

University of Perugia

European Spallation Source

Linköping University

Novel ¹⁰B-based detectors for Neutron Scattering Science

Helium Replacement in Italy - HeRe in Italy

J.C. Buffet, J.F. Clergeau, J. Correa, S. Cuccaro, M. Ferraton, B. Guérard, F. Piscitelli, J.M. Rigal, P. Van Esch

PhD supervisor: F. Sacchetti, University of Perugia

HeRe in Italy

R. Hall-Wilton, C. Höglund, K. Kanaki, A. Khaplanov

2-3 December 2013

$$^{3}He+n\rightarrow ^{3}H+p+0.77MeV$$

<u>Figaro @ ILL</u>			<u>IN5 @ ILL</u>	
Gas fill	8 bar ³ He + 2 bar CF ₄		Gas fill	4.75 bar ³ He + 1.25 bar CF ₄
Area	0.2 m ²		Area	30 m ²
Resolution	2 x 8 mm ²		Resolution	2.6 x 2.6 cm ²
Efficiency	60% @ 2.5Å		Efficiency	75% @ 2.5Å

2-3 December 2013

HeRe in Italy

$$^{3}He + n \rightarrow {}^{3}H + p + 0.77 MeV$$

Neutron reflectometry

Neutron spectroscopy - ToF

HeRe in Italy

2-3 December 2013

$$^{3}He + n \rightarrow {}^{3}H + p + 0.77 MeV$$

Neutron reflectometry

HeRe in Italy

Neutron spectroscopy - ToF

2-3 December 2013

Principle

Principle

Principle

2-3 December 2013

Principle: Multi-Grid

F. Piscitelli et al., 2013 JINST 8 P04020

Principle: Multi-Grid

F. Piscitelli et al., 2013 JINST 8 P04020

HeRe in Italy

J. Correa et al., IEEE TNS, Volume PP, Issue 99, 17 January 2013, Pages 1-8, 10.1109/TNS.2012.2227798

2-3 December 2013

NEUTRONS FOR SCIENCE[®]

Linköping University

Sputtered ¹⁰B₄C coatings

C. Höglund et a., J. Appl. Phys. 111, 104908 (2012)

HeRe in Italy

Voxel 2cm x 2cm x 1cm

HeRe in Italy

2-3 December 2013

HeRe in Italy

2-3 December 2013

HeRe in Italy

2-3 December 2013

F. Piscitelli

HeRe in Italy

HeRe in Italy

2-3 December 2013

IN6 @ ILL

HeRe in Italy

2-3 December 2013

IN6 @ ILL

HeRe in Italy

2-3 December 2013

NEUTRONS FOR SCIENCE®

HeRe in Italy

Results

2-3 December 2013

Multi-Grid: efficiency

Neutron beam

HeRe in Italy

with AI:0.517

data Image data PHS

without AI:0.586

J. Correa et al., IEEE TNS, Volume PP, Issue 99, 17 January 2013, Pages 1-8, 10.1109/TNS.2012.2227798

2-3 December 2013

F. Piscitelli

16

14

10

8

cell

12

Multi-Grid: efficiency VS ³He tubes

(Courtesy of A. Khaplanov)

- Bragg peaks in the detector
- -> position spectra match ³He tubes' (average
- on top and bottom ³He tubes rows)
- -> better position resolution in the prototype
- (higher granularity)

Multi-Grid: efficiency VS ³He tubes

(Courtesy of A. Khaplanov)

HeRe in Italy

Bragg peaks in the detector

-> position spectra match ³He tubes' (average

- on top and bottom ³He tubes rows)
- -> better position resolution in the prototype
- (higher granularity)

Ratio of integrated rates in Bragg peaks : -4.1 Å : rate(¹⁰B) / rate(³He) = 1.08 -4.6 Å : rate(¹⁰B) / rate(³He) = 0.97

Multi-Grid: efficiency VS ³He tubes

(Courtesy of A. Khaplanov)

Bragg peaks in the detector

-> position spectra match ³He tubes' (average

- on top and bottom ³He tubes rows)
- -> better position resolution in the prototype

(higher granularity)

- 4.6 Å : rate(¹⁰B) / rate(³He) = 0.97

-> measured efficiencies are similar in

both detectors @4.1 and 4.6 Å

HeRe in Italy

³He tubes : higher intrinsic efficiency (see theoretical curves) ¹⁰B Multi-Grid : less dead spaces

2-3 December 2013

Multi-Grid: gamma sensitivity

(Courtesy of A. Khaplanov) 164 MBq 137Cs source, γ (662 keV)

Multi-Grid: gamma sensitivity

(Courtesy of A. Khaplanov) 164 MBq 137Cs source, γ (662 keV)

Multi-Grid: ToF resolution

(Courtesy of A. Khaplanov) log(rate) @4.1 A

Time of Flight corrected for the depth of the detector

Resolution given by depth of the unit cell

δdepth = 1cm → δToF = 8.6 µs (@4.6 Å)

