Selected Issues in Non-Perturbative QCD

Luca Trentadue
Universitá di Parma and INFN Milano Bicocca

QCD@Work
International Workshop on Quantum Chromodynamics
Theory and Experiment
VII edition

QCD@WORK

Giovinazzo, June I7, 2014

INFN
 The LTS1 2014 - Workshop on the Long Term Strategy of INFN-CSN1.

The next 10 years of accelerator based experiments Isola d'Elba, May 2|-24 2014

Many thanks to the organizers and to the colleagues conveners of the:

$$
\begin{gathered}
\text { Working group "NP_QCD" } \\
\text { Mauro Anselmino and Marta Ruspa } \\
\text { and }
\end{gathered}
$$

...... many thanks to all the colleagues who contributed to the presentations and to the discussions, especially those who came from abroad,.............and finally I would like to thank the organizers
of this workshop for inviting me here....!

Nucleon 3D structure - Experimental data and perspectives (Andrea Bressan, Trieste)
Drell Yan scattering and the structure of hadrons, long term program (Oleg Denisov,Torino)
Parton distribution functions (Katarzyna Wichmann, DESY)
Cosmic ray physics at accelerators (Gaku Mistuka, Nagoya University \& INFN Firenze)
Flavor and lattice - recent developments (Cecilia Tarantino, Roma3) Spectroscopy (Roberto Mussa, Torino)
Multi parton interaction (Livio Fanó, Perugia)
New Ideas and a Project (Elena Santopinto, Genova)
Theoretical aspects of diffraction (Federico Ceccopieri, Liegi University)
Nucleon structure - strategy for the future (Rolf Ent, JLAB)
Total, elastic and diffractive cross sections (Kenneth Osterberg, Helsinki
University)
Highlights on confinement (Massimo D'Elia, Pisa)

Nucleon

1theory

Marco Radici

the Infinite Momentum Frame (IMF)

probe short distances \Rightarrow Deep-Inelastic (DIS) regime

IMF <=> Light-Cone (LC) kin.

all partons \sim collinear
go beyond this approx.

the proton spin budget?

since EMC (1988, the "spin crisis") we can't yet explain the proton spin in terms of its constituents

De Florian et al., low x arXiv:1404.4293

tomography of the Nucleon

GPD limit: $\xi \rightarrow 0\left(\mathrm{P}^{+}=\mathrm{P}^{\prime+}\right) ; \quad \mathrm{t} \rightarrow-\left(\mathbf{P}_{\perp}^{\prime}-\mathbf{P}_{\perp}\right)^{2}=-\mathbf{q}^{2}$

$$
q(x, \mathbf{b})=\int \frac{d \mathbf{q}}{(2 \pi)^{2}} e^{i \mathbf{q} \cdot \mathbf{b}} H\left(x, 0, t=-\mathbf{q}^{2}\right)
$$

$q(x, b)$ is a density in $\mathbf{b} \leftrightarrow \mathbf{q}=\mathbf{P}^{\prime}{ }_{\perp}-\mathbf{P}_{\perp}$

\# density of partons with momentum x and position \mathbf{b} tomography of N

valid for all $\mathrm{x} \Rightarrow \quad \rho^{0}(\mathbf{b})=\int d x \int \frac{d \mathbf{q}}{(2 \pi)^{2}} e^{i \mathbf{q} \cdot \mathbf{b}} H\left(x, 0, t=-\mathbf{q}^{2}\right)$

$$
=\int \frac{d \mathbf{q}}{(2 \pi)^{2}} e^{i \mathbf{q} \cdot \mathbf{b}} F_{1}\left(t=-\mathbf{q}^{2}\right)
$$

Dirac form factor

Wigner Distribution

Wigner Distribution

C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11) 041

$$
\int \mathrm{d} \mathbf{k}_{\perp} \mathrm{W}\left(\mathrm{x}, \mathbf{k}_{\perp}, \mathbf{b}_{\perp}\right) \rightarrow \mathrm{q}\left(\mathrm{x}, \mathbf{b}_{\perp}\right) \rightarrow \mathrm{GPD}
$$

Transverse momentum in semi-inclusive deep inelastic scattering

Federico Alberto Ceccopieri ${ }^{\text {a }}$, Luca Trentadue ${ }^{\text {b, }, ~}$

${ }^{\text {a }}$ Dipartimento di Fisica, Università di Parma, Viale delle Scienze, Campus Sud, 43100 Parma, Italy
${ }^{\text {b }}$ Dipartimento di Fisica, Università di Parma, INFN Gruppo Collegato di Parma, Vale delle Scienze, Campus Sud, 43100 Parma, Italy Received 30 December 2005; accepted 27 March 2006

Available online 18 April 2006

Editor: G.F. Giudice

$$
\begin{align*}
Q^{2} & \frac{\partial \mathcal{M}_{P, h}^{i}\left(x, k_{\perp}, z, p_{\perp}, Q^{2}\right)}{\partial Q^{2}} \\
= & \frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\left\{\int_{\frac{x}{1-z}}^{1} \frac{d u}{u^{3}} P_{j}^{i}(u) \int \frac{d^{2} q_{\perp}}{\pi} \delta\left((1-u) Q^{2}-q_{\perp}^{2}\right) \mathcal{M}_{P, h}^{j}\left(Q^{2}, \frac{x}{u}, \frac{k_{\perp}-q_{\perp}}{u}, z, p_{\perp}\right)\right. \\
& \left.\quad+\int_{x}^{\frac{x}{x+2}} \frac{d u}{x(1-u) u^{2}} \hat{P}_{j}^{i, l}(u) \frac{d^{2} q_{\perp}}{\pi} \delta\left((1-u) Q^{2}-q_{\perp}^{2}\right) \mathcal{F}_{P}^{j}\left(\frac{x}{u}, \frac{k_{\perp}-q_{\perp}}{u}, Q^{2}\right) \mathcal{D}_{l}^{h}\left(\frac{z u}{x(1-u)}, p_{\perp}-\frac{z u}{x(1-u)} q_{\perp}, Q^{2}\right)\right\} . \tag{12}
\end{align*}
$$

$$
\int d^{2} k_{\perp} \int d^{2} p_{\perp} \mathcal{M}_{P, h}^{i}\left(x, k_{\perp}, z, p_{\perp}, Q^{2}\right)=\mathcal{M}_{P, h}^{i}\left(x, z, Q^{2}\right)
$$

