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Introduction: Spinless Salpeter equation

The recent years have witnessed a rise of attempts to study bound states by

(semi-)relativistic equations of motion, such as the Klein–Gordon equation,

the Dirac equation, or, as straightforward generalization of the Schrödinger

equation, the spinless Salpeter equation, with several merits and drawbacks

(see, e.g., Refs.[1] for details), inferred by nonrelativistic reduction (cf., e.g.,

Refs.[2]) of the Bethe–Salpeter equation[3]. For two particles of equal mass,

m, interacting via a potential V (x) depending on the relative coordinate x,

the spinless Salpeter equation is the eigenvalue equation of the Hamiltonian

H ≡ T (p) + V (x) , T (p) = 2
√

p2 +m2 . (1)

In view of the interest noted, we revisit these problems for central potentials

V (x) = V (r), r ≡ |x|, by recalling, or exploiting, a few well-known results.

Approximate solutions: Strict constraints

The existential question: Maximum number of bound states

In contrast to the Coulomb potential, lots of potentials (e.g., the Yukawa or

the Woods–Saxon potential) admit only a finite numberN of bound states:

this number is a crucial characteristic. For the generic Schrödinger operator

H =
p
2

2µ
+ V (r) , µ > 0 , V (r) ≤ 0 ,
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the maybe most easy-to-evaluate upper limit toN is that by Bargmann[4]:

N �
I (I + 1)

2
, I ≡ 2µ

∫ ∞

0

dr r |V (r)| .

For semirelativistic Hamiltonians of the shape (1), an upper limit toN is [5]

N ≤
C

12 π

∫ ∞

0

dr r2 [|V (r)| (|V (r)| + 4m)]3/2 ,
C = 6.0748 (m = 0) ,

C = 14.108 (m > 0) .

Narrowing down solutions: Rigorous bounds on eigenvalues

Due to the concavity of the square root as function of p2, the operator (1) is

bounded from above by its Schrödinger limit, thus also all its eigenvalues[6]:

H ≤ 2m +
p
2

m
+ V (x) .

The Rayleigh–Ritz variational method applies to self-adjoint Hilbert-space

operators,H, bounded from below, with eigenvaluesE0 ≤ E1 ≤ E2 ≤ · · · :

the d likewise ordered eigenvalues ofH restricted to any d-dimensional trial

subspace of the domain ofH form upper bounds to the lowest d eigenvalues

ofH below the onset of its essential spectrum. It is favourable to know one’s

basis of this trial space analytically in both position and momentum spaces.

We achieve this by our choice[7] of orthonormal basis defined in terms of the

generalized-Laguerre polynomialsL
(γ)
k (x) for parameter γ and utilizing two

variational parameters, µ, with unit mass dimension, and β, dimensionless:

ψk,ℓm(x) ∝ rℓ+β−1 exp(−µ r)L
(2ℓ+2β)
k (2µ r)Yℓm(Ωx) ,

L
(γ)
k (x) ≡

k
∑

t=0

(−1)t
(

k + γ

k − t

)

xt

t!
, k = 0, 1, 2, . . . .

At the lower end of the spectrum, T (p) ≥ 2m ≥ 0 entailsE0 ≥ infx V (x).

Accuracy and reliability of solutions: Master virial theorem

Both quality and accuracy[8] of approximate solutions to some bound-state

equation are easily scrutinized by a relativistic generalization[9] of the virial

theorem: all eigenstates |χ〉 of some T (p)+V (x) satisfy the master relation
〈

χ

∣

∣

∣

∣

p ·
∂ T

∂p
(p)

∣

∣

∣

∣

χ

〉

=

〈

χ

∣

∣

∣

∣

x ·
∂ V

∂x
(x)

∣

∣

∣

∣

χ

〉

.
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Desperately seeking analytic results: Seductions and pitfalls

Aiming at analytic approximations at any price triggers hectic activity [10]:

Frequently, close encounters with the nonlocality of the Hamiltonian (1) are

avoided by expanding T (p) up toO(p4/m4), to deal with the Hamiltonians

Hp ≡ 2m +
p
2

m
−

p
4

4m3
+ V (x) .

However, the expectation value of each suchHp over, e.g., the trial function

φ(r) ∝ exp(−µ r) reveals that the operatorHp is not bounded from below:

〈Hp〉 = 2m+
µ2

m
−

5µ4

4m3
+ 〈V (x)〉 ⇒ lim

µ→∞
〈Hp〉 = −∞ ⇒ E0 ≤ −∞ .

Consequently, searches for ground states are doomed to fail. However, some

perturbative approach to p4/4m3, if adopted correctly, might save the day.

Expansions over potential-inspired functions [11] mitigate the singularity of

the Laplacian’s centrifugal term∼ r−2, but alter the full effective potential.

Applications: Real Woods–Saxon problem

For a first try, we apply[12] our concepts to a rather tame potential, familiar

from nuclear physics, the Woods–Saxon potential[13], but for real coupling:

V (r) = −
V0

1 + exp
(

r−R
a

) , V0 > 0 , R ≥ 0 , a > 0 .

Both nonrelativistic and variational upper limits to the binding energies (in

GeV) of semirelativistic Woods–Saxon bound states with radial and orbital

angular momentum quantum numbers nr and ℓ are easily obtained, e.g., for

variational setup µ = 1 GeV, β = 1, d = 25 and realistic parameter values

m = 940.271 MeV, V0 = 67.70352 MeV, R = 7.6136 fm, a = 0.65 fm [14]:

nr ℓ Spinless Salpeter equation Schrödinger equation

0 0 −0.06032 −0.06030
1 −0.05309 −0.05305

1 0 −0.04119 −0.04108

1 −0.02967 −0.02946

2 0 −0.01527 −0.01545
1 −0.00233 −0.00362
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The lower boundE0 ≥ infr V (r) = V (0) = −67.70296 MeV ' −V0 to the

binding energy is evident. In the interval V (0) < Ek ≤ 0 (k = 0, 1, . . . , N)

defined by this bound, at mostN ≤ 850 andN ≤ 1201 (for relativistic and

nonrelativistic kinematics, respectively) eigenstates can be accommodated.

Moreover, for our variational ground state, we get
〈

p
2/m2

〉

≈ 6×10−3: the

system is highly nonrelativistic, so it hardly warrants a relativistic analysis.

Summary and conclusions

Even though the spinless Salpeter equation resists being solved analytically,

elementary techniques allow us to draw a clear picture of the solutions to be

expected. Nevertheless, not all offered solutions respect the picture’s frame.
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