Imaging with thermal neutrons

G.Salvato CNR-IPCF Messina

Why use Neutron Imaging

- Allows to look, <u>non destructively</u>, inside objects (fundamental for cultural heritage investigations)
- ✓ Gives <u>complementary information</u> to that obtained from <u>X-rays</u> (neutrons interact with nuclei instead of electronic shells)
- Deep penetration inside samples allows to look past coatings and corrosion layers (neutrons penetrate easily through lead)
- High sensitivity for some light elements
 (e.g. hydrogen)
- Contrast enhancement by means of energy selective imaging (Bragg-edge)
- ✓ Of *aid for the neutron diffraction* (scattering volume selection)

TSUE How Neutron Imaging is done?

The transmission of a **neutron beam** through the matter is described by the *Lambert-Beer law:*

n: scattering center number. $\sigma(\lambda)$: total cross-section perscattering center.

TSO How Neutron Imaging is done?

- a) CCD Camera;
- b) Lens positioning linear stage;
- c) Lens;
- d) Mirror;
- e) Front window (for placing scintillator screen, not shown);
- f) Rear window (removed);
- g) Sample

From Neutrons to Photons

Most used scintillators are made by a mix of finely grounded powders of ⁶*LiF* and *ZnS:Ag* or *ZnS:Cu* mixed with an organic binder and deposited on a thin *AI* foil.

 $n + {}^{6}Li \rightarrow {}^{4}He(+2.05MeV) + {}^{3}H(+2.73MeV) \sigma = 520 b$

The ranges of **Triton** and α particles are about <u>**30**µm</u> and <u>**5**µm</u> respectively^[1].

When the particles interact with the **ZnS** phosphor produce about **<u>160.000 photons per neutron</u>**^[2].

T.K. McKnight Master Thesis - Dep. Of Physics and Astronomy – Brigham Young University (2005)
 C.W.E. van Eijk Nucl. Instr. And Meth. A <u>477</u> 383 (2002)

From Neutrons to Photons

Because of the interaction range of the secondary particles within the scintillator, the light can be produced in a position different from the point of the neutron interaction *limiting the spatial resolution*.

The thinner is the scintillator the better is the spatial resolution.

But...

The thinner is the scintillator the lesser is the light emitted.

Neutron sources are NOT point-like ones

- $d = \ell \frac{D}{L} = \frac{\ell}{\frac{L}{D}}$
- D = neutron source dimension
 L = source-sample distance
 l = sample-scintillator distance

Progetto PANAREA

P rogetto per l' A pplicazione dei **N** eutroni A lla **R** icerca in E lettronica e A rcheometria

Italian Institutions Involved:

•UNIMIB	Prof. G. Gorini		
•CNR-IPCF	Ing. G. Salvato		
•CNR-ISC	Dr. M. Zoppi		
•UNITOV	Prof. C. Andrean		

Imaging and MATerials

Target Station 2

	2 CAME Medium High reso	RAS: resolution scree olution screen (3	n (200x200mm) 0x30mm)		IMAT
		5 JAW set shape the	s with 200x200 mm ap beam	pertures will	TS2 isis
Sample S1			A PIN HOLE SELE enlarging circular the S1 sample.	CTOR at 46 Metres beams up to 200	s will project varied mm diameter onto
				95 mm squar	re neutron beam
Source repetition	10 Hz				
Moderator	Liquid H2 / solid CH_4	coupled			
Primary neutron guide	m=3 straight, square,	95x95 mm			
Single frame bandwidth	0.6 - 6.5 Á				The second second
Double frame bandwidth	2-14 Á				
Flight path to sample	56 m				
oPo in Italy Frascati, Doco	mbor 2 = 2012		T ₀ Chopper set		No. Contraction

IMAGING MODE

IMAT CCD neutron camera specifications

Flight path	56 m to sample
Max. Effective detector area	200x200 mm ²
Variable field of view	Down to 55x55 mm ²
Resolution for full field	0.2x0.2 mm ²
Resolution for reduced field	50x50 μm ²
Estimated flux (L/D=125)	Up to 2x10 ⁸ n·s ⁻¹ ·cm ⁻²
Maximum L/D	2000
Wavelength range	0.68÷6.8 Å in full-frame 2-14 Å in double-frame
Timing resolution	For energy-resolving applications Timing better than $\Delta T/T < 1\%$.

