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Reliable description of multiple radiation in top production and decay and of b-quark
fragmentation is fundamental in the measurement of the top properties

Monte Carlo event generators (HERWIG/PYTHIA) widely used to simulate top
production and decay and bottom-quark hadronization

LHC and Tevatron inclusive analyses (dilepton, lepton+jets and all-hadrons) propagate
the uncertainty on b-fragmentation to the systematic error due to b-jet energy scale and
b-tagging efficiency:

∆mt(bfrag) ≃ 300 MeV ; ∆mt(syst) ≃ 710 MeV (Tevatron/LHC world average)

J/ψ+ lepton final states (103/year in high-luminosity phase)

t→ bW ; b→ B → J/ψ X ; J/ψ → µ+µ− ; W → ℓνℓ

A. Kharchilava, PLB 476 (2000) 73, R. Chierici and A. Dierlamm, CMS Note 2006/058

mmax
3ℓ = 0.56 mt − 25.3 GeV Systematics (theo + exp): ∆mt(syst) ≃ 1.47 GeV

b-fragmentation (PYTHIA+Peterson model): ∆mt(frag) ≃ 0.51 GeV

Several calculations and tools are available for bottom fragmentation in top decays, but
not unique strategy for the systematic error: comparing two tuned codes/computations,
one program varying fragmentation parameters, etc.



Top production and decays at hadron colliders, e.g. in qq̄ annihilation

Perturbative QCD allows one to calculate the parton-level (b-quark) spectrum

Phenomenological hadronization models are given in terms of non-perturbative
fragmentation functions

σ(t→WB) = σ(t→Wb)⊗Dnp(b→ B)

Dnp(b→ B) contains parameters to be fitted to experimental data

Narrow-width approximation (NWA):

dσhad
dxB

(t→ B) ≃ dΓhad

dxB
(t→ B) ;

dΓhad

dxB
(t→ B) =

dΓpart

dxb
(t→ b)⊗Dnp(b→ B)
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Top decay at NLO:
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t(q) → b(pb)W (pW )
(

g(pg
)

)

xb =
1

1−m2
W

/m2
t

2pb·pt
m2

t

1

Γ0

dΓ

dxb
= δ(1− xb) +

αS(µ)

2π

[

Pqq(xb) ln
m2

t

m2
b

+A(xb)

]

+O
[(

mb

mt

)p]

Pqq(xb) = CF

(

1 + x2b
1− xb

)

+

;

∫ 1

0

dxbf(xb)[g(xb)]+ =

∫ 1

0

dxb[f(xb)− f(1)]g(xb)

Mass logarithms and large-xb terms need resummation (soft/collinear radiation)

Calculations often carried out in the NWA, recently NLO with interference effects
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Some relevant calculations for top decays

A.Czarnecki, PLB 252 (1990) 467: Total NLO top decay width

A.Czarnecki and K.Melnikov, PRD59 (1999) 014036: Total top decay NNLO width

G.C. and A.Mitov, NPB623 (2001) 247 b-quark energy spectrum, collinear resummation
of ln(mt/mb) and some soft-enhanced logarithms in the NLL+NLO approximation.
Hadron corrections from e+e− data

M. Cacciari, G.C. and A.Mitov,JHEP 0212 (2002) 015:
As above, but with complete soft NLL resummation

S.Biswas, K.Melnikov and M.Schulze, JHEP 1008 (2010) 048:
NLO distributions with collinear resummation; hadronization by the above fits

A.Denner, S.Dittmaier, S.Kallweit and S.Pozzorini, JHEP 1210 (2012) 110:
NLO for off-shell top production and decays, interface with showers and hadronization
in progress

J. Gao, C.S. Li and H.X. Zhu (SCET), PRL110 (2013) 042001;
M. Brucherseifer, F. Caola and K. Melnikov, JHEP 04 (2013) 059:
NNLO distributions for top decays for massless b, not yet b-hadronization

Standard parton shower generators (PYTHIA, HERWIG): LO+LL plus some NLLs at
large x (ΛMS → ΛMC = ΛMS exp(4Kβ0))



Hadronization: NP fragmentation functions and Monte Carlo models

DK(x, α) = (1 + α)(2 + α)x(1− x)α ; DP(x, ǫ) =
NP

x [1− 1/x− ǫ/(1− x)]
HERWIG: cluster model

Perturbative evolution ends at Q2 = Q2
0

Angular ordering ⇒ colour preconfinement

Forced gluon splitting (g → qq̄)

Colour-singlet clusters decay into the observed hadrons

PYTHIA: string model

q and q̄ move in opposite directions

The colour field collapses into a string with uniform energy density

qq̄ pairs are produced

The string breaks into the observed hadrons

Possible interface with NP fragmentation functions

Tuning involves hadronic and perturbative parameters: Q0, ΛMC, mg, etc. and relies
on precise e+e− data (LHC data in future?)
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G. C. and V. Drollinger, NPB (2005): weakly-decaying B-hadron data from OPAL
(mesons and baryons), ALEPH (only mesons) and SLD (mesons and baryons)

