

e⁺e⁻ HADRONIC CROSS SECTION

AND THE MUON g-2

Concetta Cartaro SLAC On Behalf of the *BABAR* Collaboration

QCD @ WORK 2014 7th International Workshop on QCD – Theory and Experiment Giovinazzo (Bari) Italy, June 16-19, 2014

OVERVIEW

- The anomalous magnetic moment of the muon, a_{μ}

– Motivation, experiment and theory

- g-2 Physics at the B-factories and more
 - Meson-photon form factors
 - Hadronic cross sections
- Summaries

MAGNETIC MOMENT OF THE MUON

- Magnetic Moment: $\vec{\mu} = g \frac{e\hbar}{2mc} \vec{S}$
- Gyromagnetic factor g for
 - Dirac particles (point like fermions):
 - Higher order contributions (QFT):
- Muon anomaly

$$-a_{\mu}=(g-2)_{\mu}/2$$
$$-a_{\mu}^{\text{theory(SM)}}=a_{\mu}^{\text{QED}}+a_{\mu}^{\text{weak}}+a_{\mu}^{\text{had}}$$

CONTRIBUTIONS TO THE MUON ANOMALY

Source	Value (10 ⁻¹⁰)	Uncertainty (10 ⁻¹⁰)
QED	11 658 471.895	0. 008
Weak	15.4	0.2
Hadronic	693.0	4.9

[T.Kinoshita et al., PR L 109, 111808 (2012)]

Historical note:

[Schwinger, PR 73,416 (1948)] $a_e^{QED,LO} = \alpha/(2\pi) =$ 11 620 000 × 10⁻¹⁰

$(g-2)_{\mu}$ Measurement at BNL

- E821 experiment at Brookhaven National Laboratory
 - [G.W. Bennett et al.,
 PR D 73, 072003 (2006)]

Source	Value (10 ⁻¹⁰)	Uncertainty (10 ⁻¹⁰)
QED	11 658 471.895	0. 008
Weak	15.4	0.2
Hadronic	693.0	4.9
BNL E821	11 659 208.9	6.4
BNL – SM Theory	28.7	8.0

- $a_{\mu}^{SM} a_{\mu}^{EXP}$
 - 3.6 sigma apart
- New physics contribution to a_{μ} ?

Theoretical Prediction of $a_{\mu}^{\ \ had}$

- Hadronic contributions dominate the uncertainty
 - Hadronic Light-by-Light (LbL)
 - Hadronic Vacuum Polarization (VP)

$$\begin{array}{ll} a_{\mu}^{\ had} &= (693.0 \pm 4.9) \times 10^{-10} \\ a_{\mu}^{\ had,LbL} = & (10.5 \pm 2.6) \times 10^{-10} \end{array}$$

- Pseudoscalar meson exchange contribution important
- Photon-meson transition form factors (TFF) need to be measured

MAIN HADRONIC CONTRIBUTION

- Largest hadronic contribution to a_{μ}
- Largest absolute uncertainty of a_{μ}
- running of $\alpha_s \rightarrow pQCD$ not applicable

 $\begin{array}{lll} a_{\mu}^{\ had} &= (693.0 {\pm} 4.9) {\times} 10^{-10} \\ a_{\mu}^{\ had,VP} &= (692.3 {\pm} 4.2) {\times} 10^{-10} \end{array}$

THE **B-FACTORIES**

- Asymmetric e⁺e⁻ colliders
- High Luminosity
- At BB threshold
 - √s = 10.58 GeV → Υ(4S)
 - Charm and tau factories and more:

Initial State Radiation physics

High energy $\gamma_{ISR} \rightarrow Iow CM$ energy Produces vectors, $J^{PC}=1^{--}$ Measure σ_{had}

 \rightarrow Access to $a_{\!\mu}^{\;\;had,VP}$

Photon-photon physics

Produces pseudoscalars, J^{PC}=0⁻⁺, ... Measures meson-photon transition form factors

 \rightarrow Access to $a_{\mu}^{had,LbL}$

EXPERIMENTAL INPUT FOR a_{μ}^{had}

- Energy scan
 - CMD and SND at VEPP-2M and VEPP-2000 in Novosibirsk
 - BESIII at BEPCII in Beijing
- ISR
 - KLOE at DA Φ NE in Frascati
 - BABAR at PEP-II in Stanford
 - BESIII at BEPCII in Beijing
 - Belle
 - Bhabha veto system of Belle trigger hinders low multiplicity light-hadron measurements in ISR
 - Different system to be used at Belle2

ISR PHYSICS AT BABAR

$$e^{-(9 \,\mathrm{GeV})} \xrightarrow{\gamma} hadrons$$

$$e^{+(3 \,\mathrm{GeV})} \xrightarrow{\sqrt{s'} = E_{CM}} hadrons$$

- Detect high energy photon: $E_{\gamma} > 3 \text{ GeV}$
 - Defines E_{CM} and provides strong background rejection
- Event topology: ISR photon back-to-back to hadrons
 - High angular acceptance in hadronic cms
 - Efficiency >0 also at the hadron production threshold
- Kinematic fit including γ_{ISR}
 - Very good energy resolution (4 15MeV)
- Continuous measurement from threshold to 4.5 GeV
 - Provides common, consistent systematic uncertainties

