

ATLAS QCD measurements for Higgs studies and New Physics searches

Manuel Proissl on behalf of the ATLAS collaboration University of Edinburgh

QCD@Work 2014 International Workshop on QCD, Theory and Experiment 16-19 June, 2014 - Giovinazzo (Bari, Italy)

Introduction

Introduction

<u>Generally</u>, good agreement between experiment & theory!

Introduction

- SM processes are important backgrounds in **Higgs analyses**.
- Any deviations from SM expectation: hint to **new physics**.

IN THIS TALK

Higgs Production & PDFs

Higgs Production & PDFs

_	Process	Main IS Contrib.	σ: PDF (+ α_s)	JHEP 1304 (2013) 125
t t H	ggF	gluon-gluon, 0.001 < x < 0.1	5.6% (6.6%)	 PDF4LHC prescription; evaluated with NNLO PDF NNLO PDF envelope
W,Z W,Z W,Z	H VBF	quark-antiquark	3.0%	 (CT10, MSTW2008, NNPDF2.3) ggF PDF uncertainty: a dominant theory uncert once N³LO complete
	H VH	quark-antiquark	2.8% (WH)	 Probably largest one. Expected to limit interpretation of Higgs cross section measurement
t t t t	ttH	gluon-gluon x ~ 0.1	7.7%	end of LFIC Kun-2.

Manuel Proissl

Higgs Production & PDFs: ggF

- *Prompt* photon production <u>tests hard scattering in pQCD</u>
- There are 2 mechanisms high-pT prompt photons can be produced:

Recent ATLAS QCD measurements

Cross section measurement at 7 TeV:

- **Isolated photons**: $E_T^{iso} < 7 \text{ GeV}$ within a $\Delta R < 0.4$ cone
- Require $E_T^{\gamma} > 100$ GeV and $|\eta^{\gamma}| < 2.37$ (excluding crack region)
- Total systematic uncertainty below 6-7%
- Scale uncertainty 12 20% (var. μ_R , μ_F , μ_f)
- PDF uncertainty 5% ($E_T^{\gamma} = 100 \text{ GeV}$) to 15% ($E_T^{\gamma} \sim 900 \text{ GeV}$) {via CT10 52 eigenvector sets}
- $\alpha_{\rm s}$ uncertainty 4.5% (var. around $\alpha_{\rm s} = 0.118$)
- Detector effects corrected (bin-by-bin method)

Jetphox: NLO QCD calculation incl. <u>direct & frag.</u> contribution.

PYTHIA / HERWIG: LO MC incl. <u>direct & frag.</u> production (y emission in parton shower).

- NLO (Jetphox) overall agreement, except at low E_T^γ (dominated by frag. photons)
 - Large PDF uncertainties > 700 GeV (constraints from measurement?)
 - * Scale uncertainties most important at $200 < E_T^{y} < 600 \text{ GeV}$
- LO PYTHIA describes the data fairly well

• **LO** HERWIG ~ 10 - 20% lower than data

σ(pb)	CENTRAL $ \eta < 1.37$	FORWARD $1.52 < \eta < 2.37$
ATLAS	236 ± 2 (stat) +13/-9 (syst) ± 4 (lumi)	123 ± 1 (stat) +9/-7 (syst) ± 2 (lumi)
CT10 NLO	203 ± 25	105 ± 15
MSTW2008NLO	212 ± 24	109 ± 15
LO PYTHIA	224	118
LO HERWIG	187	99

- Differences between PDF sets
- Potential to constrain gluon PDF (both shape and uncertainty)
- ABM11_5N softer gluon distrib. at high x \Rightarrow contrib. from processes with gluons in IS smaller at high E_T^{γ} compared to CT10.

