\zeta^{2} \frac{d}{d \zeta^{2}} \Phi_{B}\left(x, k_{T}, \zeta^{2}, \mu_{f}\right)=\Gamma\left(x, k_{T}, \zeta^{2}\right) \otimes \Phi_{B}\left(x, k_{T}, \zeta^{2}, \mu_{f}\right)
$$

- The vertex \hat{v}^{μ} contracted to the vertex in Φ.
- Suppression of collinear dynamics associated with the Wilson link.
- No hard dynamics involved in the HQET B meson wave functions.
- Only soft gluon radiations are relevant in the kernel $\Gamma\left(x, k_{T}, \zeta^{2}, \mu_{f}\right)$.

Rapidity evolution and UV renormaliztion

- Overlapping rapidity and UV divergence from b-quark-Wilson-line vertex correction:

$$
-\frac{\alpha_{s} C_{F}}{4 \pi} \ln \zeta^{2}\left(\frac{1}{\varepsilon}+\ln \frac{4 \pi \mu_{\mathrm{f}}^{2}}{m_{g}^{2} e^{\gamma_{E}}}\right) .
$$

- Rapidity evolution equation for un-renormalized B meson wave function:

$$
\begin{aligned}
\frac{1}{Z_{\Phi}} \zeta^{2} \frac{d}{d \zeta^{2}} \Phi_{B}^{(b)}\left(x, k_{T}, \zeta^{2}, \mu_{f}\right) & =\frac{1}{Z_{\Phi}} K^{(b, 1)} \otimes \Phi_{B}^{(b)}\left(x, k_{T}, \zeta^{2}, \mu_{f}\right) \\
& =K^{(b, 1)} \otimes \Phi_{B}\left(x, k_{T}, \zeta^{2}, \mu_{f}\right)
\end{aligned}
$$

- Rapidity evolution equation for renormalized B meson wave function:

$$
\begin{aligned}
\zeta^{2} \frac{d}{d \zeta^{2}} \Phi_{B}\left(x, k_{T}, \zeta^{2}, \mu_{f}\right) & =\frac{1}{Z_{\Phi}} \zeta^{2} \frac{d}{d \zeta^{2}} \Phi_{B}^{(b)}\left(x, k_{T}, \zeta^{2}, \mu_{f}\right)-\frac{1}{Z_{\Phi}}\left(\zeta^{2} \frac{d}{d \zeta^{2}} Z_{\Phi}\right) \Phi_{B}\left(x, k_{T}, \zeta^{2}, \mu_{f}\right) \\
& \equiv K^{(1)} \otimes \Phi_{B}\left(x, k_{T}, \zeta^{2}, \mu_{f}\right)
\end{aligned}
$$

Soft function I

- Soft gluon radiations:

- The reducible diagram:

$$
\begin{aligned}
K_{1}^{(b, 1)} & =-i g^{2} C_{F} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\hat{v} \cdot n}{(v \cdot l+i \varepsilon)\left(l^{2}+i \varepsilon\right)(n \cdot l+i \varepsilon)} \\
& =-\frac{\alpha_{s} C_{F}}{4 \pi} \Gamma(\varepsilon)\left(\frac{4 \pi \mu_{f}^{2}}{\lambda^{2}}\right)^{\varepsilon}\left(\frac{v \cdot n}{\varepsilon_{\alpha \beta} v^{\alpha} n^{\beta}}\right)^{2}
\end{aligned}
$$

IR divergence regularized by the gluon mass λ.
Cancels between reducible and irreducible diagrams.

