Bottom-quark fragmentation and impact on the top mass measurement

GENNARO CORCELLA

INFN - Laboratori Nazionali di Frascati

- 1. Introduction
- 2. QCD calculations and Monte Carlo codes for b-fragmentation in top events
- 3. Hadronization models and fits to LEP and SLD data
- 4. Estimate of systematic error on the top mass measurement
- 5. Work in progress on top mass from top-hadron states
- 6. Conclusions

Based on work by G.C., F.Mescia, V. Drollinger, A.D. Mitov, M. Cacciari, LEP, SLD and LHC top/heavy-quark working groups

Work in progress with F.Mescia and K.Tywoniuk (fragmentation) and M.L. Mangano (t-flavoured hadrons)

– Typeset by Foil $\mathrm{T}_{\mathrm{E}}\mathrm{X}$ –

Reliable description of multiple radiation in top production and decay and of b-quark fragmentation is fundamental in the measurement of the top properties

Monte Carlo event generators (HERWIG/PYTHIA) widely used to simulate top production and decay and bottom-quark hadronization

LHC and Tevatron inclusive analyses (dilepton, lepton+jets and all-hadrons) propagate the uncertainty on b-fragmentation to the systematic error due to b-jet energy scale and b-tagging efficiency:

 $\Delta m_t({\rm bfrag}) \simeq 300~{\rm MeV}~$; $\Delta m_t({\rm syst}) \simeq 710~{\rm MeV}$ (Tevatron/LHC world average)

 $J/\psi+$ lepton final states (10³/year in high-luminosity phase)

$$t \to bW$$
; $b \to B \to J/\psi X$; $J/\psi \to \mu^+\mu^-$; $W \to \ell\nu_\ell$

A. Kharchilava, PLB 476 (2000) 73, R. Chierici and A. Dierlamm, CMS Note 2006/058

$$m_{3\ell}^{\rm max}=0.56~m_t-25.3~{\rm GeV}$$
 Systematics (theo $+~{\rm exp}$): $\Delta m_t({\rm syst})\simeq 1.47~{\rm GeV}$

b-fragmentation (PYTHIA+Peterson model): $\Delta m_t({\rm frag}) \simeq 0.51~{\rm GeV}$

Several calculations and tools are available for bottom fragmentation in top decays, but not unique strategy for the systematic error: comparing two tuned codes/computations, one program varying fragmentation parameters, etc.

Top production and decays at hadron colliders, e.g. in $q\bar{q}$ annihilation

Perturbative QCD allows one to calculate the parton-level (b-quark) spectrum Phenomenological hadronization models are given in terms of non-perturbative fragmentation functions

$$\sigma(t \to WB) = \sigma(t \to Wb) \otimes D_{np}(b \to B)$$

 $D_{np}(b \to B)$ contains parameters to be fitted to experimental data Narrow-width approximation (NWA):

$$\frac{d\sigma_{\text{had}}}{dx_B}(t \to B) \simeq \frac{d\Gamma_{\text{had}}}{dx_B}(t \to B) \quad ; \quad \frac{d\Gamma_{\text{had}}}{dx_B}(t \to B) = \frac{d\Gamma_{\text{part}}}{dx_b}(t \to b) \otimes D_{np}(b \to B)$$

Top decay at NLO:

$$\frac{1}{\Gamma_0} \frac{d\Gamma}{dx_b} = \delta(1 - x_b) + \frac{\alpha_S(\mu)}{2\pi} \left[P_{qq}(x_b) \ln \frac{m_t^2}{m_b^2} + A(x_b) \right] + \mathcal{O}\left[\left(\frac{m_b}{m_t} \right)^p \right]$$

$$P_{qq}(x_b) = C_F \left(\frac{1+x_b^2}{1-x_b}\right)_+ \; ; \; \int_0^1 dx_b f(x_b)[g(x_b)]_+ = \int_0^1 dx_b [f(x_b) - f(1)]g(x_b)$$

Mass logarithms and large- x_b terms need resummation (soft/collinear radiation) Calculations often carried out in the NWA, recently NLO with interference effects

Some relevant calculations for top decays

A.Czarnecki, PLB 252 (1990) 467: Total NLO top decay width

A.Czarnecki and K.Melnikov, PRD59 (1999) 014036: Total top decay NNLO width

G.C. and A.Mitov, NPB623 (2001) 247 b-quark energy spectrum, collinear resummation of $\ln(m_t/m_b)$ and some soft-enhanced logarithms in the NLL+NLO approximation. Hadron corrections from e^+e^- data

M. Cacciari, G.C. and A.Mitov, JHEP 0212 (2002) 015:

As above, but with complete soft NLL resummation

S.Biswas, K.Melnikov and M.Schulze, JHEP 1008 (2010) 048:

NLO distributions with collinear resummation; hadronization by the above fits

A.Denner, S.Dittmaier, S.Kallweit and S.Pozzorini, JHEP 1210 (2012) 110:

NLO for off-shell top production and decays, interface with showers and hadronization in progress

J. Gao, C.S. Li and H.X. Zhu (SCET), PRL110 (2013) 042001;

M. Brucherseifer, F. Caola and K. Melnikov, JHEP 04 (2013) 059:

NNLO distributions for top decays for massless b, not yet b-hadronization

Standard parton shower generators (PYTHIA, HERWIG): LO+LL plus some NLLs at large x ($\Lambda_{\overline{\rm MS}} \to \Lambda_{\rm MC} = \Lambda_{\overline{\rm MS}} \exp(4K\beta_0)$)

Hadronization: NP fragmentation functions and Monte Carlo models

$$D_{K}(x,\alpha) = (1+\alpha)(2+\alpha)x(1-x)^{\alpha} \; ; \; D_{P}(x,\epsilon) = \frac{N_{P}}{x[1-1/x-\epsilon/(1-x)]}$$

HERWIG: cluster model

Perturbative evolution ends at $Q^2 = Q_0^2$

Angular ordering ⇒ colour preconfinement

Forced gluon splitting $(g \rightarrow q\bar{q})$

Colour-singlet clusters decay into the observed hadrons

PYTHIA: string model

q and \bar{q} move in opposite directions

The colour field collapses into a string with uniform energy density

 $qar{q}$ pairs are produced

The string breaks into the observed hadrons

Possible interface with NP fragmentation functions

Tuning involves hadronic and perturbative parameters: Q_0 , $\Lambda_{\rm MC}$, m_g , etc. and relies on precise e^+e^- data (LHC data in future?)

G. C. and V. Drollinger, NPB (2005): weakly-decaying B-hadron data from OPAL (mesons and baryons), ALEPH (only mesons) and SLD (mesons and baryons)

HERWIG	PYTHIA	
CLSMR(2) = 0.3 (0.0)	PARJ(41) = 0.85 (0.30)	
DECWT = 0.7 (1.0)	PARJ(42) = 1.03 (0.58)	
CLPOW = 2.1 (2.0)	PARJ(46) = 0.85 (1.00)	
PSPLT(2) = 0.33 (1.00)		
$\chi^2/\text{dof} = 222.4/61 \ (739.4/61)$	$\chi^2/\text{dof} = 45.7/61 \ (467.9/61)$	

Lund/Bowler fragmentation function (PYTHIA):

$$f_B(z) \propto \frac{1}{z^{1+brm_b^2}} (1-z)^a \exp(-bm_T^2/z)$$

HERWIG tuned parameters describe hadron gaussian smearing (CLSMR), baryon/meson (CLPOW) and decuplet/octet (DECWT) ratios, mass spectrum of b-like clusters (PSPLT)

Our PYTHIA tuning in ATLAS jet-energy measurement (EPJ C73 (2013) 2304) and as a cross-check for top analyses

Comparing tuned HERWIG and PYTHIA and resummed calculations

NLO+NLL: M.Cacciari and S.Catani, NPB617 (2001) 253-290

Best fit $(0.18 \le x_B \le 0.94)$: $\alpha = 17.178 \pm 0.303$, $\chi^2/\text{dof} = 46.2/53$

B-lepton invariant mass according to tuned HERWIG and PYTHIA

Linear fits to extract m_t from $m_{B\ell}$

HERWIG: $\langle m_{B\ell} \rangle_{\rm H} \simeq -25.31~{
m GeV} + 0.61~m_t$; $\delta = 0.043~{
m GeV}$

PYTHIA: $\langle m_{B\ell} \rangle_{\rm P} \simeq -24.11~{
m GeV} + 0.59~m_t$; $\delta = 0.022~{
m GeV}$

NLO: $\langle m_{B\ell} \rangle_{\rm NLO} \simeq -26.7 \; {\rm GeV} + 0.60 \; m_t$; $\delta = 0.004 \; {\rm GeV}$

S.Biswas, K.Melnikov and M.Schulze, JHEP 1008 (2010) 048: $m_{B\ell}$ at NLO

 $\Delta \langle m_{B\ell} \rangle_{\rm H,P} \simeq 1.2 \; {\rm GeV} \;$; $\Delta \langle m_{B\ell} \rangle_{\rm H,NLO} \simeq 2.2 \; {\rm GeV} \;$; $\Delta \langle m_{B\ell} \rangle_{\rm P,NLO} \simeq 1.1 \; {\rm GeV} \;$ NLO+showers for top decays or C++ codes may shed light on this discrepancy

