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Chiral and conformal anomalies

Chiral anomaly

∂µ〈jµ5 〉s =
Q2

16π2
ǫµναβ

Fµν Fαβ

Fµν = ∂µAν − ∂νAµ j
µ
5 ≡ ψ̄γµγ5ψ

Conformal anomaly

gµν〈Tµν〉s =
∑

I=s,f ,V

nI

[

βa(I )F + βb(I )E4 + βc(I )�R

]

− κ

4
nV F

µν
Fµν

F ≡ C
αβγδ

Cαβγδ = R
αβγδ

Rαβγδ − 2Rαβ
Rαβ +

1

3
R

2

E4 ≡ R
αβγδ

Rαβγδ − 4Rαβ
Rαβ + R

2
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Anomalies in the perturbative picture

Anomalies provide a perturbative window on nonperturbative physics, as
they show up in perturbation theory but are otherwise independent of the

energy scale, thus affecting both UV and IR physics:

’t Hooft anomaly matching conditions (1979)

Komargodski-Schwimmer’s weak proof of the weak a-theorem (2011)

Massless scalar degrees of freedom in IR gravity (Mottola, 2008)

The chiral anomaly (Adler, 1968; Bell, Jackiw, 1969) has solved the
phenomenological puzzle of the decay π0 → γ γ through modified PCAC.

In the 1-particle-irreducible effective action, the perturbative signature of both
chiral and conformal anomalies are anomaly poles, especially featured by
3-point correlation functions (Dolgov and Zakharov in 1970 for the AVV ,

Mottola and Giannotti in 2008 for the TVV ...).
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The AVV and the chiral anomaly pole
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The on-shell matrix element in the massless limit

∆λµν(k1, k2) =
i Q2

2π2

kλ

k2
ǫµναβ

k1α k2 β Ãµ(k1) Ãν(k2)

where the anomaly pole is manifest and is coupled (non-zero residue) in the
massless limit.

⇒ The pole is the perturbative signature of the pion !

Sum rules approach shades new light on the issue of anomaly poles:
listen to Luigi delle Rose on Wednesday.
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Wess-Zumino anomaly actions

The 1PI effective action is non-local but the appearance of anomaly poles
implies the possibility of extra local degrees of freedom.

Local solution to the anomaly equations are provided by
Wess-Zumino anomaly actions

⇒ all anomalous interactions encoded.

For the case SUL(3)× SUR(3) it was done by Wess and Zumino (1970).

Local degrees of freedom = pion fields.
5-pion vertex:

1

6π2 F 5
π

ǫµναβ
tr (Π∂µΠ∂νΠ∂αΠ∂βΠ) , Π =

1

2
λi Πi



Outline Introduction The AVV and TVV correlators and anomaly poles Weyl-gauging The conformal anomaly WZ action

The anomaly pole for the TVV

=

(a)

k

p

q

(b)

p + l

l − q

l

q
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k

+ exch.

(c)

l l − q

 

k p

q

+ + exch.

The conformal anomaly shows strikingly similar features: on shell correlator in
the massless limit of QED

Γµναβ(k2, 0, 0) = − e2

48π2

{

1

k2

[(

2 pβ
q
α − k

2
g
αβ

) (

2 pµ
p
ν + 2 qµ

q
ν − k

2
g
µν

)]

+
1

3

(

12 log

(

k2

µ2

)

− 35

)[

(

p
µ
q
ν + p

ν
q
µ)ηαβ +

k2

2

(

ηανηβµ + ηαµηβν
)

− ηµν(
k2

2
ηαβ − q

α
p
β)−

(

ηβνpµ + ηβµpν)
q
α −

(

ηαν
q
µ + ηαµ

q
ν)
p
β

]}

Ãα(p)Ãβ(q)

C. Corianò, L. Delle Rose, A. Quintavalle, M.S., JHEP 1306 (2013) 077
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It is quite natural to identify the pole as a signature of the (pseudo-) Goldstone
boson of scale symmetry, the dilaton (τ).

