Hard Exclusive Reactions as Probes of Hadronic Deep Inelasic Structure

Simonetta Liuti University of Virginia

INFN, Laboratori Nazionali di Frascati July 14th, 2008

Collaborators:

Saeed Ahmad Gary Goldstein

• <u>AHLT</u> (at the University of Virginia) (Saeed Ahmad, Heli Honkanen^{*}, S.L. and S.K. Taneja⁺)

* University of Iowa

+ Stony Brook

<u>Outline</u>

- An overview of the proton
- Outstanding Questions
- New experimental tools: Deeply virtual exclusive experiments and "femtoimages" (GPDs)
- Phenomenology:

DVCS Experiments on nucleons and nuclei
 Exclusive π^{0} Electroproduction

- New computational methods: SelfOrganizing Maps?
- Conclusions

What we know ...

Measured by R. Hofstadter (1955) <u>Inclusive</u>, <u>elastic</u> ep scattering!

What we know ...

Direct evidence observed by Friedman, Kendall and Taylor (1969): <u>Inclusive, deep inelastic</u> ep scattering!

Proton Dynamics: QCD

Quarks:

<u>u,d,s,c,...;</u> 3 <u>colors</u>; <u>spin</u> 1/2; $m_{u,d..} \ll m_p$

Gluons:

<u>no charge</u>; 8 "<u>color types</u>"; <u>spin</u> 1; $m_g = 0$

G. Wolf, P. Söding, S.L. Wu, B. Wiik (1979)

QCD: Asymptotic Freedom

- Low momentum transfer
 Low spatial resolution

 Relativistic, strongly coupled, many-body problem

How does one proceed? "A Flow Chart"

ri Large N_c, X 1, ...

13tion

Theoretical tools:

Ads./C

Lattice **GCD**

<u>Phenomenology</u> Devise observables and

experimental probes

Experiments: measure and compare with theory

2. Outstanding Questions

Outstanding Questions arise through Validation

- What are the momentum distributions of quarks, anti-quarks and gluons ?
- How is the flavor symmetry broken ? $\overline{u} \neq \overline{d}, s \neq \overline{s}$
- How do partons carry spin ½ of proton ?
- Longitudinal vs. transverse spin difference?
- Spatial distribution of quarks?
- Transition from partonic to hadronic d.o.f.: how are quarks and gluons correlated?
- How do protons and neutrons form atomic nuclei ?

Example 1: momentum distributions

06/01/95 T.I.

Example 2: Proton's Spin Structure

Hirai, Kumano, Saito, PRD 74(2006)

Proton Spin Crisis fostered searches for "different" observables

- Transversity (Goldstein & Moravscik, Jaffe, Ji, ...)
- Orbital angular momentum (Ji, ...)

"New type" of experiments: from <u>inclusive</u> to semi-in<u>clusive</u> ...

... and from <u>semi-inclusive</u> to <u>exclusive</u> ...

Virtual Compton Scattering

a) Deeply Virtual Compton Scattering

Bjorken limit

3. DVCS: new dimensions in proton studies

DVCS and Generalized Parton Distributions 1

DVCS and Generalized Parton Distributions 2

G. Miller, nucl-th, 0705.2409

DVCS and Generalized Parton Distributions 3

GPDs are hybrids of PDFs and FFs: describe simultaneously x and t-dependences !
GPDs give access to spatial d.o.f. of partons !

• GPDs give access to orbital angular momentum of partons!

$$\int dx H_q(x,\zeta,t) + E_q(x,\zeta,t) = 2J_q \qquad \text{X. Ji}$$

Orbital Angular Momentum (Camacho et al., PRL(2007))

AHLT includes only valence contribution!

$$J_q = (\kappa_q + 1) A_{20}(0)$$

DVCS and Generalized Parton Distributions 4: Optics

Question #1: How do we interpret the spatial d.o.f. of partons?