OPTICAL DESIGN

366.5 mn 850 mm mm 500 mm

Lens	Field of View mm ²	Pixel resolution
50mm f/1.2	211.5x211.5	0.20 mm
85mm f/1.4	112.7x112.7	0.11 mm
105mm f/2.5	85.5x85.5	0.08 mm
135mm f/2.0	59.5x59.5	0.06 mm

Optical path = 917.5 mm

Changing lenses

Extension tubes

Fast mount and release (ball-spring mechanism)

Lens in *mounting* position

The fast lens mounting and releasing mechanics

Auto Focusing

V.Finocchiaro et al. "*The autofocusing system of the IMAT Neutron Camera*" Rev. Sci. Instrum. 84, 093701 (2013)

Laser pointer (Global Laser Ltd. mod. Cameo) + Diffracting lens

Auto Focusing

V.Finocchiaro et al. "*The autofocusing system of the IMAT Neutron Camera*" Rev. Sci. Instrum. 84, 093701 (2013)

Laser pointer (Global Laser Ltd. mod. Cameo) + Diffracting lens

⁶LiF/ZnS scintillator (in the dark)

Auto Focusing

The **Contrast Based** algorithm calculates the absolute value of the difference between the brightness value of each pixel, i(x, y), and that of first neighbours along the x and y axis. x+1 y+1

$$G(x,y) = \sum_{j=x-1} |i(x,y) - i(j,y)| + \sum_{k=y-1} |i(x,y) - i(x,k)|$$

The **Focus value** is given by the sum of the square of G(x, y).

Focus value =
$$\sum_{H} \sum_{W} G(x, y)^2$$

Auto Focusing

Finding the focus with the Golden section search strategy

The **golden section search** is a technique for finding the extremum of a *strictly unimodal* function by successively narrowing the range inside which the extremum is known to exist.

$$\frac{a}{c} = \frac{b}{a} = \varphi = \frac{1+\sqrt{5}}{2}$$
= golden ratio

http://en.wikipedia.org/wiki/Golden_section_search

TS2 ISIS

Auto Focusing

🏭 IMAT Camera Control - Ve	rsion: Wed Mar	20 15:31	:50 2013		
Andor Camera Ctrl Tomography Ct	rl Rotation Ctrl F	ocus Ctrl	General Setup	Energy Sel. Ctrl	Stability Ctrl
Translator Pos. [mm] Dest. [mm] GoTo [mm] GoTo [mm]	Pointer	Autofoci	us		
Tilter Pos. [µm] GoTo [µm]	Rotator Pos. [µm] GoTo [µm]				

Camera control software has been developed in C++ using Microsoft Visual Studio.

Next step: Converting the control software to run in *EPICS*

From Theory to Practice

In October 2012 the completed camera box has been moved from IPCF-Messina to ISIS (UK).

An Andor Camera mod. *iStar* DH712 (512x512 pixel) has been mounted as the imaging device and the first test of the camera box has been performed in December 2012.

The Camera works as expected from the day one.

From Theory to Practice

The first test of the **Camera** box has been performed at the ROTAX beamline of ISIS.

The available neutron beam has a size of \sim 30x30mm², a flux of $\sim 10^6 n/cm^2$ and wavelengths in the range 0.6-5.2 Å.

Energy selective Imaging

Gated Image Intensifier

Energy-selective imaging is obtained by synchronizing the voltage at the image intensifier with the source T_0

Andor iStar DH712

TSE is is **Energy selective Imaging**

The main amplification of an image intensifier is due to the electron cascade in the channel plate. *Varying the voltage across the channel plate will control the gain*.