Under scale transformations

x
µ → e

σ
x
µ ⇔ τ → τ + Λσ

The 1PI effective action in the gauge sector (F 2) of the conformal anomaly is
easily obtained from the diagrammatic computation:

Γ[Aµ, τ ] =

∫

d
4
x
τ

Λ
F

µν
Fµν + . . . (mass terms) , Λ = conformal scale

This implies anomalous enhancements in the 2-photon and 2-gluon

channels !

But what about the rest...?

There is no dilaton self-interaction in here...anything else ?
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Classical Weyl gauging

Question : how to write an anomalous effective ( low energy ) action for the
dilaton, encoding all the anomalous interactions ?

Answer : thoroughly exploit Weyl symmery and its relation with conformal
symmetry (Zumino, 1970): a theory which is Weyl invariant in curved space is

conformal invariant in the flat limit.

General strategy for making a classical field theory Weyl invariant:
Weyl-gauging (Iorio, O’Raifertaigh, Sachs, Wiesendanger, 1996):
for a scale-invariant theory, embed it in curved space and make the

replacements

Φ → Φ e
dΦτ/Λ

∇µ → ∇µ + (−dΦ δ
ν
µ + 2Σν

µ) Wν

Wµ is an abelian gauge vector field

gµν → gµνe
2σ(x)

gµν , Weyl transf.

Wµ → Wµ + ∂µσ

Just like electrodynamics...
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If you want to include dimensionful parameters, no way: need a dilaton (τ) !
Just a compensator field at this stage...

µ→ µe−dµτ/Λ

Under Weyl symmetry

gµν → e
2σ(x)

gµν ⇔ τ → τ + Λσ(x)

One can make a minimal choice and introduce only one new d.o.f.

Wµ ≡ ∂µτ

Λ

Then Weyl gauging is simply given by

m → me
−τ/Λ

gµν → ĝµν ≡ gµν e
−2τ/Λ

Φ → Φ̂ ≡ Φ e
dΦτ/Λ

∇µ → ∇µ + (−dΦ δ
ν
µ + 2Σν

µ)
∂ντ

Λ
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Dynamics from Weyl gauging

Example: the free scalar field

Sφ =
1

2

∫

d
d
x
√
g

(

g
µν ∂µφ∂νφ+m

2 φ2

)

→

→ Sφ,τ =
1

2

∫

d
d
x
√
g

{

(∂φ)2 +m
2 φ2

e
−2τ/Λ

+
d − 2

2
φ2 �τ

Λ
+

(

d − 2

2

)2

φ2 (∂τ)2

Λ2

}

Complete Weyl variation:

δWSφ,τ ≡ δSφ,τ

δgµν
(δW gµν) +

δSφ,τ

δτ
(δW τ) = 0

Hint: we have got interactions ∼ φ2 �τ
Λ

and ∼ φ2 (∂τ)2

Λ2 authomatically...
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Quantum Weyl gauging

There can be two kinds of contributions to the dilaton effective action:

1 Diff- × Weyl-invariant terms, carrying non information on anomalous
interactions;

2 Diff- but not Weyl-invariant terms, encoding anomalous interactions.

Easy to classify all the diff × Weyl invariant contributions,

Jn ∼ 1

Λ2(n−2)

∫

d
4
x
√

ĝ R̂
n

and get what the non anomalous part of the dilaton effective action looks
like

Γ0[g , τ ] ∼
∑

n

Jn[ĝ ] ∼
∫

d
4
x

[

e
−

4 τ

Λ α+
1

2
e
−

2 τ

Λ (∂τ)2 + 36 γ

(

�τ

Λ
− (∂τ)2

Λ2

)]

+ . . .

We focus on classically Weyl-invariant theories !
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It is most interesting to investigate the effect of Weyl gauging on the
Weyl-non-invariant part of the effective action, which is best done working in

dimensional regularization, because in such a scheme

Anomaly ⇔ 1-loop counterterms

Γ[g ] = Γ0[g ] + ΓCt[g ]

ΓCt[g ] = −µ
−ǫ

ǫ

∫

d
d
x
√
g

(

βaF + βbE4

)

, ǫ = 4− d

gµν
δΓ0[g ]

δgµν

∣

∣

∣

∣

d→4

= 0

2√
g
gµν

δΓCt[g ]

δgµν

∣

∣

∣

∣

d→4

= βa

(

F − 2

3
�R

)

+ βb E4

What does the Weyl gauged effective action look like ?