HERWIG PYTHIA
CLSMR(2) = 0.3 (0.0) PARJ(41) = 0.85 (0.30)
DECWT = 0.7 (1.0) PARJ(42) = 1.03 (0.58)
CLPOW = 2.1 (2.0) PARJ(46) = 0.85 (1.00)

PSPLT(2) = 0.33 (1.00)

χ2/dof = 222.4/61 (739.4/61) χ2/dof = 45.7/61 (467.9/61)

Lund/Bowler fragmentation function (PYTHIA):

fB(z) ∝
1

z1+brm2
b

(1− z)a exp(−bm2
T/z)

HERWIG tuned parameters describe hadron gaussian smearing (CLSMR), baryon/meson
(CLPOW) and decuplet/octet (DECWT) ratios, mass spectrum of b-like clusters
(PSPLT)

Our PYTHIA tuning in ATLAS jet-energy measurement (EPJ C73 (2013) 2304) and as
a cross-check for top analyses
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Comparing tuned HERWIG and PYTHIA and resummed calculations

NLO+NLL: M.Cacciari and S.Catani, NPB617 (2001) 253-290

Best fit (0.18 ≤ xB ≤ 0.94): α = 17.178± 0.303, χ2/dof = 46.2/53
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B-lepton invariant mass according to tuned HERWIG and PYTHIA
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Linear fits to extract mt from mBℓ

HERWIG: 〈mBℓ〉H ≃ −25.31 GeV + 0.61 mt ; δ = 0.043 GeV

PYTHIA: 〈mBℓ〉P ≃ −24.11 GeV + 0.59 mt ; δ = 0.022 GeV

NLO: 〈mBℓ〉NLO ≃ −26.7 GeV + 0.60 mt ; δ = 0.004 GeV

S.Biswas, K.Melnikov and M.Schulze, JHEP 1008 (2010) 048: mBℓ at NLO

∆〈mBℓ〉H,P ≃ 1.2 GeV ; ∆〈mBℓ〉H,NLO ≃ 2.2 GeV ; ∆〈mBℓ〉P,NLO ≃ 1.1 GeV

NLO+showers for top decays or C++ codes may shed light on this discrepancy
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Relating reconstructed top mass with theoretical definitions

Subtraction of the UV divergences in the self energy Σ(p)

p p-���

�����

���� �����
	�� �

Renormalized propagator: S−1(p) = −i[ 6 p−m0
t +ΣR(p,m0

t , µ)]

Mass is solution of equation 6 p−mt +ΣR(p,mt, µ) = 0

Pole mass:
ΣR(p) = 0 and

∂ΣR

∂ 6 p = 0 for 6 p = m

OK for electrons, but for quarks non-perturbative ambiguity: ∆m ∼ ΛQCD

Higher-order corrections lead to infrared renormalons:

Σ(m) ∼ m
∑

n

αn+1
S (2β0)

n n!

QQQ
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MS mass m̄t(µ)– dimensional regularization D = 4− 2ǫ

Σ(p) =
iαSCF

4π

{[

1

ǫ
− γ + ln 4π + A(m

0
t , p, µ)

]

6 p −

[

4

(

1

ǫ
− γ + ln 4π

)

+ B(m
0
t , p, µ)

]

m
0
t

}

Counterterm to subtract (1/ǫ+ γE − ln 4π)

Relation with the pole mass (coefficients ci depending on ln[µ2/m̄t(µ)
2] )

mt = m̄t(µ)
[

1 + αS(µ)c1 + α2
S(µ)c2 + . . .

]

Works well with off-shell quarks (e.g. Z/H → bb̄), but at threshold ∼ (αS/v
2)k

In order to make a statement on the nature of the reconstructed mass, one would need
at least a NLO calculation, subtracting off the ultraviolet divergences

Typical experimental analyses (matrix-element, template methods) employ Monte Carlo
parton showers, which are equivalent to LO+(N)LL calculations and miss width effects,
higher-order corrections in the top self energy

Hadronization and non-perturbative effects play a role on hadron-level observables

One should try to relate the mass in the Monte Carlo codes to the mass definitions or,
alternatively, use computations which are at least NLO
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Total cross section for tt̄ production recently computed at NNLO+NNLL:

σtot =
∑

i,j

∫

dβ Φij(β, µ
2
F ) σ̂ij , β =

√

1− 4m2/ŝ , Φij =
2β

1− β2
x (fi ⊗ fj)

At NNLO, for µ = µF = µR and L = ln(m2/µ2) (Mitov, Fielder and Czakon, ’13):

σ̂ =
α2
S

m2
t

{

σ(0) + αS

[

σ
(1)
ij + Lσ

(1,1)
ij

]

+ α2
S

[

σ
(2)
ij + Lσ

(2,1)
ij + L2σ(2,2)