Changing the voltage across the microchannel plate it is possible to completely stop the light that reach the CCD sensor. Typically the on/off ratio of the intensifier is 1:10⁸ in the visible region

In this way **you may control the exposure time by applying voltage pulses across the microchannel plate.**

TSO Energy selective Imaging

Since the intrinsic noise of the *CCD* can be made very low by cooling the sensor, *it is possible to make very long exposures and turn on, repetitively, for short time periods the intensifier.*

The obtained image is a sum of many partial images without the need to transfer each single image outside the chip (with the associated readout noise).

This procedure is called "Integrate on Chip".

TSO ISIS Energy selective Imaging

While *iCCD*s gate times are well below the requested time resolution the common used scintillator screens (*⁶LiF/ZnS* based) have not equally satisfactory timing characteristics.

The intensity of the light produced by a neutron hitting the scintillator decays rather slowly.

G. Salvato et al. Nucl. Instr. and Meth. A 621 489-492 (2010)

TSE isis Energy selective Imaging

Bended Cu samples

TOF = $8500\mu s$ λ = 2.1691Å Δ T=100 μs Exposure Time=250s

Measured TOFs (8500-19000)µs in 100µs steps corresponding to a wavelength range (2.17-4.85)Å

The camera system is able to identify both the <u>presence</u> of *Bragg Edges* and their approximate <u>positions</u>.

TSO Energy selective Imaging

To check further the capabilities of the camera system we have selected the edge at TOF~ $10000\mu s$ (where the ROTAX beam intensity is near to its maximum) and we have fitted the data in order to verify point by point the edge position.

To obtain reasonable *Signal/Noise* ratios we need a consistent binning of the image (*30x30 pixels*).

λ=2.5774 **Å**

λ=2.5391 Å

TSUISIS Energy selective Imaging

Energy selective imaging for contrast enhancement

Cu-Fe Cube

- From left to right:
- Roberto Caruso
- Giuseppe Spinella
- Vincenzo Finocchiaro
- Gabriele Salvato
- Francesco Aliotta
- Rosa Ponterio
- Cirino Vasi
- > Domenico Arigò
- Dario Tresoldi
- Giuseppe Lupò

TSO ISIS Energy selective Imaging

TOF technique for energy resolved imaging with a CCD's based system has two major drawbacks:

timing characteristics of the ⁶LiF ZnS scintillators

the needed acquisition time.

During the time interval (~500s at ROTAX) needed to acquire an image, only a single wavelength band can be explored.

For a true strain analysis by neutron imaging we need a

different image detector !

TSE isis Energy selective Imaging

A new image sensor, based on a ¹⁰*B*-*doped* microchannel plate, has been developed by *A*. *Tremsin* et coworkers. The neutron detection exploits the ¹⁰*B*(n, α) ⁷*Li* reaction.

A.S. Tremsin et al. Nucl. Instr. and Meth. A 539 278-311 (2005)

TSO Energy selective Imaging

The neutron sensing *MCP* is combined with a fast readout device originally developed at CERN for high energy particles: *Medipix*.

Medipix is realized in CMOS technology and has a spatial resolution of ~55μm. It has 256x256 pixels and an active area of 14x14mm².

A.S. Tremsin et al. IEEE NSS 2007, October 2007

TSET ISIS Energy selective Imaging

The *alpha* and ⁷*Li* charged particle reaction products emerge from the channel wall surfaces into an open channel.

As these heavy particles cross the surface, a relatively large number of secondary electrons (and other species) are liberated to *generate a strong electron avalanche* and an output pulse.

A.S. Tremsin et al. IEEE NSS 2007, October 2007

TSO ISIS Energy selective Imaging

Changing lenses

The fast lens mounting and releasing mechanics

We decided to change the mounted micro pushers with others more robust and endowed with two *end-run* detectors.

TSO From Theory to Practice

The Box of the camera box

What will we found inside ?

Surprise ! The camera is Intact !