Γ̂0[g ] = 0

Γ̂Ct[g ] =?
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Weyl gauging of the counterterms

Start with a very general expansion of the gauged counterterms (everything
computed in d dimensions)...

− 1

ǫ

∫

d
d
x
√

ĝ F̂ (Ê4) = −1

ǫ

∫

d
d
x

∞
∑

i,j=0

1

i !j!
ǫi

1

Λj

∂ i+j
[√

ĝ F̂ (Ê4)
]

∂ǫi ∂(1/Λ)j

but only the O(ǫ) contributions are significant !!!

ΓWZ [g , τ ] = Γren[g , τ ]− Γ̂ren[g , τ ] =

∫

d
4
x
√
g

{

βa

[

τ

Λ

(

F − 2

3
�R

)

+
2

Λ2

(

R

3
(∂τ)2 + (�τ)2

)

− 4

Λ3
(∂τ)2 �τ +

2

Λ4
(∂τ)4

]

+βb

[

τ

Λ
E4 −

4

Λ2

(

R
αβ − R

2
g
αβ

)

∂ατ ∂βτ − 4

Λ3
(∂τ)2 �τ +

2

Λ4
(∂τ)4

]}
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Γ̂ren[g , τ ] = Γren[g , τ ]− ΓWZ [g , τ ]

δW Γ̂ren[g , τ ] = 0

We have got a Weyl-invariant quantum effective action at the price of
introducing the dilaton.

1 If there is a dilaton, then it should describe the IR limit of some theory to
be unvealed at the (presently unknown) scale Λ; the analogy with the pion
can be pushed quite far: composite dilaton, new conformal sector...
(Grinstein B., Goldberger, W. D., Skiba W., 2007; Grinstein B., Uttayarat
P. 2011).
It predicts all the anomalous self-interactions. By far the most interesting

scenario...

2 If no dilaton is there, then we are just using a mathematical trick to
isolate the anomalous contritubion to the effective action, but this is not
for nothing, we can draw some interesting conclusion anyhow...
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ΓWZ [δ, τ ] =

∫

d
4
x

[

2βa
Λ2

(�τ)2 + (βa + βb)

(

− 4

Λ3
(∂τ)2 �τ +

2

Λ4
(∂τ)4

)]

After coupling to gravity, we get the most general effective action for residual
anomalous self-interactions in the flat limit as well...(computed also in 6

dimensions)

C. Corianò, L. Delle Rose, C. Marzo, M.S., Phys.Lett. B726 (2013) 4-5,
896-905

C. Corianò, L. Delle Rose, C. Marzo, M.S., Class.Quant.Grav. 31 (2014)
105009

Easy to extract the dilaton vertices In(x1, . . . , xn) :

In(x1, . . . , xn) =
δn

(

Γ̂ren[δ, τ ]− Γren[δ, τ ]
)

δτ(x1) . . . δτ(xn)
= − δnΓWZ [δ, τ ]

δτ(x1) . . . δτ(xn)
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Limit on anomalous dilaton self-interactions

Most importantly

In(x1, . . . , xn) = 0 , n ≥ 5

Constraint (holds in general even dimensions):
n-dilaton anomalous interactions vanish identically in 4 dimensions for n > 4.