The COMPASS experiment at this Workshop:
 Sebastian UHL,Vincent ANDRIEUX

COMPASS
 Polarized Drell-Yan

Drell-Yan $\pi \uparrow-p \hat{n} \rightarrow \mu \hat{n}+\mu \hat{\imath}-X$

Cross sections:
In SIDIS: convolution of a TMD with a fragmentation function In DY: convolution of 2 TMDs

$$
\sigma^{D Y} \propto f_{\bar{u} \mid \pi^{-}} \otimes f_{u \mid p}
$$

\rightarrow complementary information and universality test

Parton Distribution Functions

Katarzyna Wichmann
DESY

here at this workshop
Marco GUZZI : parton distribution functions of the proton

The gluon - much less known than we wish

You may not realize that you will need it...

LOGARITHMIC Bjorken x SCALE

CURRENTM

LINEAR Bjorken x SCALE

Cosmic ray physics at accelerators

Gaku Mitsuka
(University of Florence, INFN Firenze, and JSPS fellow)

LTS1 Workshop, NP-QCD (22-24 May, 2014)

LHCf experiment

Cosmic ray observation

model error

(Kampert and Unger,
$\mathrm{E}[\mathrm{eV}]$
Astropartphys. 35, 660, (2012))
Energy, mass composition, and direction
\rightarrow Source of cosmic ray
\rightarrow Structure of the universe (goal)

Indirect observation of cosmic rays

Surface detectors (charged+photon)

- It is impossible to directly* measure cosmic rays properties above $10^{14} \mathrm{eV}$, but possible indirectly using the cascade shower of daughter particles, Extensive Air-Shower (EAS).
- Dependence of EAS on a mass composition and energy of cosmic rays is used for PID and energy reconstruction.
* direct measurement of cosmic ray $<10^{14} \mathrm{eV}$ is done by balloon, satellite, and ISS.

Fluorescence detectors (UV light from excited N_{2})

Hadronic interaction in air shower

Development of cosmic-ray air showers

$$
\mathrm{E} \sim \mathrm{TeV}
$$

1. Inelastic cross section large \rightarrow rapid development small \rightarrow deep penetrating
2. Inelasticity $\mathbf{k}=\mathbf{1}-\mathrm{p}_{\text {lead }} / \mathbf{p}_{\text {beam }}$ large \rightarrow rapid development small \rightarrow deep penetrating
3. Forward energy spectrum softer \rightarrow rapid development harder \rightarrow deep penetrating
4. Nuclear effects
5. Extrapolation to high energy precise measurements at available energies are crucial

$$
\mathrm{E} \sim \mathrm{GeV}
$$

1. Charge ratio
2. Multiplicity number of muons in air shower sensitive to mass composition

Cosmic ray interaction at accelerator

The LHCf experiment

Development of cosmic-ray air showers

Results at the LHC: LHCf analyses

	Photon (EM shower)	Neutron (hadron shower)	$\pi 0$ (EM shower)
Test beam at SPS	NIM. A 671, 129-136 (2012)	JINST 9 P03016 (2014)	
p-p at 900 GeV	Phys. Lett. B 715, 298-303 (2012)		
p-p at 7TeV	Phys. Lett. B 703, 128-134 (2011)	To be submitted	Phys. Rev. D 86, 092001 (2012)
p-p at 2.76 TeV			Submitted to Phys Rev. C arXiv:1403.7845,
p-Pb at 5.02TeV			CERN-PH-EP-2014-059

- LHCf analysis activity was so far directed to the EM shower events for its simplicity.
- We have extended the activity to neutron event analysis based on improved tools.
- Also we show the analysis results in p-Pb collisions (submitted to Phys. Rev. C).

Analysis on blank parts are ongoing or planed.

Inclusive $\pi^{0} \mathrm{p}$ т spectra in $\mathrm{p}-\mathrm{Pb}$ at 5.02 TeV

- The LHCf data in p-Pb (filled circles) show good agreement with DPMJET and EPOS.
- The LHCf data in p-Pb are clearly harder than the LHCf data in p-p at 5.02 TeV (shaded area). The latter is interpolated from the results at 2.76 TeV and 7 TeV .

Inclusive neutron energy spectra in p-p at 7 TeV

- In $\eta>10.76$ huge amount of neutron exists. Only QGSJET roughly reproduces the LHCf result.
- In other rapidity regions, the LHCf results are enclosed by the variation of models.
- These results may indicate small inelasticity in very forward region.

What's next?

- Inelastic p-p cross section
- It is and will be strongly constrained by the measurements at the LHC.
- Inelasticity and forward energy/рт spectra
- LHCf analyses at 7 TeV were done. Similar analyses will be performed at 13 TeV .
- Extrapolation to ultrahigh energy
- Understanding of scaling raw is of importance to validate an extrapolation.
- Precise measurements in many collision energies are necessary; $900 \mathrm{GeV}, 2.76 \mathrm{TeV}, 7 \mathrm{TeV}$ and 8 TeV so far, and 13 TeV soon.
- Nuclear effects
- p-Pb collision at 5.02 TeV is good to imitate a very dense matter which can be realized in p -air collision at $\mathrm{E} \gg \mathrm{TeV}$.
- nucleon - light-ion collision (e.g. p-N/O) is needed to test the current implementation of hadronic interaction models at TeV energy region.

Summary

- Understanding of hadronic interaction is crucial to reduce an uncertainty in cosmic ray observation.
- LHC is the best occasion to improve/tune the hadronic interaction models towards an observation of ultrahigh energy cosmic ray.
- Retuned models with LHC data indeed show convergence at the LHC energy.
- Next target is
- performing a precise extrapolation based on a robust scaling.
- RHICf; an extension of the LHCf activity to low energy but to wide rapidity range.
- (hopefully) light ion collision.

