Exotic mesons in a holographic approach to QCD

L. Bellantuono, P. Colangelo, F. Giannuzzi Università degli Studi di Bari, INFN Bari European Physical Journal C (2014) 74:2830

QCD describes strong interactions among quarks as processes with colored self-interacting gluons exchanged. This picture brings to the prediction of hybrid bound states with gluons appearing as constituents. Hybrid mesons are configurations composed by a quark, an antiquark and an excited gluon, which accounts for either ordinary or exotic J^{PC} quantum numbers. Mesons with exotic quantum numbers cannot be described as simple quark-antiquark pairs, so their detection would demonstrate the existence of non-standard structures comprising gluons as constituents. Several QCD models indicate the hybrid meson with quantum numbers $J^{PC} = 1^{-+}$ as the lowest-lying exotic state. In the light quark sector there are at least three quite well established hybrid candidates: the $\pi_1(1400)$ and the $\pi_1(1600)$, observed in diffractive $\pi^- N$ reactions and $\overline{p} N$ annihilation, and the $\pi_1(2015)$, seen only in diffraction.

Soft-Wall AdS/QCD

SUPER-YANG-MILLS (SYM) theory on Minkowski space \mathcal{M}_4 • Coupling constant g_{YM} • N =4 SUSY generators Maldacena • Gauge group $SU(N)_{color}$

TYPE IIB STRING theory on $AdS_5(R) \times S^5(R)$ space

- Coupling constant g_s
- *R* curvature radius
- $\sqrt{\alpha'}$ length of the string Supergravity limit

Mass Spectrum and Decay Constants

In the Fourier space the \tilde{H}_{μ} field can be decomposed in a longitudinal $\tilde{H}_{\mu}^{||}$, and in a transverse \tilde{H}_{u}^{\perp} component; the latter satisfies the condition $q^{\mu}\tilde{H}_{\mu}^{\perp}=0$ and can be used to describe the 1^{-+} mesons. The equation of motion for \tilde{H}^{\perp}_{μ} is

 $\partial_{z} \left[\frac{1}{z} e^{-c^{2}z^{2}} \partial_{z} \tilde{H}_{i\mu}^{\perp} \right] + \frac{1}{z} e^{-c^{2}z^{2}} q^{2} \tilde{H}_{\mu}^{\perp} - \frac{8}{z^{3}} e^{-c^{2}z^{2}} \tilde{H}_{\mu}^{\perp} = 0$

The Soft Wall model produces a 1^{-+} **spectrum** with a linear Regge trajectory $M_n^2 \approx n$ having the same slope as for other bound states with different quantum numbers and quark content.

SYM/SUGRA DICTIONARY (Gubser, Klebanov, Polyakov, Witten) Gauge-invariant *p*-form with conformal dimension Δ Bulk field with mass m_5 given by $m_5^2 R^2 = (\Delta - p)(\Delta + p - 4)$

To describe hybrid $J^{PC} = 1^{-+}$ mesons, we use the QCD local operator $J_{\mu}^{a} = \bar{q} T^{a} G_{\mu\nu} \gamma^{\nu} q$ $\mu, \nu = 0, 1, 2, 3$

with $G_{\mu\nu}$ the gluon field strength and T^a flavour matrices normalised to $Tr[T^{a}T^{b}] = \delta^{ab}/2$. The dual field is a 1-form

$$H_M = H_M^a T^a$$
 $M = 0, 1, 2, 3, 4$

whose dynamics is described by the action

$$S_{SUGRA} = \frac{1}{k} \int d^4 x \int_0^\infty dz \sqrt{|g|} e^{-c^2 z^2} Tr \left[-\frac{1}{4} F^{MN} F_{MN} + \frac{1}{2} m_5^2 H_M H^M \right]$$

with $F_{MN} = \partial_M H_N - \partial_N H_M$ and g determinant of the Poincarè metric

$$|s^2|_{AdS_5} = \frac{R^2}{z^2} (dt^2 - d\vec{x}^2 - dz^2), \quad z > 0$$

The Soft-Wall factor $e^{-c^2 z^2}$ gives the infrared conformal symmetry breaking through the mass scale c.

For the lowest-lying state we find $M_0 \approx 1.1 - 1.3$ GeV, depending on the criterion chosen for fixing the mass scale c. The mass of the radial excitations grows more slowly than in the Hard Wall model, where $M_n^2 \approx n^2$.

The two-point correlation function in the Fourier space can be expressed as the sum of a transverse and a longitudinal contribution:

Stability against thermal effects

Temperature can be incorporated in the holographic models introducing a

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(f(z) dt^{2} - d\vec{x}^{2} - \frac{dz^{2}}{f(z)} \right), \quad f(z) = 1 - \frac{z^{4}}{z^{4}}$$

with the horizon position related to the inverse temperature by $z_h = 1/(\pi T)$.

respect to the point where Γ starts to broaden.

The *melting temperature* of the hybrid mesons can also be determined computing the **binding potential** in the Schrödinger-like equation for the transverse field $\tilde{H}_i^{\perp}(z,q)$

$$V(z) = \frac{f(z)}{z^2} \left(c^4 z^4 f(z) + \frac{4 c^2 z^6}{z_h^4} + \frac{35}{4} + \frac{5}{4} \frac{z^4}{z_h^4} \right), \qquad \partial_r = -f(z) \partial_z$$

depending on the temperature through the horizon position. Below the melting temperature, the *r*-dependence of the potential becomes monotonous, such that no quasi-bound states can be formed.