- Inclusive prompt y production:
 u-g process dominated
 - Larger u-type quark charge and prevalence in the proton

* Sensitive to gluon PDF

QCD@Work 2014

- **Tensions** between data and theory for various PDF sets
- Sensitivity to PDF limited by <u>large scale uncertainties</u>: dominant at intermediate E_T^y , where data is most precise \Rightarrow **NNLO necessary**

Photon+Jet production

- **Kinematics** and **dynamics** of $\underline{y+jet \ system}$ can be studied
 - Insights into fragmentation contributions

Photon + Jet Selection

<u>1 Photon</u>

- **Isolated**: $E_T^{iso} < 4$ GeV within a $\Delta R < 0.4$ cone
- * Require $E_T^{\gamma} > 45$ GeV and $|\eta^{\gamma}| < 2.37$ (excluding crack region)

<u>1 Jet</u>

- * anti- k_t jet with R = 0.6 with $p_T > 40$ GeV
- ✤ Leading jet at |y^{jet}| < 2.37</p>
- * $\Delta R(\gamma, jet) > 1.0$

Photon+Jet production

Manuel Proissl

Recent ATLAS QCD measurements

 $\Delta \phi^{\gamma j}$ [rad]

ly^{jet}

p_^{jet} > 40 GeV

 E_{T}^{γ} > 45 GeV

Photon+Jet production

- Angular distribution $|\cos \theta y^j|$ sensitive to spin of exchanged particle
- Small uncertainties, good agreement with NLO Jetphox

- Relative fragmentation enhancement in corners of phase space
- **Shape** of <u>direct production much closer to data</u> than fragmentation photons (*consistent: dominance of processes in which exchange particle = quark*)

- <u>Key to understand</u> backgrounds for Higgs ($H \rightarrow \gamma \gamma$) and BSM searches (e.g. graviton decays predicted in Universal Extra-Dimension models).
- Photon selection:
 - * 2 isolated photons: $E_T^{iso} < 4 \text{ GeV}$ within a $\Delta R < 0.4$ cone
 - Require $E_T^{1/2} > 25 / 22 \text{ GeV}$
 - Separated by $\Delta R(y_1, y_2) > 0.4$
- Remove jet-jet & y-jet background
 - 2D Template Fit with leackage correction
 - * 2 x 2D Sidebands Method

DIPHOX+GAMMA2MC (NLO) and 2%NNLO (NNLO) calculations.

PYTHIA / SHERPA: LO MC

Cross section variables studied: $m_{\chi\chi}$ (backup), $pT_{\chi\chi}$, $\Delta \Phi_{\chi\chi}$, cos $\theta^*_{\chi\chi}$

Recent ATLAS OCD measurements

- NNLO better than NLO description
 - * Excess at $\Delta \Phi_{\chi\chi} \sim \pi$: no soft gluon resummation
 - * High | $\cos \theta^*_{\gamma\gamma}$ |: NNLO misses fragmentation contribution

Inclusive Jet cross sections

- **Test pQCD** to shortest accessible distances
 - Information on strong coupling & proton structure
- Latest measurement at 2.76 TeV with 0.20 pb⁻¹ compared to 7 TeV
- Jet Energy Scale (JES) main experimental uncertainty

(2.5% central 60<p_t<800GeV to 14% forward p_t <30GeV)

NLOJet++ (fixed-order **NLO pQCD**) with non-perturbative corrections.

POWHEG PYTHIA: **NLO MC**

Inclusive Jet cross sections

Recent ATLAS QCD measurements

Inclusive Jet cross sections

- NLO PDF fit: HERA I & ATLAS 2.76 TeV and 7 TeV data
 - Improved sensitivity from correlated uncertainties
- **Impact at high x**: (1) **harder gluon** xg(x) distribution (*reduced uncertainty*)

(2) **softer sea quark** xS(x) distribution (*rel. uncert. larger*)

NLO QCD (NLOJet++) with <u>corrections</u>:

Selection

2 leading jets

- rapidity separation $y^* = |y_1 y_2|/2$
 - dijet mass up to $m_{12} < 5$ TeV

Note:

Compared to previous results: increased statistics & improved JES

Double differential cross section as a function of dijet mass and y*

- Agreement over almost 8 orders of magnitude!
- Jet Energy Scale (JES): dominant exp. uncertainty
- Constrain gluon PDF at large x
- Unfolded cross section <u>sensitive to new physics</u>

- Overall good agreement with **theory predictions**!
- Data agreement with MSTW2008 and NNPDF2.3
- Tensions with HERAPDF1.5 (backup) and ABM11 observed.