Results at the LHC: cross section

(T. Pierog)

- There is no drastic change from EPOS 1.99 to EPOS LHC.
- Better agreement with TOTEM is found in QGSJET II-04 compared with QGSJET II-03.
- Post LHC models show overall good agreement with data up to the LHC energy.
- They are converged into similar values even at $10^{6} \mathrm{GeV}$.

Spectroscopy

Roberto Mussa Torino INFN

Why the constituent quark model is so succesful?

Despite the large scale variation (from s to c to b), the ground states of S wave mesons are equally spaced (within 2-3\%) from the lowest lying heavy baryons ($205-210 \mathrm{MeV}$) and from the first excitation, made of a heavy quark and a vector diquark ($310-323 \mathrm{MeV}$). Baryons behave like two-body systems, as three-body forces seem negligible.

Spin averaged $1 P-1 S$ splitting seems not to depend on scale: only 1% difference with charmonium: similarly, the tensor-vector splitting remains constant also in D,Ds.					
	$c \bar{u}$	$c \bar{d}$	$c \bar{s}$	$c \bar{c}$	$b \bar{b}$
$\mathrm{M}\left(2^{+}\right)-\mathrm{M}\left(1^{-}\right)$, in $\mathrm{MeV} / \mathrm{c}^{2}$	452 ± 2	2449 ± 4	461 ± 2	458.3 ± 0.1	452.3 ± 0.6

Multiple Parton Interactions

Livio Fanó

Multiple Parton Interactions have been introduced to solve the unitarity problem

 generated by the fast raise of the inclusive hard pp cross sections at small xTurns out to be highly predictive on hadronic final states:
Several indication of MPI in pp collision. A characterization is needed
Why ? MPI helps in I) probe proton matter distribution 2) understanding the collision dynamics and 3) define at the best background to new physics search

How ? soft dynamic with Underlying Event and hard with Double Hard Scattering

Leading Track Jet direction

 define a direction in the phi plane for the HS

Transverse region is expected to be sensitive to the UE (all activity except the hard-scattering component)

Observables are built from tracks: $\mathbf{d}^{2} \mathbf{N}_{\mathrm{ch}} / \mathbf{d \eta d} \boldsymbol{d}=$ multiplicity density $\mathbf{d}^{2} \Sigma \mathrm{p}$ т $/ \mathbf{d \eta d \phi}=$ energy density

Eur.Phys.J.C70:555-572,20I0, JHEP09 (201I) 109

Multiple Parton Interactions

Multiple Parton Interactions have been introduced to solve the unitarity problém

 generated by the fast raise of the inclusive hard pp cross sections at small xTurns out to be highly predictive on hadronic final states:
Several indication of MPI in pp collision. A characterization is needed
Why ? MPI helps in I) probe proton matter distribution 2) understanding the collision dynamics and 3) define at the best background to new physics search

How? soft dynamic with Underlying Event and hard with Double Hard Scattering

Leading Track Jet direction

 define a direction in the phi plane for the HS

Transverse region is expected to be sensitive to the UE (all activity except the hard-scattering component)

Observables are built from tracks: $\mathbf{d}^{2} \mathbf{N}_{\mathrm{ch}} / \mathrm{d} \eta \mathrm{d} \phi=$ multiplicity density $\mathbf{d}^{2} \Sigma \mathrm{p}$ т/d $\mathbf{d} \mathbf{d} \phi=$ energy density

Eur.Phys.J.C70:555-572,20I0, JHEP09 (201I) 109

I) Fast rise - peripheral collisions increase of the MPI
2) Plateau region - central collisions with ~constant charged density and increasing PT^{T} sum (radiation)
3) Increase of the activity with $\sqrt{ } \mathrm{S}$ \rightarrow more MPI
4) DY events have a smaller particle density with a harder PT due to the presence of only ISR initiated by quarks

hep-ex:I204.14 II

Hard MPI - Double Parton Scattering

$$
\begin{aligned}
& \sigma\left(P_{1}, P_{2}\right)=\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \hat{\sigma}_{i, j}\left(p_{1}, p_{2}, \alpha_{s}\left(\mu^{2}\right), \frac{Q^{2}}{\mu^{2}}\right) \\
& \sigma^{D P S}(i j k l \rightarrow a b c d)=\frac{m \hat{\sigma}_{i j}^{A} \hat{\sigma}_{k l}^{B}}{2 \sigma_{e f f}}
\end{aligned} \quad \sigma_{\text {eff }}=\frac{1}{\int d^{2} \beta F^{2}(\beta)}
$$

Which role for Double Parton Correlations ?

[in actual model dPDF are factorized in 2 single PDF]!!
Korotkikh and Snigirev (2004), Gaunt and Stirling (2010), Diehl and Schafer (20II), Snigirev (20II), Blok et al. (20I2), Schweitzer, Strikman and Weiss (2013), S. Scopetta et al. (2013),...

FUTURE

DPS measurement don't provide yet a crystal clear DPS evidence.

What should be considered to be the most striking evidence of MPI via DPS?
To what extent we can trust the general-purpose soft-MPI models?
Explore scaling properties: observables in $\mathrm{Pp}, \mathrm{pPb}$ and PbPb driven by charged multiplicity?

Higher Energies...higher luminosities...

DPS/SPS Heavy Flavors production is expected to increase with $\sqrt{ } \mathrm{S}$
Rare productions with top and heavy bosons, unavoidable BGs to new physics searches With p-N DPS is enhanced, longitudinal and transverse correlations can be factorized

Hard MPI - Double Parton Scattering

$$
\begin{aligned}
& \sigma\left(P_{1}, P_{2}\right)=\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \hat{\sigma}_{i, j}\left(p_{1}, p_{2}, \alpha_{s}\left(\mu^{2}\right), \frac{Q^{2}}{\mu^{2}}\right) \\
& \sigma^{D P S}(i j k l \rightarrow a b c d)=\frac{m \hat{\sigma}_{i j}^{A} \hat{\sigma}_{k l}^{B}}{2 \sigma_{e f f}} \quad \sigma_{\mathrm{eff}}=\frac{1}{\int d^{2} \beta F^{2}(\beta)}
\end{aligned}
$$

Which role for Double Parton Correlations?