Detector/electronics resolution much higher

lambda	FWHM (µs)		(¹⁰ B - ³ He) /
lambda	³ Не	¹⁰ B	³ He
4,1	45,3	50,7	12,0%
4,6	45,9	53,0	15,5%
5,1	57,3	65,2	13,7%

HeRe in Italy

Some loss of time resolution due to charge division readout (30 tubes together) solved by individual readout

Multi-Grid: ToF resolution

lambda	FWHM (µs)		(¹⁰ B - ³ He) /
lambda	³ Не	¹⁰ B	³ He
4,1	45,3	50,7	12,0%
4,6	45,9	53,0	15,5%
5,1	57,3	65,2	13,7%

HeRe in Italy

Some loss of time resolution due to charge division readout (30 tubes together)

solved by individual readout

Multi-Grid: background issue

- 4.4 Hz flat background was observed (no time structure)
 - ightarrow independent of the IN6 instrument / reactor
 - ightarrow uniform throughout detector

HeRe in Italy

Multi-Grid: background issue

- 4.4 Hz flat background was observed (no time structure)
 - ightarrow independent of the IN6 instrument / reactor
 - ightarrow uniform throughout detector

HeRe in Italy

Multi-Grid: background suppression

(Courtesy of M. Ferraton)

HeRe in Italy

F. Piscitelli

Multi-Grid: background suppression

(Courtesy of M. Ferraton)

Ni layer Electrolytic deposition
Ni layer Chemical deposition
Al pure

3. Al pure

Multi-Grid: background suppression

(Courtesy of M. Ferraton)

Ni layer Electrolytic deposition
Ni layer Chemical deposition

3. Al pure

HeRe in Italy

2-3 December 2013

Multi-Blade: Principle

$${}^{10}B + n \to {}^{7}Li^{*} + {}^{4}He \to {}^{7}Li + {}^{4}He + 0.48MeV\gamma \text{-ray} + 2.3 MeV \quad (94\%) \\ \to {}^{7}Li + {}^{4}He + 2.79MeV \quad (6\%)$$

Efficiency

5% @ 2.5Å (saturated)

Multi-Blade: Principle

Multi-Blade: Principle

Introduced at ILL in 2005:

J.C. Buffet et al., NIM A 554, 1–3, 2005, 10.1016/j.nima.2005.08.018

2-3 December 2013

HeRe in Italy

Introduced at ILL in 2005:

J.C. Buffet et al., NIM A 554, 1-3, 2005, 10.1016/j.nima.2005.08.018

2-3 December 2013

HeRe in Italy

Multi-Blade: detector concept

1 layer in back-scattering

HeRe in Italy

Introduced at ILL in 2005:

J.C. Buffet et al., NIM A 554, 1–3, 2005, 10.1016/j.nima.2005.08.018

2-3 December 2013

HeRe in Italy

Multi-Blade: detector schematic

A B

2-3 December 2013

Multi-Blade: detector schematic

HeRe in Italy

Strip resistive chain for read-out

Kapton
read-out
system

Wire resistive chain for read-out Wires (anodes) (Spacing 2.5mm) Strips (cathodes)

Very thin Kapton substrate to do not affect neutron beam

HeRe in Italy

2-3 December 2013

¹⁰B₄C layer*

*C. Höglund et a., J. Appl. Phys. 111, 104908 (2012)

HeRe in Italy

2-3 December 2013

HeRe in Italy

¹⁰B₄C layer*

*C. Höglund et a., J. Appl. Phys. 111, 104908 (2012)

HeRe in Italy

F. Piscitelli

HeRe in Italy

2-3 December 2013

HeRe in Italy

NEUTRONS FOR SCIENCE

Detector active surface 60mm x 90mm

Neutron beam

Each cassette has its own gas inlet.

Atmospheric Ar/CO₂ continuous flux.

2-3 December 2013

Results

2-3 December 2013

Results: efficiency

Average measured efficiency @ 2.5Å, 10°:

$\varepsilon = (27.8 \pm 0.2)\%$

HeRe in Italy

Results: spatial resolution y

HeRe in Italy

Results: spatial resolution x

HeRe in Italy

wire response for a collimated beam

HeRe in Italy

wire response for a collimated beam

HeRe in Italy

Neutron beam

HeRe in Italy

2-3 December 2013

HeRe in Italy

wire response for a collimated beam 1800 1600 1400 1200 1000 counts 800 800 600 400 200 0 -5 10 0 5 x-position (mm)

Neutron beam

HeRe in Italy

wire response for a collimated beam 800 x-position (mm)

Neutron beam

HeRe in Italy

wire response for a collimated beam

2-3 December 2013

10

wire response for a collimated beam

 $\Delta x = \sim 0.6 \text{ mm}$

(FWHM equivalent) (3.4 mm before projection)

$\Delta x = \sim 0.28 \text{ mm}$

x-position (mm)

(FWHM equivalent) (3.2 mm before projection)