Theoretical Ideas:

- Impact parameter dependent PDFs (M. Burkardt, 2000 → D. Soper, 1977)
- Holography (Ralston and Pire, 2000)
- Interference patterns (Brodsky et al., 2006)
- Wigner Distributions (Belitsky, Ji, Yuan, 2004)

DVCS and Generalized Parton Distributions 5: IPPDFs

$$\zeta = 0 \qquad q(x, \mathbf{b}) = \int \frac{d^2 \mathbf{\Delta}}{(2\pi)^2} e^{-i\mathbf{b}\cdot\mathbf{\Delta}} H_q(x, 0, -\mathbf{\Delta}^2)$$
$$\langle \mathbf{b}^2(x) \rangle = \mathcal{N}_b \int d^2 \mathbf{b} \, q(x, \mathbf{b}) \, \mathbf{b}^2$$

H_a (x,t) from Ahmad, Honkanen, S.L., Taneja (2006)

DVCS and GPDs 6: Wigner Distributions

"Quantum Phase-Space" distributions (Wigner, 1932): f(p,r)

Not positive-definite because of uncertainty principle

Become positive in classical limit

Vast literature – observable (!) in atomic systems

How do we generalize to relativistic systems/physics on the light-cone? Belitsky, Ji, Yuan: <u>Breit Frame</u>

$$\rho_{+}(\vec{r},x) = \int \frac{d^{3}\vec{q}}{(2\pi)^{3}} e^{-i\vec{q}\cdot\vec{r}} [H(x,\xi,t) - \tau E(x,\xi,t)]$$

 $\zeta \neq 0$

$$j_{+}^{z}(\vec{r},x) = \int \frac{d^{3}\vec{q}}{(2\pi)^{3}} e^{-i\vec{q}\cdot\vec{r}} i[\vec{s}\times\vec{q}]^{z} \frac{1}{2M_{N}} \left[H(x,\xi,t) + E(x,\xi,t)\right]$$

Phase-space Charge Density

Phase-space Convection Current

Simonetta Liuti China-US Symposium on Medium Energy Physics, July 31 - August 4, 2006

S. Ahmad and S.L., preliminary

DVCS Cross Section

$$\begin{split} \frac{d^{5}\sigma(\lambda,\pm e)}{d^{5}\Phi} &= \frac{d\sigma_{0}}{dQ^{2}dx_{B}} \left| \mathcal{T}^{BH}(\lambda) \pm \mathcal{T}^{DVCS}(\lambda) \right|^{2} / |e|^{6} \\ &= \frac{d\sigma_{0}}{dQ^{2}dx_{B}} \left[\left| \mathcal{T}^{BH}(\lambda) \right|^{2} + \left| \mathcal{T}^{DVCS}(\lambda) \right|^{2} \mp \mathcal{I}(\lambda) \right] \frac{1}{e^{6}} \end{split}$$

What goes into a theoretically motivated parametrization...?

The name of the game: Devise a form combining essential dynamical elements with a flexible model that allows for a fully quantitative analysis constrained by the data

Q² Evolution is an essential element!!

Reaching a more advanced phase of extracting GPDs from data (a bit of summary from ECT*, June'08)

- No longer simple models (D. Muller)
- Include Q² dependence (M. Diehl)
- Include all constraints from data DVCS, DVMP... (S.L.)
- Include new data as they become available... (S.L.)
- Use Lattice + Chiral Extrapolations (P. Hägler, A. Schaefer)
- Connect various experiments, separate valence from sea, flavors separation (T. Feldman)...
- New! Representation in terms of dispersion relation only necessary to measure imaginary part? Stronger polynomiality constraint (M. Diehl and Yu. Ivanov)

A similar program exists for TMDs (simpler partonic interpretation than GPDs) see M. Anselmino and collaborators

4. Extracting femtoimages requires new computational methods

Proposed Strategy: Bottom-Up Approach

- Construct theoretically motivated parametrizations at a given *low* initial scale
- Merge data/information from:

 - ----- PDFs $\zeta = 0$

Apply PQCD evolution to connect different sets of data

$$G_{M_X}^{\lambda}(X,t) = \mathcal{N}\frac{X}{1-X} \int d^2 \mathbf{k}_{\perp} \frac{\phi(k^2,\lambda)}{D(X,\mathbf{k}_{\perp})} \frac{\phi(k'^2,\lambda)}{D(X,\mathbf{k}_{\perp}+(1-X)\mathbf{\Delta}_{\perp})}$$