[in actual model dPDF are factorized in 2 single PDF]!!
Korotkikh and Snigirev (2004), Gaunt and Stirling (2010), Diehl and Schafer (20II), Snigirev (20II), Blok et al. (20I2), Schweitzer, Strikman and Weiss (20I3), S. Scopetta et al. (2013),...

FUTURE

DPS measurement don't provide yet a crystal clear DPS evidence.

What should be considered to be the most striking evidence of MPI via DPS?
To what extent we can trust the general-purpose soft-MPI models?
Explore scaling properties: observables in $\mathrm{Pp}, \mathrm{pPb}$ and PbPb driven by charged multiplicity?
Higher Energies...higher luminosities...
DPS/SPS Heavy Flavors production is expected to increase with $\sqrt{ } \mathrm{S}$
Rare productions with top and heavy bosons, unavoidable BGs to new physics searches With p-N DPS is enhanced, longitudinal and transverse correlations can be factorized

Hard Diffraction

Federico Alberto Ceccopieri

Hard diffraction in DIS

- Experiment
- (hard) diffraction rebirth at HERA
- Leading proton production in DIS
- Target fragmentation region, $|t| \leq 1 \mathrm{GeV}^{2}$
- Leading twist: $\mathcal{O}\left(Q^{-4}\right)$ (as iDIS)
- scaling violations \rightarrow parton dynamics
- Theory
- Factorisation theorem for DDIS : $d \sigma \propto f_{i}^{D} \otimes d \hat{\sigma}$
- pQCD evolution of f_{i}^{D} (DGLAP)

- Result
- Partonic structure of the colourless exchange quite well known
- Enconded in diffractive PDFs (i.e. Fracture Functions)

Diffractive parton distributions and factorization

- Diffractive PDFs have bees used to test hard-scattering factorisation in
- dijet in DIS
- dijet in PHP $\left(Q^{2} \simeq 0, E_{T} \sim 5,6 \mathrm{GeV}\right)$
- dijet or $W^{ \pm}$in $p \bar{p}$ collisions
- Results:
- dijet in DIS: data/NLO $\simeq 1$
- dijet in PHP: debated

H 1 reports violation: data/NLO $\simeq 0.5$
ZEUS consistent with no violation: data/NLO $\simeq 1$
$-p p$: Striking breakdown confirmed at Tevatron: data/NLO $\simeq 0.1$

- NB: Factorisation predicted to fail in Resolved PHP and hadronic collisions

On hard-scattering factorisation

- Hard-scattering factorisation is at the basis of discovery and precision physics (especially) at hadron colliders.
- Consider $H_{1}+H_{2} \rightarrow H+\gamma^{*}+X$
- Assume hard scattering factorisation: $d \sigma \propto f_{H_{1}} \otimes f_{H_{2}} \otimes D_{H} \otimes d \hat{\sigma}$ and test it against data.
- Beware! No factorisation theorem for generic QCD and/or BSM processes but it works!

- Factorisation proven only for inclusive Drell-Yan (where it is easier to show that soft exchanges are power suppressed when one sums over final states).
\rightarrow When factorisation fails (as it does in hard diffraction in $p p$ collisions) it opens a window on NP physics and the hadronic structure: ..NP physics is in the way it fails..

On hard-scattering factorisation

Hard-scattering factorisation is at the basis of discovery and precision physics (especially) at hadron colliders.
Consider $H_{1}+H_{2} \rightarrow H+\gamma^{*}+X$
Assume hard scattering factorisation:
$d \sigma \propto f_{H_{1}} \otimes f_{H_{2}} \otimes D_{H} \otimes d \hat{\sigma}$ and test it against data.
Beware! No factorisation theorem for generic QCD and/or BSM processes but it works!

- Factorisation proven only for inclusive Drell-Yan (where it is easier to show that soft exchanges are power suppressed when one sums over final states).
\rightarrow When factorisation fails (as it does in hard diffraction in $p p$ collisions) it opens a window on NP physics and the hadronic structure: ..NP physics is in the way it fails..

On hard-scattering factorisation

Hard-scattering factorisation is at the basis of discovery and precision physics (especially) at hadron colliders.
Consider $H_{1}+H_{2} \rightarrow H+\gamma^{*}+X$
Assume hard scattering factorisation:
$d \sigma \propto f_{H_{1}} \otimes f_{H_{2}} \otimes D_{H} \otimes d \hat{\sigma}$ and test it against data.
Beware! No factorisation theorem for generic QCD and/or BSM processes but it works!

- Factorisation proven only for inclusive Drell-Yan (where it is easier to show that soft exchanges are power suppressed when one sums over final states).
\rightarrow When factorisation fails (as it does in hard diffraction in $p p$ collisions) it opens a window on NP physics and the hadronic structure: ..NP physics is in the way it fails..

Diffraction at LHC

- Numerous analyses on soft and hard diffraction are ongoing at LHC by all Collaborations.
- A number of them focuses on exclusive final state: prototype $p+p \rightarrow p \oplus X \oplus p$
- Opportunities also in heavy ions runs
- Method:
- LRG with main detectors

- forward proton tagger
- Assume hard scattering factorization : use HERA dPDFs to predict rate of diffractive W,Z (clean) or dijet (abundant) in SingleDiff and DoubleDiff.

Diffraction at LHC

- Numerous analyses on soft and hard diffraction are ongoing at LHC by all Collaborations.
- A number of them focuses on exclusive final state: prototype $p+p \rightarrow p \oplus X \oplus p$
- Opportunities also in heavy ions runs
- Method:
- LRG with main detectors

- forward proton tagger
- Assume hard scattering factorization : use HERA dPDFs to predict rate of diffractive W,Z (clean) or dijet (abundant) in SingleDiff and DoubleDiff.

