

# **Perspectives for heavy-flavour measurements in ALICE with the** upgraded Inner Tracking System

F. Fionda<sup>(a)</sup> on behalf of the ALICE Collaboration (a) University and INFN – Bari, Italy



SSD

## **Motivations**

ALICE (A Large Ion Collider Experiment) is the dedicated heavy-ion experiment at the LHC. Goal: study the properties of nuclear matter at extreme conditions of high temperature and density.

The study of heavy-flavour particles (i.e. containing charm and beauty quarks) is important in several collision systems:

- > pp: test of pQCD in a new energy domain and reference for A-A
- p-A: quantify Cold Nuclear Matter (CNM) effects
- > A-A: heavy quark pairs are produced at the early stage of the collisions
  - → sensitive to the full evolution of the hot and dense strongly-interacting medium
  - ✓ medium-induced gluon radiation:  $\Delta E \propto \alpha_{\rm s} C_{\rm r} \hat{q} L^2 \rightarrow$  gluon radiation of heavy quarks is suppressed (Casimir factor, "dead cone" effect<sup>[1]</sup>)

 $\Delta E_{g} > \Delta E_{c} > \Delta E_{b}$   $\square >$   $\stackrel{\text{Need to compare}}{R_{AA}(\pi), R_{AA}(D), R_{AA}(B)}$ 

where  $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dp_T}{dN_{pp}}$  is the nuclear modification factor

## **Heavy-flavour measurements in ALICE**



initial space anisotropy transferred to momentum space  $\rightarrow$  quantified by the second term of the fourier expansion: elliptic flow  $(v_2)$ 

 $\frac{dN}{d\varphi} = \frac{N_0}{2\pi} (1 + 2\nu_1 \cos(\varphi - \Psi_1) + 2\nu_2 \cos[2(\varphi - \Psi_2)] + \cdots)$ 

 $v_2 > 0 \rightarrow$  heavy quarks take part in the collective expansion of the medium  $\rightarrow$  study their degree of thermalization

- quarkonia dissociation in the QGP via Color Debye Screening<sup>[2]</sup>  $\rightarrow$  Regeneration mechanisms can counteract suppression at LHC energies<sup>[3,4]</sup>
- Interesting results obtained from the pp, p—Pb and Pb—Pb data collected so far, but there are still open points → need for an upgrade to improve resolution and statistics for Heavy-Flavour measurements  $\rightarrow$  Main targets:
  - achieve a recorded Pb—Pb luminosity  $L_{int} \ge 10 \text{ nb}^{-1}$  (about 10<sup>11</sup> min. bias events) as well as pp and p—Pb reference data needed for Pb—Pb analyses
  - improve vertexing, tracking and read-out rate capabilities



At central rapidity:

### Tracking made by ITS+TPC (+TRD)

Particle IDentification



✓ further for electrons: transition radiation signal from TRD; EMCAL used for both triggering and PID at high  $p_{T}$ Heavy flavour measurements rely on ITS □

PID

Excellent impact parameter resolution at low  $p_T$  (~ 65 µm for  $p_T = 1$  GeV/c in Pb—Pb) thanks to the two layers of silicon pixel detectors (SPD)

open heavy flavour: analysis based on secondary vertex reconstruction (mean proper decay length)  $c\tau \sim 123 \ \mu m$  for D<sup>0</sup>,  $c\tau \sim 312 \ \mu m$  for D<sup>+</sup>,  $c\tau \sim 59 \ \mu m$  for  $\Lambda_c$ )  $\rightarrow$  tracking and vertexing precision crucial  $\checkmark$  quarkonia: measurement of non-prompt J/ $\psi$  coming from beauty hadron decays

## The upgrade of the Inner Tracking System<sup>[5]</sup>



#### > Improve impact parameter resolution by a factor ~3 (5) in $r\phi$ (z)

#### New ITS layout

- 7 cylindrical layers of **Monolithic Active Pixel** Sensors (MAPS)
- Coverage: ✓ |η| < 1.22</p>
  - ✓ 22 < *r* < 430 mm

### **Detector performance studies and timeline**





Iron wall 2 trigger stations

- get closer to the IP: first layer at  $r_0 = 22$  mm (currently 39 mm) and beam pipe radius  $r_{bp} = 18.2$  mm (currently 29 mm)
- $\checkmark$  material budget minimized: 0.3%  $X_0$  for the three innermost layers (currently 1.14%  $X_0$ )
- $\checkmark$  smaller pixel size: o(20µm × 30µm) (currently 50µm × 425µm)
- 6 layers) and granularity

- + upgrade of read-out electronics)

### <sup>10</sup> p<sub>.</sub> (GeV/c)

Resolution of transverse plane impact paramenter for current and upgraded ITS<sup>[5]</sup> (fast and full MC simulation results shown)

Transverse momentum resolution for the upgraded ITS, in particular for **ITS stand-alone** and **ITS-TPC combined**<sup>[5]</sup> (fast and full MC simulation results shown)