Jet shapes in top-quark pair events

- Jet shapes, <u>norm. p_T flow as function of distance (r) to jet axis</u>, can probe the parton shower and hadronization evolution.
- Strongly jet **p**_T **dependent**
- b-jets are *wider* than light jets

Jet shapes in top-quark pair events

- Most evaluated MC generators overpredict the observable
- Best data description: <u>AcerMC + Pythia Tune A</u>

W/Z + jets production

- **Standard candle** to test pQCD and background to Higgs analyses, e.g. VH(H→bb), and BSM searches.
 - N_{jet}, p_T^{jet}, p_T^{W/Z} are basic discriminants <u>in many studies</u>

W/Z + jets production

• Correct modelling of vector boson p_T important in many analyses

* e.g. VH(H \rightarrow bb) analysis binned in p_T^V

- **pQCD at NNLO** (FEWZ, DYNNLO) <u>not</u> incl. resummation (latter in backup)
 - * FEWZ/DYNNLO agree with each other with $\mu_R = \mu_F = m_Z \& LO EW$ corrections
 - DYNNLO with $\mu = E_T^Z$ better shape at $p_T > 30 \text{GeV}$; + with LO EW 10% drop

W/Z + *b*-jets

Overview

- Important to **constrain pQCD** with heavy flavour quarks.
- Irreducible background in e.g. VH(H→bb), single top

Strategy

- **Template fit of b-tag weight** of jets (*successive BG fits*)
- Unfolding to particle level

W + b-jets

- Data underestimated at large b-jet p_T
 - Tension to be confirmed with <u>higher statistics</u> and <u>improved systematics</u>

Z + b(b) production

- MCFM (5FNS, NLO) data-compatible
- aMC@NLO:
 - Z+b favours 5FNS
 - Z+bb favours 4FNS
- LO+PS: σ underestimated (Sherpa better)

Recent ATLAS QCD measurements

Z + b(b) production

- All generators describe the *b*-jet p_T
- $\Delta \Phi(Z,b)$ not described by MCFM (exp. from fixed-order); LO+PS better

Z + b(b) production

- At low ΔR(b,b) predictions from theory are too low:
 - * Maybe from *gluon splitting at low angle*?

- **W** + **charm** dominated by LO production;
 - \rightarrow directly sensitive to s-quark PDF (x ~ 0.01)

Strategy

- Use of the c-quark / W charge correlation
 - A. Tag soft muon decay in c-jet
 - B. Reconstruct charged D^(*) mesons
- 6 measurements: W[±]+c-jet, W[±]+D, W[±]+D*
- OS-SS subtraction for <u>pure signal selection</u>

- From PDF comparisons to cross section measurements, it seems
 - ⇒ data favours PDFs with symmetric light quark sea

- Measurements **limited by statistical uncertainties**
- **Scale uncertainty (4-9%)** ← theory accuracy (improvement needed)

Ratio of strange-to-down sea-quark distributions

HERA PDF implements s-density as single param.

$$r_s \equiv 0.5(s+\bar{s})\bar{d}$$
$$= f_s/(1-f_s)$$

 $= 0.96^{+0.16(exp.+th.)+0.21(scale)}_{+0.18(exp.+th.)+0.24(scale)}$

at
$$Q^2 = 1.9 GeV^2$$
)

- ATLAS-epWZ12 PDF incl. ATLAS W/Z data: results compatible
- <u>Strong indications</u>: symmetric light quark sea