P. Van Esch et al., Proceeding of ANNIMA, 2013, arXiv:1307.7507

HeRe in Italy

2-3 December 2013

1200

1000 sounds 800

600

400

200

Inclination 5°

2-3 December 2013

HeRe in Italy

Figaro @ ILL			<u>IN5 @ ILL</u>		
Gas fill Area Resolution Efficiency	8 bar ³ He + 2 bar CF ₄ 0.2 m ² <mark>2 x 8 mm²</mark> 60% @ 2.5Å		Gas fill Area Resolution Efficiency	4.75 bar ³ He + 1.25 bar CF ₄ 30 m ² 2.6 x 2.6 cm ² 75% @ 2.5Å	

Neutron reflectometry

Neutron spectroscopy - ToF

Figaro @ ILL					
Gas fill Area Resolution Efficiency	8 bar ³ He + 2 bar CF ₄ 0.2 m ² 2 x 8 mm ² 60% @ 2 5Å		Gas fill Area Resolution Efficiency	4.75 bar ³ He + 1.25 bar CF ₄ 30 m ² 2.6 x 2.6 cm ² 75% @ 2.5Å	
Emolonoy	0070 @ 2:071		Emeloney	1070 @ 2:071	

Neutron reflectometry

Neutron spectroscopy - ToF

³He –performances Multi-Blade

³He –shortage Multi-Grid

Figaro @ ILL			<u>IN5 @ ILE</u>		
Gas fill	8 bar ³ He + 2 bar CF ₄		Gas fill	4.75 bar ³ He + 1.25 bar CF ₄	
Area	0.2 m ²		Area	30 m ²	
Resolution	<mark>2 x 8 mm²</mark>		Resolution	2.6 x 2.6 cm ²	
Efficiency	60% @ 2.5Å		Efficiency	75% @ 2.5Å	

Neutron reflectometry

³He –performances Multi-Blade

Suitable efficiency Spatial resolution 0.3 x 4 mm² High rate capability Atmospheric pressure Cost effective materials

HeRe in Italy

Neutron spectroscopy - ToF

³He –shortage Multi-Grid

Figaro @ ILL			<u>IN5 @ ILE</u>		
Gas fill	8 bar ³ He + 2 bar CF ₄		Gas fill	4.75 bar ³ He + 1.25 bar CF ₄	
Area	0.2 m ²		Area	30 m ²	
Resolution	<mark>2 x 8 mm²</mark>		Resolution	2.6 x 2.6 cm ²	
Efficiency	60% @ 2.5Å		Efficiency	75% @ 2.5Å	

Neutron reflectometry

³He –performances Multi-Blade

Suitable efficiency Spatial resolution 0.3 x 4 mm² High rate capability Atmospheric pressure Cost effective materials

HeRe in Italy

Neutron spectroscopy - ToF

³He –shortage

Multi-Grid

Lower efficiency 51% (compensated by) Better position resolution Less dead space Atmospheric pressure Suitable gamma sensitivity Suitable ToF resolution

Figaro @ ILL			<u>IN5 @ ILL</u>		
Gas fill Area Resolution Efficiency	8 bar ³ He + 2 bar CF ₄ 0.2 m ² <mark>2 x 8 mm²</mark> 60% @ 2.5Å		Gas fill Area Resolution Efficiency	4.75 bar ³ He + 1.25 bar CF ₄ 30 m ² 2.6 x 2.6 cm ² 75% @ 2.5Å	

Neutron reflectometry

³He –performances Multi-Blade

Suitable efficiency Spatial resolution 0.3 x 4 mm² High rate capability Atmospheric pressure Cost effective materials

Uniformity issue still opened...

HeRe in Italy

Neutron spectroscopy - ToF

³He –shortage

Multi-Grid

Lower efficiency 51% (compensated by) Better position resolution Less dead space Atmospheric pressure Suitable gamma sensitivity Suitable ToF resolution

Figaro @ ILL			<u>IN5 @ ILE</u>		
Gas fill	8 bar ³ He + 2 bar CF ₄		Gas fill	4.75 bar ³ He + 1.25 bar CF ₄	
Area	0.2 m ²		Area	30 m ²	
Resolution	<mark>2 x 8 mm²</mark>		Resolution	2.6 x 2.6 cm ²	
Efficiency	60% @ 2.5Å		Efficiency	75% @ 2.5Å	

Neutron reflectometry

³He –performances Multi-Blade

Suitable efficiency Spatial resolution 0.3 x 4 mm² High rate capability Atmospheric pressure Cost effective materials

Uniformity issue still opened...

Neutron spectroscopy - ToF

³He –shortage

Multi-Grid

Lower efficiency 51% (compensated by) Better position resolution Less dead space Atmospheric pressure Suitable gamma sensitivity Suitable ToF resolution

Background issue solved!

HeRe in Italy

2-3 December 2013

University of Perugia

European Spallation Source

Thank you.

2-3 December 2013

Linköping University

University of Perugia

European Spallation Source