ISR ANALYSES AT BABAR

 $e^+e^- \rightarrow \pi^+\pi^-$ PR D 86 (2012) 032013, PR L 103 (2009) 231801 $e^+e^- \rightarrow K^+K^-$ PR D 88, (2013) 032013 $e^+e^- \rightarrow \phi f_0(980)$ PR D 74 (2006) 091103, PR D 76 (2007) 012008 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ PR D 70 (2004) 072004 $e^+e^- \rightarrow K^+K^-\eta, K^+K^-\pi^0, K^0_S K^{\pm}\pi^{\mp}$ PR D 77 (2008) 092002, PR D 71 (2005) 052001 $e^+e^- \rightarrow 2(\pi^+\pi^-)$ PR D 85 (2012) 112009, PR D 76 (2007) 012008 $e^+e^- \rightarrow K^+K^-\pi^0\pi^0, K^+K^-\pi^+\pi^-, 2(K^+K^-)$ PR D 86 (2012) 012008, PR D 76 (2007) 012008 $e^+e^- \rightarrow K^0_s K^0_l, K^0_s K^0_l \pi^+ \pi^-, K^0_s K^0_s \pi^+ \pi^-, K^0_s K^0_s K^+ K^-$ PR D 89 (2014) 092002 $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0, 2(\pi^+\pi^-)\eta, K^+K^-\pi^+\pi^-\pi^0, K^+K^-\pi^+\pi^-\eta)$ PR D 76 (2007) 092005 $e^+e^- \rightarrow 3(\pi^+\pi^-), 2(\pi^+\pi^-\pi^0), 2(\pi^+\pi^-)K^+K^-$ PR D 73 (2006) 052003 $e^+e^- \rightarrow p\bar{p}$ (small \sqrt{s}) PR D 87 (2013) 092005, PR D 73 (2006) 012005 $e^+e^- \rightarrow p\bar{p}$ (large \sqrt{s}) PR D 88 (2013) 072009 $e^+e^- \rightarrow \Lambda \bar{\Lambda}, \Lambda \bar{\Sigma}^0, \Sigma^0 \bar{\Sigma}^0$ PR D 76 (2007) 092006 $e^+e^- \rightarrow c\bar{c} \rightarrow \dots$

Ongoing:

 $e^+e^- \to \pi^+\pi^-\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0, K_s^0K^{\pm}\pi^{\mp}\pi^0/\eta$

THE e⁺e⁻ HADRONIC CROSS SECTION

C. Cartaro - QCD@WORK 2014

$e^+e^- \rightarrow \pi^+\pi^- CROSS SECTION$

- Motivation: dominance of the E<1GeV region, accessed through $\pi^+\pi^-$
- Features of the cross section distribution
 - Includes possible FSR
 - Dominated by $\rho(770)$ resonance
 - ρ-ω interference
 - Dip at 1.6GeV: interference between ρ' and ρ''
 - Dip at 2.2GeV: higher mass ρ state

Contributions of different energy regions to the dispersion integral

[BaBar: PRD 86 (2012) 032013, PRL 103 (2009) 231801]

$e^+e^- \rightarrow \pi^+\pi^- CROSS SECTION$

Pion form factor fitted with a Vector Dominance Model including ρ , ω , ρ' , ρ'' $|F_{\pi}|^2(s') = \frac{3s'}{\pi \alpha^2(0) \beta_{\pi}^3} \sigma_{\pi\pi}(s')$

- KLOE and *BABAR* dominate the world average
- Uncertainty of both measurements smaller than 1%
- Systematic difference, especially above $\rho(770)$ peak
- Discrepancy leads to large uncertainty for a_{μ}^{had}

- Second largest contributor to a^{had}_μ
- Discrepancy in $\omega' \omega''$ region needs to be resolved
 - Preliminary Belle analysis using 527 fb⁻¹ data sample agrees with BABAR

$e^+e^- \rightarrow K^+K^- CROSS SECTION$

- Need precision measurements in the region 1GeV< E <2GeV
- Uncertainties at the ϕ peak
 - BaBar: 0.8%
 - CMD2: 2.2%

Charged Kaon Form Factor at Large Q²

- Predictions based on QCD in asymptotic regime (Chernyak, Brodsky-Lepage, Farrar-Jackson)
- Power law: $F_K \propto \alpha_s (Q^2)Q^{-n}$ with n = 2
 - In good agreement with the data (2.5-5 GeV, $n = 2.10 \pm 0.23$)
- However data on $|F_{\kappa}|^2$ are a factor ≈ 20 above prediction!
- No trend in data up to 25 GeV² for approaching the asymptotic QCD prediction

$e^+e^- \rightarrow K_S^0 K_L^0 CROSS SECTION$

- Cross section measured on ϕ peak (1409 \pm 55nb) and in region above
- In good agreement with other experiments
 - Precision comparable to SND and CMD2
- Systematic uncertainties:
 - 2.9% on ϕ peak, dominated by trigger
 - ~10% above 0.5nb, ~30% below <0.5nb, dominated by background subtraction