 \Rightarrow SU(3) flavour symmetry in the proton

Recent ATLAS QCD measurements

Prompt W + J/Ψ production

- **Test QCD** at <u>perturbative /</u> <u>non-perturbative boundary</u>
- Sensitive to Double Parton
 Scattering
- Benchmark for **H→cc, BSM**
- $W \rightarrow \mu \nu + J/\Psi \rightarrow \mu \mu$ candidates
- LLH fit: life time and $m_{\mu\mu}$

First observation:

Yield of 27.4^{+7.5}-6.5 observed (5.1 σ)

Underlying Event

• Irreducible background for precision measurements and BSM searches

- Probe activity in transverse region of leading jet
 - most sensitive region to UE

- Test & Tune MC predictions
 - * Observables considered incl. $N_{ch}/\delta\eta\delta\Phi$, $\Sigma p_T/\delta\eta\delta\Phi$, mean p_T , $\Sigma E_T/\delta\eta\delta\Phi$

Underlying Event

$\Phi(1020)$ meson production

- Measurement of $\Phi(1020)$ -meson in $\Phi \rightarrow K^+K^-$ min.bias events
 - * **Probe strangeness** production at **Q~1GeV** (sensitive to s-quark & low-x gluon densities)
 - Can constrain soft hadroproduction models
 - Kaons reconstructed using dE/dx in pixel det.

• EPOS-LHC and PYTHIA6 DW tunes model data well; others overpredict.

Precision Higgs Studies

Very Successful Run-1 at LHC!

- Opened the door to a rich <u>Precision</u> <u>Higgs Physics program</u>.
- Understanding & Modelling of SM background processes are paramount, especially for Run-2.

Precision Higgs Studies: A Note.

- <u>Example</u>: **Higgs ggF** demonstrates need for high precision theory pred.
- <u>2 reasons for Theory Uncertainty dominance:</u>

• **Towards LHC Run-2:** Improve Higgs signal modelling, control over PDFs and parametric uncertainties → theory & data analysis progress needed.