Prototype process: diffractive DY

- consider the simplest process: $H_{1}+H_{2} \rightarrow H+\gamma^{*}+X$
- higher order corrections known (NNLO, pt, etc.)
- uncertainties under control (leptonic FS)
- Let us assume factorisation:
$x_{\mathbb{P}} \frac{d \sigma}{d Q^{2} d Y d x_{\mathbb{P}}}=\sigma_{0} \Sigma_{q} e_{q}^{2} M_{q / \mathbb{P}}^{D}\left(\frac{\sqrt{\tau} e^{Y}}{x_{\mathbb{P}}}, Q^{2}, x_{\mathbb{P}}\right) f_{\bar{q} / P_{2}}\left(\sqrt{\tau} e^{-Y}, Q^{2}\right)$
- Dependencies of the cross section:
- factorisation breaking vs Q^{2} (vary DY mass)
- different physics at different $x_{\mathbb{P}}$ (vary proton enery loss)
- DY rapidity to avoid dPDF extrapolation in β outside HERA range.
- conservative ranges: $0.001<\beta<1,0.001<x_{\mathbb{P}}<0.05$

Prototype process: diffractive DY

- consider the simplest process: $H_{1}+H_{2} \rightarrow H+\gamma^{*}+X$
- higher order corrections known (NNLO, pt, etc.)
- uncertainties under control (leptonic FS)
- Let us assume factorisation:
$x_{\mathbb{P}} \frac{d \sigma}{d Q^{2} d Y d x_{\mathbb{P}}}=\sigma_{0} \Sigma_{q} e_{q}^{2} M_{q / \mathbb{P}}^{D}\left(\frac{\sqrt{\tau} e^{Y}}{x_{\mathbb{P}}}, Q^{2}, x_{\mathbb{P}}\right) f_{\bar{q} / P_{2}}\left(\sqrt{\tau} e^{-Y}, Q^{2}\right)$

- Dependencies of the cross section:
- factorisation breaking vs Q^{2} (vary DY mass)
- different physics at different $x_{\mathbb{P}}$ (vary proton enery loss)
- DY rapidity to avoid dPDF extrapolation in β outside HERA range.
- conservative ranges: $0.001<\beta<1,0.001<x_{\mathbb{P}}<0.05$

Open questions

- Can we correct the factorisation formula by a factor S ?

$$
d \sigma \propto f^{D} \otimes f \otimes d \hat{\sigma} \otimes S(. .)
$$

- which are the dependences of S ?
- do we see the same partonic structure oberved at HERA?
- can be the cross section factorised at all?
- Compare Single and Double Diffraction $d \sigma \propto f^{D} \otimes f^{D} \otimes d \hat{\sigma} \otimes S^{\prime}(.$.

- what are the relations between S and S^{\prime} ?
- What if one measures forward neutron instead of protons?

Open questions

- Can we correct the factorisation formula by a factor S ? $d \sigma \propto f^{D} \otimes f \otimes d \hat{\sigma} \otimes S(.$.
- which are the dependences of S ?
- do we see the same partonic structure oberved at HERA?
- can be the cross section factorised at all?
- Compare Single and Double Diffraction $d \sigma \propto f^{D} \otimes f^{D} \otimes d \hat{\sigma} \otimes S^{\prime}(.$.

- what are the relations between S and S^{\prime} ?
- What if one measures forward neutron instead of protons?

Hard diffraction : present and future

- Impressive knowledge on hard diffraction accumulated by HERA and Tevatron
- This knowledge is quantitative and predictive (dPDFs etc.)
- Present and near future : discovery-like program at hadron collider:
- Answer the question how factorisation is broken
- Can we recover approximate predictivity?
- interplay of large rapidity gaps and MPI
- issue: can we use $p p$ collider as a $\gamma \mathbb{P}$ collider (close to diffractive PHP in $e p$)
- Distant future : precision-like program in future $e p$ machines:
- Solve the HERA left-open puzzle in diffractive PHP
- Address DIS diffraction in the low $1<Q^{2}<10 \mathrm{GeV}^{2}$ regime in a clean environment
- Study the interplays of hard diffraction with saturation and low- x physics

Hard diffraction : present and future

- Impressive knowledge on hard diffraction accumulated by HERA and Tevatron
- This knowledge is quantitative and predictive (dPDFs etc.)
- Present and near future : discovery-like program at hadron collider:
- Answer the question how factorisation is broken
- Can we recover approximate predictivity?
- interplay of large rapidity gaps and MPI
- issue: can we use $p p$ collider as a $\gamma \mathbb{P}$ collider (close to diffractive PHP in $e p$)
- Distant future : precision-like program in future $e p$ machines:
- Solve the HERA left-open puzzle in diffractive PHP
- Address DIS diffraction in the low $1<Q^{2}<10 \mathrm{GeV}^{2}$ regime in a clean environment
- Study the interplays of hard diffraction with saturation and low- x physics

Diffractive Cross Sections
 \&

Events

Ken Österberg

Classification of soft pp events

Non-Diffractive process (ND) $\approx 60 \mathrm{mb} @ V_{s}=7-8 \mathrm{TeV}$
Elastic Scattering (ES), $\approx 25 \mathrm{mb}$

- Experimental signiture: leading protons and/or rapidity gaps
- QCD picture: pure combination of colorcompensated gluons e.g. gluon pair/ladder

Single Diffraction (SD), $\approx 10 \mathrm{mb}$

Double Diffraction (DD), $\approx 5 \mathrm{mb}$

Central Diffraction (CD), $\approx 1 \mathrm{mb}$

Classification of soft pp events

Non-Diffractive process $(N D) \approx 60 \mathrm{mb} @ \sqrt{\mathrm{~s}}=7$

Non-diffractive
$\mathrm{dN} / \mathrm{d} \Delta \eta=\exp (-\Delta \eta)$

$d N / d \Delta \eta=$ const rapidity gap

Incident
hadrons retail their quantun numbers
remaining colourless

- Experimental signiture: leading protons and/or rapidity gaps
- QCD picture: pure combination of colorcompensated gluons e.g. gluon pair/ladder