- Typeset by FoilT_FX -

Relating reconstructed top mass with theoretical definitions

Subtraction of the UV divergences in the self energy $\Sigma(p)$

$$p \longrightarrow p$$

Renormalized propagator: $S^{-1}(p) = -i[\not p - m_t^0 + \Sigma^R(p, m_t^0, \mu)]$

Mass is solution of equation $p - m_t + \Sigma^R(p, m_t, \mu) = 0$

Pole mass:

$$\Sigma^{R}(p) = 0$$
 and $\frac{\partial \Sigma^{R}}{\partial \not p} = 0$ for $\not p = m$

OK for electrons, but for quarks non-perturbative ambiguity: $\Delta m \sim \Lambda_{\rm QCD}$

Higher-order corrections lead to infrared renormalons:

$$\Sigma(m) \sim m \sum_{n} \alpha_S^{n+1} (2\beta_0)^n n!$$

 $\overline{\mathrm{MS}}$ mass $\bar{m}_t(\mu)$ – dimensional regularization $D=4-2\epsilon$

$$\Sigma(p) = \frac{i\alpha_S C_F}{4\pi} \left\{ \left[\frac{1}{\epsilon} - \gamma + \ln 4\pi + A(m_t^0, p, \mu) \right] \not p - \left[4\left(\frac{1}{\epsilon} - \gamma + \ln 4\pi \right) + B(m_t^0, p, \mu) \right] m_t^0 \right\}$$

Counterterm to subtract $(1/\epsilon + \gamma_E - \ln 4\pi)$

Relation with the pole mass (coefficients c_i depending on $\ln[\mu^2/\bar{m}_t(\mu)^2]$)

$$m_t = \bar{m}_t(\mu) \left[1 + \alpha_S(\mu)c_1 + \alpha_S^2(\mu)c_2 + \dots \right]$$

Works well with off-shell quarks (e.g. $Z/H \to b\bar{b}$), but at threshold $\sim (\alpha_S/v^2)^k$

In order to make a statement on the nature of the reconstructed mass, one would need at least a NLO calculation, subtracting off the ultraviolet divergences

Typical experimental analyses (matrix-element, template methods) employ Monte Carlo parton showers, which are equivalent to LO+(N)LL calculations and miss width effects, higher-order corrections in the top self energy

Hadronization and non-perturbative effects play a role on hadron-level observables

One should try to relate the mass in the Monte Carlo codes to the mass definitions or, alternatively, use computations which are at least NLO

Typeset by FoilT_EX -

Total cross section for $t\bar{t}$ production recently computed at NNLO+NNLL:

$$\sigma_{\text{tot}} = \sum_{i,j} \int d\beta \, \Phi_{ij}(\beta, \mu_F^2) \, \hat{\sigma}_{ij} \quad , \quad \beta = \sqrt{1 - 4m^2/\hat{s}} \quad , \quad \Phi_{ij} = \frac{2\beta}{1 - \beta^2} \, x \, \left(f_i \otimes f_j \right)$$

At NNLO, for $\mu=\mu_F=\mu_R$ and $L=\ln(m^2/\mu^2)$ (Mitov, Fielder and Czakon, '13):

$$\hat{\sigma} = \frac{\alpha_S^2}{m_t^2} \left\{ \sigma^{(0)} + \alpha_S \left[\sigma_{ij}^{(1)} + L \sigma_{ij}^{(1,1)} \right] + \alpha_S^2 \left[\sigma_{ij}^{(2)} + L \sigma_{ij}^{(2,1)} + L^2 \sigma^{(2,2)} \right] \right\}$$

Threshold logarithms $\alpha_S^n[\ln^m(1-z)/(1-z)]_+$ $z=m_t^2/(x_ix_j\hat{s})$, $m\leq 2n-1$

Scales: $\Delta\sigma \simeq 3\%$; pdfs: $\Delta\sigma \simeq 2.5\%$; α_S : $\Delta\sigma \simeq 1.5\%$, m_t : $\Delta\sigma \simeq 3\%$

Extracted pole mass exhibits large errors: $m_t^{\text{pole}} = (176^{+3.8}_{-3.4}) \text{ GeV}$

World average (CDF, D0, ATLAS, CMS): $m_t = 173.34 \pm 0.27 \; ({\rm stat}) \; \pm 0.71 \; ({\rm syst}) \; {\rm GeV}$ relies on Monte Carlo generators

Reconstructed mass $m_t^2 = (p_{b-jet} + p_{\nu} + p_{\ell})^2$ (with cuts on jets and leptons) with on-shell tops should be close to the top mass, up to widths and higher-order corrections

Attempts based on SCET have in fact shown that $m_t \simeq m_t^{\rm pole} + \mathcal{O}(\alpha_S \Gamma)$

A possible way out: run HERWIG with fictitious top-hadron states

Top quarks hadronize $(T^{\pm,0})$ and decay, e.g., through the spectator model

From a given observable R extract the Monte Carlo mass $m_T^{
m MC}$

Study the same observable R with standard top samples, get $m_t^{\rm MC}$ and compare the extracted masses $m_T^{\rm MC}=m_t^{\rm MC}+\Delta m$

In the hadronized samples, the Monte Carlo mass can be related to the T-meson mass M_T and ultimately to the pole or $\overline{\rm MS}$ top-quark masses by using lattice, potential models, NRQCD, etc.