- Renormalized reducible kernel:

$$
\begin{aligned}
K_{1}^{(1)} & =K_{1}^{(b, 1)}-\frac{1}{Z_{\Phi}}\left(\zeta^{2} \frac{d}{d \zeta^{2}} Z_{\Phi}\right) \\
& =-\frac{\alpha_{s} C_{F}}{4 \pi} \ln \left(\frac{\mu_{f}^{2}}{\lambda^{2}}\right)\left(\frac{v \cdot n}{\varepsilon_{\alpha \beta} v^{\alpha} n^{\beta}}\right)^{2}
\end{aligned}
$$

Soft function II

- The irreducible diagram:

$$
\begin{aligned}
K_{2}^{(1)} \otimes \Phi_{B}= & i g^{2} C_{F} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\hat{v} \cdot n}{(v \cdot l+i \varepsilon)\left(l^{2}+i \varepsilon\right)(n \cdot l+i \varepsilon)} \\
& \times \Phi_{B}\left(x+l^{+} / P^{+}, k_{T}+l_{T}, \zeta^{2}, \mu_{f}\right)
\end{aligned}
$$

Fourier and Mellin transformations of $K_{2} \otimes \Phi_{B}$:

$$
\tilde{K}_{2}^{(1)}\left(N, b, \zeta^{2}\right)=\frac{\alpha_{s} C_{F}}{2 \pi}\left(\frac{v \cdot n}{\varepsilon_{\alpha \beta} \nu^{\alpha} n^{\beta}}\right)^{2}\left[K_{0}(\lambda b)-K_{0}\left(\sqrt{\zeta^{2}} \frac{m_{B} b}{N}\right)\right] .
$$

- Renormalized soft function:

$$
\begin{aligned}
\tilde{K}^{(1)}\left(N, b, \zeta^{2}, \mu_{f}\right) & =K_{1}^{(1)}\left(\mu_{f}\right)+\tilde{K}_{2}^{(1)}\left(N, b, \zeta^{2}\right) \\
& =-\frac{\alpha_{s} C_{F}}{2 \pi}\left[\ln \frac{\mu_{f} b}{2}+\gamma_{E}+K_{0}\left(\sqrt{\zeta^{2}} \frac{m_{B} b}{N}\right)\right] .
\end{aligned}
$$

- Confirm infrared finite soft kernel.
- The soft function approaches $\ln b$ in the limit $\zeta m_{B} b \gg N$, and $\ln (N / \zeta)$ in the limit $N \gg \zeta m_{B} b$.

RG improved evolution kernel

- The ultraviolet and the light-cone divergences are from different kinematical region.
- The scheme and scale evolutions are commutable:

$$
\mu_{f} \frac{d}{d \mu_{f}} \zeta^{2} \frac{d}{d \zeta^{2}} \Phi_{B}=\zeta^{2} \frac{d}{d \zeta^{2}} \mu_{f} \frac{d}{d \mu_{f}} \Phi_{B}
$$

- Independence of QCD evolution paths.
- RGE of the soft function:

$$
\mu_{f} \frac{d}{d \mu_{f}} K^{(1)}=-\lambda_{K}=-\frac{\alpha_{s} C_{F}}{2 \pi} .
$$

- RG improvement:

$$
\mathscr{K}^{(1)}\left(N, b, \zeta^{2}, \mu_{f}\right)=\tilde{K}^{(1)}\left(N, b, \zeta^{2}, \mu_{c}\right)-\int_{\mu_{c}}^{\mu_{f}} \frac{d \mu}{\mu} \lambda_{K}\left(\alpha_{s}(\mu)\right) \theta\left(\mu_{f}-\mu_{c}\right) .
$$

- Choose $\mu_{c}=a \zeta m_{B} / N$ to diminish $\tilde{K}^{(1)}\left(N, b, \zeta^{2}, \mu_{c}\right)$ in the large N limit.
- The small x suppression due to the resummation effect is independent of a.

Solution in Mellin and impact-parameter spaces

- Evolution equation in N and b spaces:

$$
\zeta^{2} \frac{d}{d \zeta^{2}} \tilde{\Phi}_{B}\left(N, b, \zeta^{2}, \mu_{f}\right)=\mathscr{K}^{(1)}\left(N, b, \zeta^{2}, \mu_{f}\right) \tilde{\Phi}_{B}\left(N, b, \zeta^{2}, \mu_{f}\right)
$$

- Solution:

$$
\tilde{\Phi}_{B}\left(N, b, \zeta^{2}, \mu_{f}\right)=\exp \left[\int_{\zeta_{0}^{2}}^{\zeta^{2}} \frac{d \tilde{\zeta}^{2}}{\tilde{\zeta}^{2}} \mathscr{K}^{(1)}\left(N, b, \tilde{\zeta}^{2}, \mu_{f}\right)\right] \tilde{\Phi}_{B}\left(N, b, \zeta_{0}^{2}, \mu_{f}\right) .
$$