$e^+e^- \rightarrow K_S^0 K_L^0 \pi^+ \pi^- CROSS SECTION$

- 1st measurement!
 - Previously only evaluated with isospin relations
- Systematic uncertainty dominated by background subtraction
 - ~10% at 2 GeV,
 ~30% at 1.5 3.0 GeV,
 100% above 3.0 GeV
 - Dominated by $K^* + K^* -$

 $\text{B(J/\psi} \rightarrow \text{K}_{\text{s}}^{0}\text{K}_{\text{L}}^{0}\pi^{+}\pi^{-})\text{=}(3.7\pm0.6\pm0.4)\times10^{-3}$

- 1st measurements!
 - Previously only evaluated with isospin relations
- Systematic uncertainties are ~5% in peak regions, ~20% in the range 1.5-3.0GeV, and 50-70% above 3 GeV
- The K_s⁰K_s⁰K⁺K⁻ mode is dominated by statistical uncertainties (~5%) [BaBar: PRD 89(2014) 092002

SUMMARY ON (g-2)

Impact on $(g-2)_{\mu}$ from HVP

- channels estimated with isospin relations
 - largest contributions: $KK\pi$ and $KK\pi\pi$

— КК

- BABAR reduces δa_{μ}^{had} (K⁺K⁻) by factor 2.7
- K_s⁰K_L⁰ not evaluated yet at *BABAR*
- $-\pi^{+}\pi^{-}\pi^{+}\pi^{-}$
 - BABAR reduces $\delta a_{\mu}^{had}(\pi^{+}\pi^{-}\pi^{+}\pi^{-})$ by 40% w.r.t. previous BABAR analysis
 - Analysis not shown here
- $-\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{0},\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
 - Future results from *BABAR*, BESIII, and CMD3
 - Belle 3π result also not evaluated yet

Data from M. Davier et al. EPJ C **71**,1515 (2011) Plots compiled by A. Hafner – many thanks!

SUMMARY AND OUTLOOK

- The hadronic cross sections for $a_{\mu}^{had,VP}$ dominate the uncertainty of a_{μ}^{had} and a_{μ}^{theory}
 - $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$, K^+K^- , $K_s^0K_L^0$, are under control
 - $e^+e^- \rightarrow \pi^+\pi^-$ very precise measurements but not fully in agreement
 - Need more data
 - $e^+e^- \rightarrow \pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^0\pi^0$ need to be evaluated
 - BABAR, BESIII, SND, CMD3, and Belle
- Direct measurement of a^{exp}
 - Fermilab g-2 collaboration (E989)
 - Nucl.Phys.Proc.Suppl. 225-227 (2012), 277-281
 - Aiming for precision of 0.14 ppm
 - J-PARC collaboration
 - Nucl.Phys.Proc.Suppl. 218 (2011) 242-246
 - Aiming for precision of 0.1 ppm
- \rightarrow Overall improve precision by a factor 4

BACKUP

E821 AT BNL

Magic energy:

E_{...}=3.094GeV (γ=29.3)

- $\pi^+ \rightarrow \mu^+ \nu$ violates P $\rightarrow \mu^+$ longitudinally polarized
- μ^+ stored in a storage ring with constant \overrightarrow{B}
 - μ^+ rotating with cyclotron frequency: $\vec{\omega_c}$
 - μ^+ spin precessing frequency: $\vec{\omega_s}$

$$-\vec{\omega}_{a} = \vec{\omega}_{s} - \vec{\omega}_{c} = -\frac{q}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] = -a_{\mu} \frac{q}{m_{\mu}} \vec{B}$$

- $\mu^+ \rightarrow e^+ \nu \nu$ violates P
- e⁺ remembers μ⁺ polarization
- Fraction of detected e⁺ above an E-threshold is modulated with $\vec{\omega}_a$
- Measure $\vec{\omega}_a$ and \vec{B}

[G.W. Bennett et al., PR D 73, 072003 (2006)]

The radiative Return

- Developed by KLOE and BABAR
- The emission of an ISR photon lowers the effective cm energy of the e⁺e⁻ collision : s→ s'=s(1-x)
 - Study e⁺e⁻ annihilations for a continuous and wide spectrum of energies √s' below the nominal √s
 - No change of operating conditions of the collider
 - Optimal use of the available luminosity
- ISR studies at the Y(4S) can yield the same observables as the low energy e⁺e⁻ experiments!

TAGGED/UNTAGGED ISR

- Tagged approach
 - fully reconstructed events → great background reduction
 - ~90% signal loss
- Untagged approach
 - typically higher efficiency
 - higher background reduced by requiring the missing mass consistent with zero
- So, what is the more convenient approach?
 - It depends on experimental situation
 - At $\sqrt{s}=10.58$ GeV and for low m_f, (i.e. large x) the hadronic system has a large boost opposite to the photon direction
 - the efficiency is almost insensitive to tagging
- This is why at *BABAR*:
 - − Light Quarks final states ⇔ Tagged analyses
 - − Heavy Quarks final states ⇔ Untagged analyses

