CVD diamonds for fast neutron detection and spectroscopy in high flux environment INFN-E/RILF

M. Osipenko¹ et al., M. Pillon² et al., R. Cardarelli³ et al., G. Verona Rinati³ et al.

¹INFN Genova, ²ENEA di Frascati, ³Università di Tor Vergata

HeRe in Italy ,Frascati, 2013

ToF

Experimen

Conclusion

Motivation

Goal: to monitor neutron spectrum inside reactor core. Solution: single crystal CVD diamond detectors.

ToF

Experimen

Principle of Detection

- Charged particle crossing diamond creates e-h pairs,
- To collect pairs the bias voltage has to be applied across the diamond,
- Current pulses are generated on electrodes,
- To become measurable the signals have to be amplified.

• High bandgap, low capacitance, high carrier mobility \rightarrow fast, low-noise signals

	cvd Diamond	Si	GaN	4H-SiC
Bandgap (eV)	5.47	1.12	3.39	3.27
e-h creation energy (eV)	13	3.6	8-10	8.4
Displacement energy (eV)	43	13-20	10-20	25
Electron mobility (μ m ² /V/ns)	200	150	100	80
Hole mobility (μ m ² /V/ns)	260	45	20	12
Density (g/cm ³)	3.52	2.33	6.15	3.21
Resistivity (Ωcm)	> 1011	2.3×10^{5}	$10^4 - 10^8$	10 ¹ 1
Breakdown field (MV/cm)	10	0.3	5	3-5
Dielectric constant	5.7	11.9	9.5	9.7

ToF

Experiment

Conclusion

Signal Formation

- For 1 keV of deposited energy N_{eh} = 77 e-h pairs are created;
- Statistical uncertainty on created charge is $\sqrt{F \times N_{eh}}$ (3% for 1 keV), where $F \simeq 0.08$ is diamond Fano factor;
- Charges drift towards electrodes generating current for time t_c:

$$I(t) = \frac{Q(t)}{d} \mu E(x(t))$$

Introduction	ToF	Experiment	Conclus
Time of Fligh	t Technique		

Measure the coincidence between two subsequent neutron interactions:

$$T_n = \Delta T_n + \frac{M_n}{2} \left(\frac{d}{c\Delta t}\right)^2$$

 ΔT_n - energy lost in first interaction, Δt - time interval between two interactions.

Threshold deposited energy is critical:

- minimal accessible neutron energy $T_n^{min} \sim 5E_{thr}$,
- efficiency loss $\epsilon(E_{thr})/\epsilon(E_{thr}=0) \sim (T_n/7E_{thr}-1)^2$.

ToF

Experimen

Conclusion

ToF Energy Resolution

- Assume ToF resolution $\delta_{\Delta t} = 30$ ps at 1 MeV.
- Assume E_{dep} resolution $\delta_{\Delta E} = 50$ keV.
- Requires development of a new, high precision coincidence electronics.

*	Introduction	ToF	Experiment

- Geant4 simulations of the detector were performed,
- using ADS neutron flux 10⁹ n/cm²/s and 50 keV detection threshold,
- at ToF distance d = 2 cm (1 cm) integrated coincidence rate: 0.6 kHz (2.5 kHz), efficiency $\epsilon^2 A = 5 \times 10^{-6} (\epsilon^2 A = 2 \times 10^{-5})$.

• Assuming trigger window $\Delta t = 10$ ns:

$$R_{acc} = R_{single}^2 \Delta t = 70 kHz$$
 (1)

28 (d=1 cm) - 125 (d=2 cm) times higher than signal rate.

- However, only 0.026 accidental signals appear in an open 10 ns gate.
- General the trend of Signal-to-Noise-Ratio:

$$SNR = \frac{1}{\pi \phi_n d^2 \Delta t}$$
(2)

Diamond Detectors Ltd. SO-274:

- 4.7×4.7 mm² surface area and 500 μ m thick;
- Atomic impurities: N<5 ppb, B<<5 ppb (spectroscopic grade),
- Surface scan RMS for side 1: 1.37 nm, side 2: 0.71 nm;
- DLC (1-3 nm)/Pt (50 nm)/Au (100 nm) ohmic contacts, area 22 mm², C_D = 2.2 pF;
- Brass/aluminum casing with two SMA-F connectors.

Experiment

- FNG in D-D mode (2.5 MeV monocromatic neutron beam),
- neutron flux of 10^6 n/cm²/s,
- two CVD crystals were placed at distance d = 1.2 cm,
- signals preamplified by fast transimpedance amplifiers (see R. Cardarelli talk) connected trough 5 m cable to the secondary amplifier P/S 774.
- DAQ: NIM crate (power supplier, secondary amplifier), VME crate (5 Gs/s digitizer, controller/PC).

Pictures

Tof

Experiment

Conclusion

Two DDL diamonds attached

12 M. Osipenko

Introduction	IOF	Experiment	Conclusion
Results			
 120 coinci 	dence ev	vents/540 s - expected 0.25 l	- z, √

- 5% accidentals ($\Delta t = 2$ ns) as expected, \checkmark
- ToF is 0.6 ns, with timing resolutions of 0.36 ns ($\delta_{\Delta t} = 250$ ps of two amplifiers at 1 MeV) and 0.1 ns (distance),
- observed peak RMS is 0.4 ns, in agreement with estimates (100% T_n resolution).

Experiment

Conclusion

Results cont.