- RGE for μ_{f} evolution:

$$
\mu_{f} \frac{d}{d \mu_{f}} \tilde{\Phi}_{B}\left(N, b, \zeta^{2}, \mu_{f}\right)=-\frac{\alpha_{s} C_{F}}{2 \pi}\left(\ln \zeta^{2}-2\right) \tilde{\Phi}_{B}\left(N, b, \zeta^{2}, \mu_{f}\right) .
$$

- Combined evolution:

$$
\begin{aligned}
\tilde{\Phi}_{B}(N, b)= & \exp \left[\int_{\zeta_{0}^{2}}^{\zeta^{2}} \frac{d \tilde{\zeta}^{2}}{\tilde{\zeta}^{2}} \mathscr{K}^{(1)}\left(N, b, \tilde{\zeta}^{2}, \mu_{f}\right)-\int_{\mu_{0}}^{\mu_{f}} \frac{d \mu}{\mu} \frac{\alpha_{s}(\mu)}{2 \pi} C_{F}\left(\ln \zeta_{0}^{2}-2\right)\right] \\
& \times \tilde{\Phi}_{B}\left(N, b, \zeta_{0}^{2}, \mu_{0}\right)
\end{aligned}
$$

Choose $\mu_{f}=a \zeta_{0} m_{B}$ and the upper rapidity bound needs to be replaced by $N^{2} \zeta_{0}^{2}$.

Resummation improved wave functions I

- Inverse Mellin transformation:

$$
\Phi_{B}^{ \pm}\left(x, k_{T}\right)=\int_{c-i \infty}^{c+i \infty} \frac{d N}{2 \pi i}(1-x)^{-N} \tilde{\Phi}_{B}^{ \pm}\left(N, k_{T}\right) .
$$

- Resummation with frozen α_{s} :

$$
\tilde{\Phi}_{B}^{ \pm}\left(N, k_{T}\right)=\exp \left[-\frac{\alpha_{S} C_{F}}{2 \pi} \ln N\left(\ln a^{2}+\ln N\right)\right] \tilde{\Phi}_{B}^{ \pm}\left(N, k_{T}, \zeta_{0}^{2}\right) .
$$

Factorized model for the initial condition:

$$
\Phi_{B}^{ \pm}\left(x, k_{T}, \zeta_{0}^{2}\right)=\phi_{B}^{ \pm}\left(x, \zeta_{0}^{2}\right) \phi\left(k_{T}\right)
$$

- Free-parton model for $\phi_{B}^{ \pm}\left(x, \zeta_{0}^{2}\right)$:

$$
\begin{aligned}
\phi_{B}^{-}\left(x, \zeta_{0}^{2}\right) & =\frac{2 x_{0}-x}{2 x_{0}^{2}} \theta\left(2 x_{0}-x\right) \Rightarrow \frac{\left(1-2 x_{0}\right)^{N+1}+2 x_{0} N+2 x_{0}-1}{2 x_{0}^{2} N(N+1)}, \\
\tilde{\Phi}_{B}^{+}\left(N, k_{T}, \zeta_{0}^{2}\right) & =\frac{x}{2 x_{0}^{2}} \theta\left(2 x_{0}-x\right) \Rightarrow \frac{1-\left(1-2 x_{0}\right)^{N}\left(1+2 x_{0} N\right)}{2 x_{0}^{2} N(N+1)} .
\end{aligned}
$$

Choose the contour to avoid the poles at $N=0$ and -1 as well as the branching cut on the negative real axis of N.

Resummation improved wave functions II

- Resummation effect in B meson wave functions:

- Variation of a is not important because of $\ln ^{2} N \gg \ln a^{2} \ln N$.
- Smooth B meson wave functions after the resummation.
- Strong suppression of small x region due to rapidity resummation.
- Normalization conditions $\int_{0}^{1} d x \phi_{B}^{ \pm}(x)=1$ are respected.