New Physics Searches: SUSY

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [ft	⁻¹] Mass limit		Reference
Inclusive Searches	$\begin{array}{c} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\ell} \ell^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu) \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (wino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{Gravitino LSP} \end{array}$	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 20.3 4.8 4.8 5.8 10.5	\tilde{q} , \tilde{g} 1.7 Te \tilde{g} 1.2 TeV \tilde{g} 1.1 TeV \tilde{q} 740 GeV \tilde{g} 1.1 TeV \tilde{g} 1.18 TeV \tilde{g} 1.18 TeV \tilde{g} 1.24 TeV \tilde{g} 1.24 TeV \tilde{g} 1.28 TeV \tilde{g} 619 GeV \tilde{g} 600 GeV \tilde{g} 690 GeV \tilde{g} 690 GeV	$ \begin{array}{c} \mathbf{V} & \mathbf{m}(\tilde{q}) = \mathbf{m}(\tilde{g}) \\ & \text{any } \mathbf{m}(\tilde{q}) \\ & \text{any } \mathbf{m}(\tilde{q}) \\ & \text{any } \mathbf{m}(\tilde{q}) \\ & \mathbf{m}(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} \\ & \text{tar}\beta < 15 \\ & \text{tar}\beta > 18 \\ & \mathbf{m}(\tilde{\chi}_{1}^{0}) > 50 \text{ GeV} \\ & \mathbf{m}(\tilde{\chi}_{1}^{0}) > 50 \text{ GeV} \\ & \mathbf{m}(\tilde{\chi}_{1}^{0}) > 50 \text{ GeV} \\ & \mathbf{m}(\tilde{\chi}_{1}^{0}) > 220 \text{ GeV} \\ & \mathbf{m}(\tilde{\chi}_{1}^{0}) > 200 \text{ GeV} \\ & \mathbf{m}(\tilde{g}) > 10^{-4} \text{ eV} \end{array} $	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-068 ATLAS-CONF-2013-026 ATLAS-CONF-2012-014 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen.	$ \begin{array}{c} \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b\bar{t}\tilde{\chi}_{1}^{1} \end{array} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	<i>§</i>	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) \!<\! 600 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) \!<\! 350 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) \!<\! 400 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) \!<\! 300 \mathrm{GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks	$ \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{light}), \tilde{i}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{light}), \tilde{i}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{inedium}), \tilde{i}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{nedium}), \tilde{i}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{heavy}), \tilde{i}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{netural GMSB}) \\ \tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + Z \end{array} $	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 1-2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) < 90 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{\pm}) = 2 \ m(\tilde{\chi}_{1}^{0}) \\ m(\tilde{\chi}_{1}^{0}) = 55 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 55 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 1 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 1 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 200 \ \text{GeV}, m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) = 5 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 150 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) > 150 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 200 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 200 \ \text{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222
ĒW.	$ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{-} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ 1 e,μ	0 0 - 0 0 2 b	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) = 0 \ GeV \\ m(\tilde{\chi}_{1}^{0}) = 0 \ GeV, \ m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{+}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) = 0 \ GeV, \ m(\tilde{\tau}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{+}) + m(\tilde{\chi}_{1}^{0})) \\ \tilde{\nu} = m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) = 0, \ m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{+}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{+}) = m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) = 0, \ sleptons \ decoupled \\ m(\tilde{\chi}_{1}^{+}) = m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) = 0, \ sleptons \ decoupled \end{array}$	1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093
Long-lived	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, $	Disapp. trk 0 (μ) 1-2 μ 2 γ 1 μ , displ. vt:	1 jet 1-5 jets - - x -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$\tilde{\chi}_1^{\pm}$ 270 GeV \tilde{g} 832 GeV $\tilde{\chi}_1^0$ 475 GeV $\tilde{\chi}_1^0$ 230 GeV \tilde{q} 1.0 TeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{\pm})\text{-}m(\tilde{\chi}_{1}^{0})\text{=}160~MeV,~\tau(\tilde{\chi}_{1}^{\pm})\text{=}0.2~ns\\ m(\tilde{\chi}_{1}^{0})\text{=}100~GeV,~10~\mus{<}\tau(\tilde{g}){<}1000~s\\ 10{<}tan\beta{<}50\\ 0.4{<}\tau(\tilde{\chi}_{1}^{0})\text{<}2~ns\\ 1.5{<}c\tau{<}156~mm,~BR(\mu)\text{=}1,~m(\tilde{\chi}_{1}^{0})\text{=}108~GeV \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow ee \tilde{v}_{\mu}, e\mu \tilde{v}_e \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{v}_e, e\tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_1, \tilde{t}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 e, \mu \\ 1 e, \mu + \tau \\ 1 e, \mu \\ 4 e, \mu \\ 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (\mathrm{SS}) \end{array}$	- 7 jets - - 6-7 jets 0-3 b	- Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	\tilde{v}_r 1.61 TeV \tilde{v}_r 1.1 TeV \tilde{q} . \tilde{g} 1.2 TeV $\tilde{\chi}_1^{\pm}$ 760 GeV $\tilde{\chi}_1^{\pm}$ 350 GeV \tilde{g} 916 GeV \tilde{g} 880 GeV	$\begin{array}{l} \lambda_{311}'=0.10, \ \lambda_{132}=0.05\\ \lambda_{311}'=0.10, \ \lambda_{1(2)33}=0.05\\ m(\tilde{q})=m(\tilde{g}), \ c\tau_{LSP}<1 \ mm\\ m(\tilde{\chi}_{1}^{0})>300 \ GeV, \ \lambda_{121}>0\\ m(\tilde{\chi}_{1}^{0})>80 \ GeV, \ \lambda_{133}>0\\ BR(t)=BR(b)=BR(c)=0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , <i>µ</i> (SS) 0	4 jets 2 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 m(χ) <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV partial data	$\sqrt{s} = $ full	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