- $\bullet\,$ energy thresholds were set \sim 0.25 MeV,
- deposited energy resolution \sim 50 keV,
- only backscattered n were detected in CVD 1 (threshold for forward n 7÷27 keV),
- in CVD 2 flat angular distribution, $\theta_n^{CM} > 70^\circ$,
- within covered energy range ToF variation < 10 ps.

То

Experiment

Amplifier Test

- compared five fast amplifiers: DBA IV, CAEN A1423, Cividec C2, Wisnam μ TA40 and Cividec C6,
- 241 Am (α , 5 MeV) and 90 Sr (β < 2.3 MeV) sources,
- CVD diamond detector read out independently from two sides,
- 5 Gs/s (2 GHz BW) digitizer recorded the signals.

ToF

Amplifier Energy Resolution

- measured noise level in terms of energy deposited in diamond,
- \bullet obtained peak shape 5 MeV α from $^{\rm 241}{\rm Am}$ source,
- among fast amplifiers best resolution Cividec C6 (100 MHz BW).

ToF

Experiment

Conclusion

Amplifier Timing Resolution

- coincedence between two electrodes,
- 241 Am (α , 5 MeV) and 90 Sr (β < 2.3 MeV) sources,
- Cividec C6 has best timing resolution,
- energy dependence of timing resolution agrees with

$$\sigma_t = \frac{t_{\text{rise}}}{S/N}$$

Summary

- scCVD diamonds were proposed for ToF neutron spectrometer ($10^5 < \phi_n < 10^9 \text{ n/cm}^2/\text{s}$),
- test measurement at FNG demonstrated feasibility of technique,
- number of commercial amplifiers were tested,
- noise level of existing amplifiers has to be improved by a factor of 10.
- Future:
 - develop better signal amplifier,
 - optimize detector geometry,
 - test at FNG and research reactors.

Introduction	ToF	Experiment	Conclusion	*
Backup Slides				

- Two 500 μ m crystals at distance *d*;
- Assume ToF resolution $\delta_{\Delta t} = 0.2$ ns;
- Assume E_{dep} resolution $\delta_{\Delta E} = 50$ keV.

Experimen

Conclusion

Resolution Contributions

- For d > 2 cm and T_n > 0.4 MeV ToF resolution dominates;
- Develop high precision coincidence technique;
- 25 ps resolution has been achieved with diamonds.

• In region of interest ToF vary from 0.5 to 7 ns.

ToF

Experimen

Conclusion

Conversion Cross Sections

Hydrogen and Carbon have highest cross sections.

ToF

Experimer

Conclusion

Conversion Efficiency

Assuming 10% of range convertor thickness.

- Deposited energy threshold not considered,
- Acceptance of diamonds seen from converter not included,
- 10% of range probably gives poor resolution.

Other Active Detectors

In fluxes <10¹² n/cm²/s Diamond detector can substitute Fission Chamber as active monitor.

	Fission	Diamond
	Chamber	Detector
Charge Mobility	0.3-0.4 cm ² /V/s	2000 cm ² /V/s
Charge Collection time	5-7 μ s	2-10 ns
Counting Rate	20 kHz	10 MHz
Size	4×10 mm ²	2×2 mm ²
Converter	U,Th,Pu	H, Li, B
Efficiency at 0.5 MeV	1.1 barn	0.4 barn (⁶ Li)
Signal Size	200 fC	60 fC (⁶ Li)
Spectroscopy	unfolding	direct (⁶ Li)
Energy Range	entire	<7 MeV (⁶ Li)

Tof

Experiment

Conclusion

Robustness

Diamonds are radiation hard.

- Neutrons: up to 4×10^{15} of 14.8 MeV n/cm² ~ 0.25 MGy,
- Photons: up to 10 MGy,
- MIPs (24 GeV p): up to 4×10^{15} p/cm² ~ 1.25 MGy,

M. Osipenko

Signal Collection

- Electrode contacts can be ohmic or Schottcky (rectifying);
- Ohmic contacts: charge can flow through (Ti or Cr which form carbide at 500° annealing followed by Pt and Au);
- Schottcky (rectifying) contacts: charge remain in detector bulk (e.g. Al).

 ϕ_s : C 4.8-5.8 eV (p-type); ϕ_m : Al 4.1 eV, Ti 4.3 eV, Cr 4.5 eV, Au 5.1 eV, Pt 5.7 eV; p-type ohmic: $\phi_s < \phi_m$

2 Dicember 2013

ToF

Experimen

Conclusion

Signal Description

Space charge (τ^{sc}) and trapping $\tau_{e,h}$ lifetimes (\sim 40 ns):

$$I_{\mathrm{e},\mathrm{h}}(t)\sim\mathrm{e}^{\pm t/ au_{\mathrm{e},\mathrm{h}}^{\mathrm{sc}}-t/ au_{\mathrm{e},\mathrm{h}}}$$

Drift velocity:

$$V_{driff} = \frac{a}{t_c}$$

~

Charge collection distance:

$$rac{ccd}{d} = rac{Q}{Q_0}$$
 $Q = \int I(t)dt \simeq 1 - rac{d}{2 au_{e,h} v_{driff}}$

For Further Reading I

- Edited by R.S. Sussmann CVD Diamond for Electronic Devices and Sensors. Wlley, 2009.
- D. Meier, "CVD Diamond Sensors for Particle Detection and Tracking", CERN 1999.
- H. Pernegger et al., J. of App. Phys. 97, 073704 (2005).
- P. Moritz et al., Diam. Relat. Mater. 10, 1765 (2001).
- H. Frais-Kölbl, E. Griesmayer and H. Pernegger, Nucl. Inst. Meth. **A535**, 108 (2004).