Resummation improved wave functions III

- Analytical parametrization (Solovtsov and Shirkov, 1999):

$$
\alpha_{s}(\mu)=\frac{4 \pi}{\beta_{0}}\left[\frac{1}{\ln \left(\mu^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}-\frac{\Lambda_{\mathrm{QCD}}^{2}}{\mu^{2}-\Lambda_{\mathrm{QCD}}^{2}}\right] .
$$

- Resummation with running α_{s} :
- Shift the peak positions towards large x a bit.
- More effective suppression at small x.
- Maintain the normalization conditions.
- Models of B meson wave functions in PQCD approach satisfy the above features:

$$
\phi_{B}(x, b)=N_{B} x^{2}(1-x)^{2} \exp \left[-\frac{m_{B}^{2} x^{2}}{2 \omega_{b}^{2}}-\frac{1}{2}\left(\omega_{b} b\right)^{2}\right] .
$$

- "Wandzura-Wilczek" relations of the two B meson wave functions do not hold after the rapidity resummation.

$B \rightarrow \pi$ form factors

- $B \rightarrow \pi$ form factors in QCD:

$$
\begin{aligned}
\left\langle\pi\left(p^{\prime}\right)\right| \bar{q} \gamma^{\mu} b|\bar{B}(p)\rangle & =f_{+}\left(q^{2}\right)\left[p^{\mu}+p^{\prime \mu}-\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}, \\
\left\langle\pi\left(p^{\prime}\right)\right| \bar{q} \sigma^{\mu v} q_{v} b|\bar{B}(p)\rangle & =\frac{i f_{T}\left(q^{2}\right)}{m_{B}+m_{\pi}}\left[q^{2}\left(p^{\mu}+p^{\prime \mu}\right)-\left(m_{B}^{2}-m_{\pi}^{2}\right) q^{\mu}\right] .
\end{aligned}
$$

- Non-lattice approaches to compute $B \rightarrow M$ form factors:
- QCD factorization:

$$
F_{i}\left(q^{2}\right)=C_{i}(E) \xi_{a}(E)+\Phi_{B}(\omega) \otimes T_{i}(E ; \ln \omega, u) \otimes \Phi_{M}(u)
$$

- SCET factorization:

$$
\begin{aligned}
F_{i}\left(q^{2}\right) & =C_{i}(E) \xi_{a}(E)+C_{i}^{(B 1)}(E, \tau) \otimes \Xi_{a}(\tau, E), \\
\Xi_{a}(\tau, E) & =J_{a}(\tau ; u, \omega) \otimes \Phi_{B}(M) \otimes \Phi_{M}(u)
\end{aligned}
$$

- TMD (PQCD) factorization:

$$
F_{i}\left(Q^{2}\right)=\Phi_{B} \otimes \Phi_{M} \otimes H_{i} \otimes S \otimes J
$$

- QCD and SCET sum rules: dispersion relation and quark-hadron duality.

NLO corrections in PQCD factorization

- Vertex corrections:

- Box and pentagon diagrams:

Rapidity resummation improved in $B \rightarrow \pi$ form factors

- Resummation effect in $B \rightarrow \pi$ form factors:

- Both form factors decreased by about 25% at $q^{2}=0$.
- Resummation effect on the shape is mild.
- $f_{B \pi}^{+}(0)=0.24$ to be compared with LCSR prediction 0.28 ± 0.03.
- Improving the accuracy of $f_{B \pi}^{+}$ for the extraction of $\left|V_{u b}\right|$.

Conclusion and outlook

- Constructed an evolution equation to resum the double rapidity logarithm $\ln ^{2} \zeta$.
- Strong suppression at end points and the normalization conditions respected.
- Resummation effect results in 25% suppression for $B \rightarrow \pi$ form factors at $q^{2}=0$.
- More efforts are in demand on theory side:
- Rapidity resummation for the hard scattering kernel.
- OPE-based constraints on the B meson wave functions.
- Relations between B meson wave functions and LCDAs.
- Include the soft contribution in k_{T} factorization.
- Applications of rapidity resummation in $B \rightarrow \gamma \ell \nu$ decay and extraction of the shape parameters in B meson wavefunctions.