Connection between pole/ $\overline{\rm MS}$ mass and the Monte Carlo mass

Investigate the dependence of the results on the specific analysis/observable and contributions to Δm (colour flow, gluon radiation, hadron decay models)

– Typeset by Foil $T_{
m E}X$ –

HERWIG for $e^+e^- \to t\bar{t}$ at $\sqrt{s}=1$ TeV with top quarks hadronizing before decaying

t-flavoured mesons in the dilepton channel, i.e. $T^+=(t\bar{d})$, $T^0=(t\bar{u})$, $T^-=(\bar{t}d)$, etc. Spectator model decays: $T^-\to (\bar{b}d)\ell^-\bar{\nu}_\ell+X\dots$ $p_T^2=(p_{\bar{b}}+p_W+p_q+p_X)^2$

In a fraction of events, proportional to $\Delta_S(Q_b^2,Q_0^2)$, the b quarks in T decays do not radiate gluons: the $(\bar{b}q)$ cluster yields a B meson plus a soft hadron, e.g. pions

Spectator quarks likely do not radiate

In usual top decays before hadronization, the b-quark manages to form hard clusters decaying into B's and more energetic hadrons

– Typeset by Foil $\mathrm{T}_{E}\mathrm{X}$ –

Results with hadronized top quarks for BW invariant mass for fixed $m_t^{\rm MC}$ with and possibly without gluon radiation off the b (top plots) and varying $m_t^{\rm MC}$ (bottom)

- Typeset by FoilT_EX -

Mellin moments - m_{BW} spectrum, allowing gluon emissions off the b quarks

T-hadrons:

m_t (GeV)	$\langle m_{BW} \rangle$ (GeV)	$\langle m_{BW}^2 angle$ (GeV 2)	$\langle m_{BW}^3 angle \; ({ m GeV}^3)$	$\langle m_{BW}^4 angle \; ({ m GeV}^4)$
171	148.76	2.24×10^4	3.41×10^6	5.24×10^{8}
173	150.44	2.29×10^4	3.53×10^{6}	5.48×10^{8}
175	152.18	2.35×10^4	3.66×10^{6}	5.74×10^{8}
177	153.80	2.40×10^4	3.77×10^6	5.99×10^{8}
179	155.61	2.45×10^4	3.91×10^{6}	6.28×10^{8}

t-quarks:

m_t (GeV)	$\langle m_{BW} \rangle$ (GeV)	$\langle m_{BW}^2 angle$ (GeV ²)	$\langle m_{BW}^3 \rangle$ (GeV ³)	$\langle m_{BW}^4 angle \; ({ m GeV}^4)$
171	148.08	2.21×10^4	3.35×10^{6}	5.11×10^{8}
173	149.56	2.26×10^4	3.46×10^{6}	5.32×10^{8}
175	151.00	2.30×10^4	3.56×10^{6}	5.54×10^{8}
177	152.60	2.36×10^4	3.67×10^{6}	5.78×10^{8}
179	153.97	2.40×10^{3}	3.78×10^{6}	6.00×10^{8}

– Typeset by Foil $T_{
m EX}$ –

Conclusions and outlook

Bottom fragmentation in top decays is a source of uncertainty on the measurement of the top properties in inclusive (b-tagging and b-energy scale) and exclusive analyses

b-fragmentation relies on tuning hadronization models to e^+e^- data

Predictions for top decays yielded by the different codes exhibit some discrepancies, mostly driven by unsatisfactory tunings

Preliminary results on BW invariant mass from top-flavoured mesons

Perspectives:

Tuning PYTHIA 8 and HERWIG++ can be a valuable strategy to pursue

Using NLO+showers (POWHEG and aMC@NLO) and NNLO calculations

Tuning fragmentation parameters directly to LHC data $(t\bar{t}, b\bar{b}, Z/\gamma + b)$

Extending analysis with hadronized top quarks, e.g. b-jets vs. B-mesons, turning spectator-quark radiation on, studying dependence on shower cutoff, to shed light on current discrepancies and possibly make a statement on the nature of the reconstructed top mass

– Typeset by Foil $T_{
m EX}$ –