Central exclusive production (CEP)

exchange of colour singlets with vacuum quantum numbers \Rightarrow Selection rules for system $X: \mathrm{J}^{\mathrm{PC}}=0^{++}, 2^{++}$ $X=0^{++} \& 2^{++}$(light q, c \& b) resonances, jets,?....

$$
\left\{\begin{array}{l}
\mathrm{M}=\mathrm{m}_{\pi \pi}-\sim 1 \mathrm{TeV}, \\
\sigma=\mathrm{O}(\mu \mathrm{~b})-\mathrm{O}(\mathrm{fb})
\end{array}\right.
$$

With proton tagging:
Normal LHC runs: M(pp) acceptance $>350 \mathrm{GeV}$
$\Rightarrow \sigma^{\prime}$ s small (fb), need high lumi, only accessible with CT PPS \& AFP
Special runs: all M(pp), $\mu \sim 0.05-0.5 \Rightarrow \mathrm{O}\left(0.1-10 \mathrm{pb}^{-1} /\right.$ day $)$
CMS \& TOTEM common runs: if $\mu \sim 0.5$ need timing in vertical TOTEM RPs
With rapidity gaps (also ALICE, ATLAS \& CMS):
LHCb in normal LHC runs, $\sigma^{\prime} s(\geq \mathrm{fb})$, improved with Herschel.

Central exclusive production (CEP)

$$
\begin{aligned}
& \text { exchange of colour singlets with vacuum quantum } \\
& \text { numbers } \Rightarrow \text { Selection rules for system } X \text { : } \mathrm{J}^{\mathrm{JC}}=0^{++}, 2^{++} \\
& \left\{\begin{array}{l}
\mathrm{M}=\mathrm{m}_{\pi \pi}-\sim 1 \mathrm{TeV}, \\
\sigma=\mathrm{O}(\mu \mathrm{~b})-\mathrm{O}(\mathrm{fb})
\end{array}\right. \\
& X=0^{++} \& 2^{++} \text {(light q, c \& b) resonances, jets,?.... }
\end{aligned}
$$

also $\gamma \gamma$ fusion \& photoproduction

With proton tagging:
Normal LHC runs: M(pp) acceptance $>350 \mathrm{GeV}$
$\Rightarrow \sigma^{\prime}$ s small (fb), need high lumi, only accessible with CT PPS \& AFP
Special runs: all M(pp), $\mu \sim 0.05-0.5 \Rightarrow \mathrm{O}\left(0.1-10 \mathrm{pb}^{-1} /\right.$ day $)$
CMS \& TOTEM common runs: if $\mu \sim 0.5$ need timing in vertical TOTEM RPs
With rapidity gaps (also ALICE, ATLAS \& CMS):
LHCb in normal LHC runs, $\sigma^{\prime} s(\geq \mathrm{fb})$, improved with Herschel.

CEP jets

cross-sections, $3 \mathbf{j} / 2 \mathbf{j}$ ratio, gluon $\mathbf{j e t}$ studies CDF Observed $\mathrm{X}=\mathrm{JJ}$ at $\mathrm{V} s=1.96 \mathrm{TeV}$ to $\mathrm{E}_{\mathrm{T}}=30 \mathrm{GeV}$

At LEP: $\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{Z} \rightarrow 2$ jets (q-qbar) or 3 jets ($\mathrm{q}-\mathrm{qbar-g}$)
At LHC: IP $+\mathrm{IP} \rightarrow 2$ jets $(\mathrm{g}-\mathrm{g})$ or 3 jets ($\mathrm{q}-\mathrm{qbar}-\mathrm{g}$) OR ($\mathrm{g}-\mathrm{g}-\mathrm{g}$)

Durham group (KHARYS MC)

g

Democratic so $1 / 5$ each quark type: 20\% b-bbar 20\% c-cbar, ...

Subtle QCD effects:
No gluon radiation (Sudakov)
No other parton collisions
Test spin rule $\mathrm{Jz}=0$
Interplay of pQCD and npQCD
Distant relation to elastic scattering
Standard LHC runs: M(pp) acceptance $>350 \mathrm{GeV}$ \Rightarrow σ^{\prime} s small (fb), need high lumi, only accessible with CT PPS \& AFP

Special runs: all $\mathrm{M}(\mathrm{pp}), \mu^{\sim} 0.5 \& 1 \mathrm{k}$ bunches $\Rightarrow \mathrm{O}\left(10 \mathrm{pb}^{-1}\right)$ $\sigma(\mathrm{M}(\mathrm{pp})>75 \mathrm{GeV})={ }^{\sim} 100 \mathrm{pb} @ \mathrm{~s}=13 \mathrm{TeV}$ (KHARYS) only accessible with timing detectors in vertical TOTEM RPs

CEP low mass states \& glueballs

LHC an excellent place to study CEP low mass states:

- small p_{T} 's $\Rightarrow \Delta \mathrm{m} \sim 10 \mathrm{MeV}$ from tracking (CMS-TOTEM \& LHCb)
- excellent angular coverage (CMS-TOTEM \& LHCb)
- proton tagging in special runs (CMS-TOTEM)

Pomeron $=$ virtual glue ball $? \Rightarrow$ likely to produce glue balls in Pomeron fusion

CEP low mass states \& glueballs

LHC an excellent place to study CEP low mass states:

- small p_{T} 's $\Rightarrow \Delta \mathrm{m} \sim 10 \mathrm{MeV}$ from tracking (CMS-TOTEM \& LHCb)
- excellent angular coverage (CMS-TOTEM \& LHCb)
- proton tagging in special runs (CMS-TOTEM)

Pomeron $=$ virtual glue ball $\boldsymbol{?} \Rightarrow$ likely to produce glue balls in Pomeron fusion

Open questions: total, elastic and diffractive cross-section

1. Understanding of low-t behaviour of $\sigma_{\text {elastic }}{ }^{\text {pp }}$: pure exponential behavior of hadronic amplitude? \leftrightarrow Interference Coulomb-hadronic interference \& coherent effects, hadronic phase of elastic scattering: central or periheral
2. Validity of optical theorem for hadron-hadron interactions?
3. Comprehensive picture of low mass diffraction
4. High energy behaviour of $\sigma_{\text {total }}{ }^{\text {pp }} / \sigma_{\text {inelastic }}{ }^{\text {pp }}$? (\leftrightarrow cosmic rays)

Open questions: Diffraction \& central exclusive production (CEP)

1. Understanding factorisation breaking in hard diffraction?
2. Existence of glueballs (or gluon rich-resonances) \& their hierarchy?
3. $\gamma \gamma$ fusion as probe for beyond SM physics?