AHLT Parameterization

$$\begin{aligned} \zeta = \mathbf{0} \\ H^{I}(X,t) &= G_{M_{X}^{I}}^{\lambda^{I}}(X,t) X^{-\alpha^{I} - \beta_{1}^{I}(1-X)^{p_{1}^{I}}t} \\ \mathbf{v1} \\ E^{I}(X,t) &= \kappa G_{M_{X}^{I}}^{\lambda^{I}}(X,t) X^{-\alpha^{I} - \beta_{2}^{I}(1-X)^{p_{2}^{I}}t} \\ \mathbf{v2} \\ H^{II}(X,t) &= G_{M_{X}^{II}}^{\lambda^{II}}(X,t) X^{-\alpha^{II} - \beta_{1}^{II}(1-X)^{p_{1}^{II}}t} \\ E^{II}(X,t) &= G_{\widetilde{M}_{X}^{II}}^{\tilde{\lambda}^{II}}(X,t) X^{-\tilde{\alpha}^{II} - \beta_{2}^{II}(1-X)^{p_{2}^{II}}t} \\ \mathbf{\zeta} \neq \mathbf{0} \\ \Rightarrow \mathbf{use v1 for DGLAP region (X \leq \zeta)} \\ H^{I}(X,\zeta,t) &= G_{\gamma_{x}^{I}}^{\lambda^{I}}(X,\zeta,t) R_{1}^{I}(X,\zeta,t) \end{aligned}$$

$$E^{I}(X,\zeta,t) = \kappa G^{\lambda^{I}}_{M^{I}_{X}}(X,\zeta,t) R^{I}_{2}(X,\zeta,t)$$

More details in AHLT, PRD 2007

Summary of Constraints

Constraints from Form Factors

$$\int_{0}^{1} dX H^{q}(X,t) = F_{1}^{q}(t) \qquad \text{Dirac}$$

$$\int_{0}^{1} dX E^{q}(X,t) = F_{2}^{q}(t), \qquad \text{Pauli}$$

Constraints from Polynomiality

$$H_n^q(\xi,t) = \sum_{i=0}^{\frac{n-1}{2}} A_{n,2i}^q(t)\xi^{2i} + \operatorname{mod}(n,2)\xi^n C_n^q(t)$$
$$E_n^q(\zeta,t) = \sum_{i=0}^{\frac{n-1}{2}} B_{n,2i}^q(t)\xi^{2i} - \operatorname{mod}(n,2)\xi^n C_n^q(t).$$

Constraints from PDFs

$$q(x) = H_q(x,0,0)$$

Further Theoretical Constraints:

- Sensible prediction for hadron shape at $x \rightarrow 1$
- Sensible prediction for k_T dependence (connection with TMDs!)

(SL and Taneja, 2004)

GPDs from available data 2

Parton Distribution Functions

Comparison with similar parametrizations at *ζ*=0

Two different time orderings/pole structure!

Quark anti-quark pair describes similar physics (dual to) Regge t-channel exchange!!

GPDs from Bernstein moments

$$\overline{H}(X,\zeta,t) = \frac{(n+1)!}{k!} \sum_{l=0}^{n-k} \frac{(-1)^l}{l!(n-k-l)!} M_{l+k}$$
 Mellin moments

$$\overline{H}_{02}(X_{02}) = 3A_{10} - 6A_{20} + 3\left[A_{30} + \left(\frac{2\zeta}{2-\zeta}\right)^2 A_{32}\right],$$
$$\overline{H}_{12}(X_{12}) = 6A_{20} - 6\left[A_{30} + \left(\frac{2\zeta}{2-\zeta}\right)^2 A_{32}\right],$$
$$\overline{H}_{22}(X_{22}) = 3A_{30} + \left[\left(\frac{2\zeta}{2-\zeta}\right)^2 A_{32}\right].$$

First used for pdfs' in the '70s by Yndurain and collaborators

$$\begin{array}{ll} \underline{\text{Weighted Average}} \Rightarrow & \overline{H}(X,\zeta,t) = \int_{n}^{1} H(X,\zeta,t) b_{k,n}(X) dX \quad k = 1, \dots n, \\ \\ \underline{\text{X-bin}} & \Rightarrow & \overline{X}_{k,n} = \int_{0}^{1} X b_{k,n}(X) dX = \frac{k+1}{n+1}, \\ \\ \underline{\text{Dispersion}} & \Rightarrow & \Delta_{k,n} = \left(\overline{X^2}_{k,n} - \overline{X}_{k,n}^2\right)^{1/2} \end{array}$$

ERBL Region AHLT arXiv:0708.0268

Determined from lattice moments up to n=3

Comparison with Jlab Hall A data (proton)

Comparison with Jlab Hall A dataMazouzet al., (2007)(neutron)

Are the exclusive data "telling" us something? <u>Real Part</u> (S.Ahmad, S.L., preliminary)

Behavior determined by Jlab data on Real Part and Q² dependence
Consistent with lattice determination!