Why ?
Direct consequence of the 4-derivative structure of the anomaly ∼ R2

R̂µ
νρσ = R

µ
νρσ + gνρ

(

∇σ∂
µτ

Λ
+
∂µτ ∂στ

Λ2

)

− gνσ

(

∇ρ∂
µτ

Λ
+
∂µτ ∂ρτ

Λ2

)

+ δµσ

(

∇ρ∂ντ

Λ
+
∂ντ ∂ρτ

Λ2

)

− δµρ

(

∇σ∂ντ

Λ
+
∂ντ ∂στ

Λ2

)

+

(

δµρ gνσ − δµσ gνρ

)

(∂τ)2

Λ2

R̂µν = Rµν − gµν

(

�τ

Λ
− (d − 2)

(∂τ)2

Λ2

)

− (d − 2)

(

∇µ∂ντ

Λ
+
∂µτ ∂ντ

Λ2

)

R̂ ≡ ĝ
µν

R̂µν = e
2 τ

Λ

[

R − 2 (d − 1)
�τ

Λ
+ (d − 1) (d − 2)

(∂τ)2

Λ2

]
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Energy-momentum tensor Green functions for conformal field theories

〈Tµ1ν1(x1) . . .T
µnνn (xn)〉 ≡ 2n

δnΓ[g ]

δgµ1ν1(x1) . . . . . . δgµnνn (xn)

∣

∣

∣

∣

gµν=ηµν

≡ [Γ[g ]]µ1ν1...µnνn (x1, . . . xn)

gµν〈Tµν〉s ≡ 〈T 〉s = A[g ]

It defines an open hierarchy

〈T (k1) . . . T (kn+1)〉 = 2n [
√
g A[g ]]µ1...µn

µ1...νn
(k1, . . . kn+1)

− 2
n

∑

i=1

〈T (k1) . . .T (ki−1)T (ki+1) . . .T (kn+1 + ki )〉

Iterate it and end with n − 1 metric variations of the anomaly functional for a
n-point correlator ! The difficulty grows very rapidly...
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Recurrence relations: the idea

Anything else interesting from the Wess-Zumino effective action?
Yes, if you take a closer look from another point of view...

An equivalent expression of ΓWZ [g , τ ] is given by its perturbative expansion

for a conformally flat background ĝµν = ηµνe
−2τ/Λ in 1/Λ...

ĝµν = ηµν e
−2 τ/Λ = ηµν

∞
∑

n=0

(−2)n

n!
(
τ

Λ
)n

Γ̂ren[δ, τ ]− Γren[δ, τ ] =
1

2! Λ2

∫

d
d
x1d

d
x2 〈T (x1)T (x2)〉 τ(x1)τ(x2)

− 1

3! Λ3

[
∫

d
d
x1d

d
x2d

d
x3 〈T (x1)T (x2)T (x3)〉 τ(x1)τ(x2)τ(x3)

+ 6

∫

d
d
x1d

d
x2 〈T (x1)T (x2)〉 (τ(x1))2τ(x2)

]

+ . . .
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Recurrence relations: how to solve an infinite hierarchy

Clue: anomalous dilaton vertices as linear combinations of traced Green
functions of the energy-momentum tensor !

I2(k1,−k1) =
1

Λ2
〈T (k1)T (−k1)〉

I3(k1, k2, k3) = − 1

Λ3

[

〈T (k1)T (k2)T (k3)〉

+2

(

〈T (k1)T (−k1)〉+ 〈T (k2)T (−k2)〉+ 〈T (k3)T (−k3)〉
)]

. . .

There must be exact matching for consistency: thoroughly checked in 2, 4

and 6 dimensions !!!

〈T (k1)T (−k1)〉 = −4βa k1
4

〈T (k1)T (k2)T (k3)〉 = 8

[

−
(

βa + βb

)(

k
2
1 k2 · k3 + k

2
2 k1 · k3 + k

2
3 k1 · k2

)

+βa

(

k
4
1 + k

4
2 + k

4
3

)]

. . .

and so on, ad infinitum...everything purely algebraic !
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Summary and conclusions

Just as in QCD, triangle diagrams feature anomaly poles, suggesting the
presence of new scalar effective states

Wess-Zumino effective actions are the natural way to provide an infrared
description of a system affected by an anomaly

Weyl gauging is a straightforward method to predict the structure of
Wess-Zumino conformal anomaly actions in full generality

Is the dilaton an effective state pointing towards new physics or is it just a
mathematical artifice ?

An infinite hierarchy of recurrence relations stems from consistency
requirements on the effective action
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