Color Confinement

Massimo D'Elia
Universitá di Pisa

- Luckily enough, many aspects of the Standard Model still puzzle and excite us. Some of the elementary degrees of freedom of the model, quark and gluons, never show up as free, asymptotic states.
This is what is usually known as color confinement. And we do not why.
- The upper bound on observed fractional charges, compared to expectation from cosmological quark recombination, is suppressed by around 10^{-15}

This is either the fruit of extremely very fine tuning, or the result of some symmetry principle which we have still not understood.

- Evidence for partons inside hadrons is well established. The problem is therefore that of bringing two partons far apart from each other.
This is naturally related to long distance (i.e. low energy) physics.
- Luckily enough, many aspects of the Standard Model still puzzle and excite us. Some of the elementary degrees of freedom of the model, quark and gluons, never show up as free, asymptotic states.
This is what is usually known as color confinement. And we do not why.
- The upper bound on observed fractional charges, compared to expectation from cosmological quark recombination, is suppressed by around 10^{-15}
This is either the fruit of extremely very fine tuning, or the result of some symmetry principle which we have still not understood.
- Evidence for partons inside hadrons is well established. The problem is therefore that of bringing two partons far apart from each other. This is naturally related to long distance (i.e. low energy) physics.
- Luckily enough, many aspects of the Standard Model still puzzle and excite us. Some of the elementary degrees of freedom of the model, quark and gluons, never show up as free, asymptotic states.
This is what is usually known as color confinement. And we do not why.
- The upper bound on observed fractional charges, compared to expectation from cosmological quark recombination, is suppressed by around 10^{-15}

This is either the fruit of extremely very fine tuning, or the result of some symmetry principle which we have still not understood.

- Evidence for partons inside hadrons is well established. The problem is therefore that of bringing two partons far apart from each other.
This is naturally related to long distance (i.e. low energy) physics.
- Luckily enough, many aspects of the Standard Model still puzzle and excite us. Some of the elementary degrees of freedom of the model, quark and gluons, never show up as free, asymptotic states.
This is what is usually known as color confinement. And we do not why.
- The upper bound on observed fractional charges, compared to expectation from cosmological quark recombination, is suppressed by around 10^{-15}

This is either the fruit of extremely very fine tuning, or the result of some symmetry principle which we have still not understood.

- Evidence for partons inside hadrons is well established. The problem is therefore that of bringing two partons far apart from each other. This is naturally related to long distance (i.e. low energy) physics.
- Strong interactions are described by Quantum Chromodynamics, which is an asymptotically free theory at high energies (Gross, Politzer, Wilckez, 1973).
That implies a growing coupling at large distances, where the theory is non-perturbative.
But strong attraction is not enough to explain confinement.
- Color Confinement emerges as a property of the ground state of the theory. It is not possible to excite colored states over the ground state, just hadrons It goes along with other non-perturbative properties of QCD, like chiral symmetry breaking and mass gap generation.
- Understanding such non-perturbative properties is a major challenge It is not only an issue for the Standard Model. It can be placed in a more general framework of understanding the dynamics of strongly coupled (gauge) theories It may also be a paradigm for possible BSM strongly coupled gauge theories.
- Strong interactions are described by Quantum Chromodynamics, which is an asymptotically free theory at high energies (Gross, Politzer, Wilckez, 1973).
That implies a growing coupling at large distances, where the theory is non-perturbative.
But strong attraction is not enough to explain confinement.
- Color Confinement emerges as a property of the ground state of the theory. It is not possible to excite colored states over the ground state, just hadrons It goes along with other non-perturbative properties of QCD, like chiral symmetry breaking and mass gap generation.
- Understanding such non-perturbative properties is a major challenge It is not only an issue for the Standard Model. It can be placed in a more general framework of understanding the dynamics of strongly coupled (gauge) theories It may also be a paradigm for possible BSM strongly coupled gauge theories.

Deconfinement as a probe for Confinement

Is strongly interacting matter confined forever?
N. Cabibbo and G. Parisi (1975): a new, deconfined state of matter, corresponding to quark liberation, may exist in extreme conditions of high temperature or high baryon density.

The physics of the early Universe and of compact astrophysical objects may be described by states of matter completely away from our common experience.

Understanding how quarks and gluon deconfine, and what is the nature of the deconfined phase, may give us insight into confinement itself.

Deconfinement as a probe for Confinement

Is strongly interacting matter confined forever?
N. Cabibbo and G. Parisi (1975): a new, deconfined state of matter, corresponding to quark liberation, may exist in extreme conditions of high temperature or high baryon density.

The physics of the early Universe and of compact astrophysical objects may be described by states of matter completely away from our common experience.

Understanding how quarks and gluon deconfine, and what is the nature of the deconfined phase, may give us insight into confinement itself.

Deconfinement as a probe for Confinement

Is strongly interacting matter confined forever?
N. Cabibbo and G. Parisi (1975): a new, deconfined state of matter, corresponding to quark liberation, may exist in extreme conditions of high temperature or high baryon density.

The physics of the early Universe and of compact astrophysical objects may be described by states of matter completely away from our common experience.

Understanding how quarks and gluon deconfine, and what is the nature of the deconfined phase, may give us insight into confinement itself.