]}

Threshold logarithms αn
S[ln

m(1− z)/(1− z)]+ z = m2
t/(xixjŝ), m ≤ 2n− 1
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-1
CMS, L = 2.3 fb

Top++ 2.0, ABM11

Top++ 2.0, CT10

Top++ 2.0, HERAPDF1.5

Top++ 2.0, MSTW2008

Top++ 2.0, NNPDF2.3

Scales: ∆σ ≃ 3%; pdfs: ∆σ ≃ 2.5%; αS: ∆σ ≃ 1.5%, mt: ∆σ ≃ 3%

Extracted pole mass exhibits large errors: mpole
t =

(

176+3.8
−3.4

)

GeV
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World average (CDF, D0, ATLAS, CMS): mt = 173.34± 0.27 (stat) ± 0.71 (syst) GeV
relies on Monte Carlo generators

Reconstructed mass m2
t = (pb−jet + pν + pℓ)

2 (with cuts on jets and leptons) with
on-shell tops should be close to the top mass, up to widths and higher-order corrections

Attempts based on SCET have in fact shown that mt ≃ mpole
t +O(αSΓ)

A possible way out: run HERWIG with fictitious top-hadron states

Top quarks hadronize (T±,0) and decay, e.g., through the spectator model

From a given observable R extract the Monte Carlo mass mMC
T

Study the same observable R with standard top samples, get mMC
t and compare the

extracted masses mMC
T = mMC

t +∆m

In the hadronized samples, the Monte Carlo mass can be related to the T -meson mass
MT and ultimately to the pole or MS top-quark masses by using lattice, potential
models, NRQCD, etc.

Connection between pole/MS mass and the Monte Carlo mass

Investigate the dependence of the results on the specific analysis/observable and
contributions to ∆m (colour flow, gluon radiation, hadron decay models)

– Typeset by FoilTEX – 14



HERWIG for e+e− → tt̄ at
√
s = 1 TeV with top quarks hadronizing before decaying

t

t-flavoured mesons in the dilepton channel, i.e. T+ = (td̄), T 0 = (tū), T− = (t̄d), etc.

Spectator model decays: T− → (b̄d)ℓ−ν̄ℓ +X . . . p2T = (pb̄ + pW + pq + pX)2

t̄ b̄

d d

T−

In a fraction of events, proportional to ∆S(Q
2
b, Q

2
0), the b quarks in T decays do not

radiate gluons: the (b̄q) cluster yields a B meson plus a soft hadron, e.g. pions

Spectator quarks likely do not radiate

In usual top decays before hadronization, the b-quark manages to form hard clusters
decaying into B’s and more energetic hadrons
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Results with hadronized top quarks for BW invariant mass for fixed mMC
t with and

possibly without gluon radiation off the b (top plots) and varying mMC
t (bottom)
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Mellin moments - mBW spectrum, allowing gluon emissions off the b quarks

T -hadrons:

mt (GeV) 〈mBW 〉 (GeV) 〈m2
BW 〉 (GeV2) 〈m3

BW 〉 (GeV3) 〈m4
BW 〉 (GeV4)

171 148.76 2.24× 104 3.41× 106 5.24× 108

173 150.44 2.29× 104 3.53× 106 5.48× 108

175 152.18 2.35× 104 3.66× 106 5.74× 108

177 153.80 2.40× 104 3.77× 106 5.99× 108

179 155.61 2.45× 104 3.91× 106 6.28× 108

t-quarks:

mt (GeV) 〈mBW 〉 (GeV) 〈m2
BW 〉 (GeV2) 〈m3

BW 〉 (GeV3) 〈m4
BW 〉 (GeV4)

171 148.08 2.21× 104 3.35× 106 5.11× 108

173 149.56 2.26× 104 3.46× 106 5.32× 108

175 151.00 2.30× 104 3.56× 106 5.54× 108

177 152.60 2.36× 104 3.67× 106 5.78× 108

179 153.97 2.40× 103 3.78× 106 6.00× 108
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Conclusions and outlook

Bottom fragmentation in top decays is a source of uncertainty on the measurement of
the top properties in inclusive (b-tagging and b-energy scale) and exclusive analyses

b-fragmentation relies on tuning hadronization models to e+e− data

Predictions for top decays yielded by the different codes exhibit some discrepancies,
mostly driven by unsatisfactory tunings

Preliminary results on BW invariant mass from top-flavoured mesons

Perspectives:

Tuning PYTHIA 8 and HERWIG++ can be a valuable strategy to pursue

Using NLO+showers (POWHEG and aMC@NLO) and NNLO calculations

Tuning fragmentation parameters directly to LHC data (tt̄, bb̄, Z/γ + b)

Extending analysis with hadronized top quarks, e.g. b-jets vs. B-mesons, turning
spectator-quark radiation on, studying dependence on shower cutoff, to shed light on
current discrepancies and possibly make a statement on the nature of the reconstructed
top mass
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