Recent ATLAS QCD measurements

QCD@Work 2014

48

New Physics Searches: Exotics

ATLAS Exotics Searches* - 95% CL Exclusion

Status: April 2014

	Model	<i>ℓ</i> ,γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fl	D ⁻¹] Mass limit		Reference
	ADD $G_{KK} + g/q$ ADD non-resonant $\ell \ell / \gamma \gamma$	_ 2γ or 2e, μ	1-2 j _	Yes _	4.7 4.7	M _D 4.37 TeV M _S 4.18 TeV	n = 2 n = 3 HLZ NLO	1210.4491 1211.1150
	ADD QBH $\rightarrow \ell q$	1 e, µ	1 j	_	20.3	M _{th} 5.2 TeV	<i>n</i> = 6	1311.2006
SU	ADD BH high N _{trk}	2 µ (SS)	_	-	20.3	M _{th} 5.7 TeV	$n = 6, M_D = 1.5$ TeV, non-rot BH	1308.4075
sio	ADD BH high $\sum p_T$	$\geq 1 e, \mu$	≥ 2 j	-	20.3	M _{th} 6.2 TeV	$n = 6, M_D = 1.5$ TeV, non-rot BH	ATLAS-CONF-2014-016
ner	RS1 $G_{KK} \rightarrow \ell \ell$	2 e,µ	-	-	20.3	G _{КК} mass 2.47 TeV	$k/\overline{M}_{Pl} = 0.1$	ATLAS-CONF-2013-017
tra din	RS1 $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q / \ell \ell \ell \ell$	2 or 4 e, μ	2 j or –	-	1.0	G _{КК} mass 845 GeV	$k/\overline{M}_{Pl} = 0.1$	1203.0718
	RS1 $G_{KK} \rightarrow WW \rightarrow \ell \nu \ell \nu$	2 e, µ	-	Yes	4.7	G _{КК} mass 1.23 TeV	$k/\overline{M}_{Pl} = 0.1$	1208.2880
ЕX	Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$	_	4 b	_	19.5	Gкк mass 590-710 GeV	$k/\overline{M}_{Pl} = 1.0$	ATLAS-CONF-2014-005
	Bulk RS $g_{KK} \rightarrow t\overline{t}$	1 e, µ	≥ 1 b, ≥ 1 J	/2j Yes	14.3	g _{кк} mass 0.5-2.0 TeV	BR = 0.925	ATLAS-CONF-2013-052
	S^1/Z_2 ED	2 e, µ	-	-	5.0	$M_{KK} \approx R^{-1} 4.71 \text{ TeV}$		1209.2535
	UED	2γ	-	Yes	4.8	Compact. scale R ⁻¹ 1.41 TeV		ATLAS-CONF-2012-072
	$SSM\ Z' \to \ell\ell$	2 e,µ	-	-	20.3	Z' mass 2.86 TeV		ATLAS-CONF-2013-017
ge ins	SSM $Z' \rightarrow \tau \tau$	2 τ	-	-	19.5	Z' mass 1.9 TeV		ATLAS-CONF-2013-066
iau oso	SSM $W' \to \ell \nu$	1 e,µ	-	Yes	20.3	W' mass 3.28 TeV		ATLAS-CONF-2014-017
6 g	EGM $W' \to WZ \to \ell \nu \ell' \ell'$	3 e,µ	-	Yes	20.3	W' mass 1.52 TeV		ATLAS-CONF-2014-015
	LRSM $W'_R \to t \overline{b}$	1 e,µ	2 b, 0-1 j	Yes	14.3	W' mass 1.84 TeV		ATLAS-CONF-2013-050
	CI qqqq	-	2 j	-	4.8	۸ 7.6 TeV	$\eta = +1$	1210.1718
CI	CI qqℓℓ	2 e, µ	-	-	5.0	۸ 13	.9 TeV $\eta_{LL} = -1$	1211.1150