Experimental input? Heavy Ion Collisions (SPS, RHIC, LHC, ... FAIR)

- Only final products directly accessible, particle multiplicities and ratios are well described by thermal distribution reached at chemical freeze-out like for Cosmic Microwave Background after Big Bang

Depending on the c.m. energy, different values of T and μ_{B} reached at freeze-out:
$\mu_{B} \sim O(100) \mathrm{MeV}$ at SPS, FAIR; $\mu_{B} \sim O(10)$
MeV at RHIC; $\mu_{B} \sim O(1) \mathrm{MeV}$ at LHC; $\mu_{B} / T \sim$ 10^{-9} at the cosmological transition

Some considerations

How can confinement be an absolute property of the QCD vacuum, and deconfining be just a smooth change of properties (no transition)? Maybe one should understand what the deconfined thermal medium really is.

Experimental input (heavy ion): liquid like behavior (elliptic flow) and jet quenching.

In which sense a quark is deconfined, and what are its transport properties through the deconfining thermal medium?

Unfortunately, lattice QCD is ideally suited only for the study of equilibrium properties When considering real time dynamics, e.g. for transport properties, reaching a complete control over systematics is a very hard conceptual and numerical task.
(see M. Panero, K Rummukainen and A. Schaefer, PRL 112, 162001 (2014) for a recent study of soft mode contributions to jet quenching.)

Conclusions: goals and perspectives

- Understanding confinement at a fundamental level, likely in terms of weakly coupled dual variables.
Perspective: many hints from QCD-like and string theories. Consistent indications about the role of topological objects from lattice simulations. A theoretical breakthrough is needed for a final answer in QCD
- Matching the computed and the observed hadron spectrum. Where are the glueballs? Do we understand the recently observed $Z_{c, b}, X$ states? Perspective: waiting for future experiments and theoretical developments.
- Understanding equilibrium properties of thermal QCD, location and order of the finite T deconfining transition:
Perspective: NOW. Present lattice techniques and computational resources allow control over statistical and systematic errors.

Conclusions: goals and perspectives

- Understanding confinement at a fundamental level, likely in terms of weakly coupled dual variables.
Perspective: many hints from QCD-like and string theories. Consistent indications about the role of topological objects from lattice simulations. A theoretical breakthrough is needed for a final answer in QCD
- Matching the computed and the observed hadron spectrum. Where are the glueballs? Do we understand the recently observed $Z_{c, b}, X$ states? Perspective: waiting for future experiments and theoretical developments.
- Understanding equilibrium properties of thermal QCD, location and order of the finite T deconfining transition:
Perspective: NOW. Present lattice techniques and computational resources allow control over statistical and systematic errors.

Conclusions: goals and perspectives

Understanding confinement at a fundamental level, likely in terms of weakly coupled dual variables.
Perspective: many hints from QCD-like and string theories. Consistent indications about the role of topological objects from lattice simulations. A theoretical breakthrough is needed for a final answer in QCD

- Matching the computed and the observed hadron spectrum.

Where are the glueballs? Do we understand the recently observed $Z_{c, b}, X$ states?
Perspective: waiting for future experiments and theoretical developments.

- Understanding equilibrium properties of thermal QCD, location and order of the finite T deconfining transition:
Perspective: NOW. Present lattice techniques and computational resources allow control over statistical and systematic errors.

Conclusions: goals and perspectives

Understanding confinement at a fundamental level, likely in terms of weakly coupled dual variables.
Perspective: many hints from QCD-like and string theories. Consistent indications about the role of topological objects from lattice simulations. A theoretical breakthrough is needed for a final answer in QCD

- Matching the computed and the observed hadron spectrum.

Where are the glueballs? Do we understand the recently observed $Z_{c, b}, X$ states? Perspective: waiting for future experiments and theoretical developments.

- Understanding equilibrium properties of thermal QCD, location and order of the finite T deconfining transition:
Perspective: NOW. Present lattice techniques and computational resources allow control over statistical and systematic errors.

Conclusions: goals and perspectives

Understanding confinement at a fundamental level, likely in terms of weakly coupled dual variables.
Perspective: many hints from QCD-like and string theories. Consistent indications about the role of topological objects from lattice simulations. A theoretical breakthrough is needed for a final answer in QCD

Matching the computed and the observed hadron spectrum.
Where are the glueballs? Do we understand the recently observed $Z_{c, b}, X$ states?
Perspective: waiting for future experiments and theoretical developments.

- Understanding equilibrium properties of thermal QCD, location and order of the finite T deconfining transition:
Perspective: NOW. Present lattice techniques and computational resources allow control over statistical and systematic errors.

Conclusions: goals and perspectives

Understanding confinement at a fundamental level, likely in terms of weakly coupled dual variables.
Perspective: many hints from QCD-like and string theories. Consistent indications about the role of topological objects from lattice simulations. A theoretical breakthrough is needed for a final answer in QCD

Matching the computed and the observed hadron spectrum.
Where are the glueballs? Do we understand the recently observed $Z_{c, b}, X$ states?
Perspective: waiting for future experiments and theoretical developments.

- Understanding equilibrium properties of thermal QCD, location and order of the finite T deconfining transition:
Perspective: NOW. Present lattice techniques and computational resources allow control over statistical and systematic errors.

Conclusions: goals and perspectives

Understanding confinement at a fundamental level, likely in terms of weakly coupled dual variables.
Perspective: many hints from QCD-like and string theories. Consistent indications about the role of topological objects from lattice simulations. A theoretical breakthrough is needed for a final answer in QCD

Matching the computed and the observed hadron spectrum.
Where are the glueballs? Do we understand the recently observed $Z_{c, b}, X$ states?
Perspective: waiting for future experiments and theoretical developments.

Understanding equilibrium properties of thermal QCD, location and order of the finite T deconfining transition:
Perspective: NOW. Present lattice techniques and computational resources allow control over statistical and systematic errors.

a comment:

in the italian language trying to translate "New Physics"
one may say, with an appreciably different meaning, : "Nuova Fisica" meaning
new and unexpected phenomena or facts
but also
"Fisica Nuova"
a "new way of seeing or describing" already known facts
hopefully we are looking for both and, more important, we should consider both as equally remarkable and striking