	CI uutt	2 e,μ (SS)	≥ 1 b, ≥ 1	j Yes	14.3	۸ 3.3 TeV	C = 1	ATLAS-CONF-2013-051
Σ	EFT D5 operator	-	1-2 j	Yes	10.5	M. 731 GeV	at 90% CL for $m(\chi) < 80$ GeV	ATLAS-CONF-2012-147
D	EFT D9 operator	-	$1 J, \leq 1 j$	Yes	20.3	M. 2.4 TeV	at 90% CL for $m(\chi) < 100 \text{ GeV}$	1309.4017
	Scalar LQ 1 st gen	2 e	≥ 2 j	_	1.0	LQ mass 660 GeV	$\beta = 1$	1112.4828
ΓO	Scalar LQ 2 nd gen	2 μ	$\geq 2 j$	-	1.0	LQ mass 685 GeV	eta=1	1203.3172
	Scalar LQ 3 rd gen	1 e, μ , 1 τ	1 b, 1 j	-	4.7	LQ mass 534 GeV	eta=1	1303.0526
> 0	Vector-like quark $TT \rightarrow Ht + X$	1 e,µ	\geq 2 b, \geq 4	j Yes	14.3	T mass 790 GeV	T in (T,B) doublet	ATLAS-CONF-2013-018
avy	Vector-like quark $TT \rightarrow Wb + X$	1 e,µ	≥ 1 b, ≥ 3	j Yes	14.3	T mass 670 GeV	isospin singlet	ATLAS-CONF-2013-060
He	Vector-like quark $BB \rightarrow Zb + X$	2 e, µ	$\geq 2 \ b$	-	14.3	B mass 725 GeV	B in (B,Y) doublet	ATLAS-CONF-2013-056
	Vector-like quark $BB \rightarrow Wt + X$	2 e, µ (SS)	≥ 1 b, ≥ 1	j Yes	14.3	B mass 720 GeV	B in (T,B) doublet	ATLAS-CONF-2013-051
d SC	Excited quark $q^* ightarrow q\gamma$	1γ	1 j	-	20.3	q* mass 3.5 TeV	only u^* and d^* , $\Lambda = m(q^*)$	1309.3230
ite	Excited quark $q^* ightarrow qg$	-	2 j	-	13.0	q* mass 3.84 TeV	only u^* and d^* , $\Lambda = m(q^*)$	ATLAS-CONF-2012-148
EXC	Excited quark $b^* \to Wt$	1 or 2 e, μ	1 b, 2 j or 1	1jYes	4.7	b* mass 870 GeV	left-handed coupling	1301.1583
- 4	Excited lepton $\ell^* \to \ell \gamma$	2 e, μ, 1 γ	-	-	13.0	<i>t</i> * mass 2.2 TeV	$\Lambda = 2.2 \text{ TeV}$	1308.1364
	LRSM Majorana ν	2 e, µ	2 j	-	2.1	N ⁰ mass 1.5 TeV	$m(W_R) = 2$ TeV, no mixing	1203.5420
5	Type III Seesaw	2 e, µ	-	_	5.8	N [±] mass 245 GeV	$ V_e =0.055, V_{\mu} =0.063, V_{\tau} =0$	ATLAS-CONF-2013-019
the	Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$	2 e, µ (SS)	-	_	4.7	H ^{±±} mass 409 GeV	DY production, BR($H^{\pm\pm} \rightarrow \ell \ell$)=1	1210.5070
0	Multi-charged particles	_	-	-	4.4	multi-charged particle mass 490 GeV	DY production, $ q = 4e$	1301.5272
	Magnetic monopoles	-	-	-	2.0	monopole mass 862 GeV	DY production, $ g = 1g_D$	1207.6411
		√s =	7 TeV	√s =	8 TeV	10 ⁻¹ 1 1	⁰ Mass scale [TeV]	J

*Only a selection of the available mass limits on new states or phenomena is shown.

Recent ATLAS QCD measurements

QCD@Work 2014

<u>49</u>

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

ATLAS Preliminary

Summary

- Overall **QCD** calculations have shown a **good description** of the LHC Run-1 data.
- Recent **Precision QCD measurements**:
 - * Photon / Photon + Jet / Di-Photon
 - * Jet / Dijet cross section & Jet Shapes
 - W/Z + Jets
 - * Prompt W + J/ Ψ
 - Underlying Event
 - * $\Phi(1020)$ Meson Production

Test QCD predictions

&

Constrain PDFs

• Extensive program for LHC Run-2 (SM, Higgs, BSM,...).

Bonus

- Hard scatter
- Parton shower
- Hadronization
- Underlying Event
- Multi-parton interactions

Higgs Production & Modelling

Tools for Higgs Physics

* NLO+NNLL in differential

Compiled by R. Tanaka, Jan. 2014

NLO MC

Note on Theory Uncertainties

ATLAS-CONF-2013-030	Signal processes (%)			
Source	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$	
Theoretical uncertainties				
QCD scale for ggF signal for $N_{jet} \ge 0$	13		-	
QCD scale for ggF signal for $N_{jet} \ge 1$	10	27	-	
QCD scale for ggF signal for $N_{jet} \ge 2$	-	15	4	
QCD scale for ggF signal for $N_{\text{iet}} \ge 3$			4	
Parton shower and UE model (signal only)	3	10	5	
PDF model	8	7	3	
$H \rightarrow WW$ branching ratio	4	4	4	
QCD scale (acceptance)	4	4	3	
WW normalisation	-	-	-	
Experimental uncertainties				
Jet energy scale and resolution	5	2	6	
<i>b</i> -tagging efficiency	-	-	-	
f_{recoil} efficiency	1	1	-	

 Example Higgs(WW): Jet vetos introduce large uncertainties from ln(m_H/p_{veto}) terms in perturbative expansion → need resummation to NNLL (...)

Isolated Photon Cross Section

• The differential photon cross section as a function of transverse energy and rapidity can be written as

$$d\sigma \equiv d\sigma_{\rm dir} + d\sigma_{\rm frag} = \sum_{a,b=q,\bar{q},g} \int dx_a dx_b \ f_a(x_a;\mu_{\rm F}^2) f_b(x_b;\mu_{\rm F}^2) \times \left[d\hat{\sigma}_{ab}^{\gamma}(p_{\gamma},x_a,x_b;\mu_{\rm R},\mu_{\rm F},\mu_{\rm ff}) + \sum_{c=q,\bar{q},g} \int_{z_{min}}^1 \frac{dz}{z^2} d\hat{\sigma}_{ab}^c(p_{\gamma},x_a,x_b,z;\mu_{\rm R},\mu_{\rm F},\mu_{\rm ff}) D_c^{\gamma}(z;\mu_{\rm ff}^2) \right]$$

where f_a is the PDF for parton *a* inside the incoming protons at momentum fraction x_a ; $d\sigma_{ab}$ are the parton-parton subprocess differential cross section; and $D_{\gamma/k}$ is the fragmentation function of parton k to a photon carrying a fraction z of the parent parton energy, integrated from $z_{min} = x_T \cosh y_{\gamma}$ to 1.

Isolated Photon Cross Section

• The differential photon cross section in the forward region:

Isolated Photon+Jet production

• NNPDF2.1 with and without ATLAS photon-jet 7 TeV data:

Recent ATLAS QCD measurements

Recent ATLAS QCD measurements

ATLAS-CONF-2013-072

Di-Photon production: $H \rightarrow \gamma \gamma$

Recent ATLAS QCD measurements

Manuel Proissl

- **8 TeV** differential cross section measurement
- Very large uncertainties (first p_T bin: 125%)

- Shape difference between different PDF sets
- 1-2σ tension between PDFs
- Envelope uncertainty much larger than uncertainty on one PDF

QCD@Work 2014

Dijet cross sections: BSM

- Considered model of QCD plus contact interactions (CIs) with left–left coupling and destructive interference between CIs and QCD as implemented by the CIJET program.
- Limits for NLO QCD plus CIs as a function of Λ using the CT10 PDF set.
- Useful to <u>confront new physics models</u>!

Z boson p_T modelling

Recent ATLAS QCD measurements