Evaluation of interparton distances

y is the average distance of quark q from the spectator quarks

s is the average shift of quark along the y-axis when proton is (transversely) polarized along the x-axis

Sensitive to E!

3. Nuclei

Deuteron: New sum rules

SI S.K.Taneja

$$\begin{split} &\frac{1}{2} \int \frac{d\lambda}{2\pi} \, e^{ix(Pz)} \langle p' | \, \bar{q}(-\frac{1}{2}z) \, \#_{-} \, q(\frac{1}{2}z) \, | p \rangle \Big|_{z=\lambda n_{-}} = -(\epsilon'^{*}\epsilon) \, H_{1} \\ &+ \frac{(\epsilon n_{-})(\epsilon'^{*}P) + (\epsilon'^{*}n_{-})(\epsilon P)}{P n_{-}} \, H_{2} - \frac{2(\epsilon P)(\epsilon'^{*}P)}{m^{2}} \, H_{3} \\ &+ \frac{(\epsilon n_{-})(\epsilon'^{*}P) - (\epsilon'^{*}n_{-})(\epsilon P)}{P n_{-}} \, H_{4} \\ &+ \left[m^{2} \, \frac{(\epsilon n_{-})(\epsilon'^{*}n_{-})}{(P n_{-})^{2}} + \frac{1}{3}(\epsilon'^{*}\epsilon) \right] H_{5} \,, \end{split}$$

Cano and Pire (2001)

Form Factors

$$\int_{-1}^{1} dx \, H_i(x,\xi,t) = G_i(t) \qquad (i = 1, 2, 3).$$

$$G_C = G_1 + \frac{2}{3} \eta \, G_Q,$$

$$G_Q = G_1 - G_2 + (1+\eta)G_3,$$

$$G_M = G_2$$

Energy momentum tensor

$$\langle p'|\theta^{\mu\nu}|p\rangle = -\frac{1}{2} \left[P^{\mu}P^{\nu} - \frac{g^{\mu\nu}}{4} P^{2} \right] (\epsilon'^{*}\epsilon)G_{1,2}(t) - \frac{1}{4} \left[P^{\mu}P^{\nu} - \frac{g^{\mu\nu}}{4} P^{2} \right] \frac{(\epsilon P)(\epsilon'^{*}P)}{M^{2}}G_{2,2}(t)$$

$$-\frac{1}{2} \left[\Delta^{\mu}\Delta^{\nu} - \frac{g^{\mu\nu}}{4} \Delta^{2} \right] (\epsilon'^{*}\epsilon)G_{3,2}(t) - \frac{1}{4} \left[\Delta^{\mu}\Delta^{\nu} - \frac{g^{\mu\nu}}{4} \Delta^{2} \right] \frac{(\epsilon P)(\epsilon'^{*}P)}{M^{2}}G_{4,2}(t)$$

$$+\frac{1}{4} \left[(\epsilon'^{*\mu}(\epsilon P) + \epsilon^{\mu}(\epsilon'^{*}P)) P^{\nu} + \mu \leftrightarrow \nu - g^{\mu\nu}(\epsilon P)(\epsilon'^{*}P) \right] G_{5,2}(t)$$

$$+ \left[(\epsilon'^{*\mu}(\epsilon P) - \epsilon^{\mu}(\epsilon'^{*}P)) \Delta^{\nu} + \mu \leftrightarrow \nu + g^{\mu\nu}(\epsilon P)(\epsilon'^{*}P) - (\epsilon'^{*\mu}\epsilon^{\nu} + \epsilon'^{*\nu}\epsilon^{\mu}) \Delta^{2} + \frac{g^{\mu\nu}}{2} (\epsilon'^{*}\epsilon) \Delta^{2} \right] G_{6,2}(t)$$

.. and relation with deuteron GPDs:

$$\int dx x H_1(x,\xi,t) - \frac{1}{3} \int dx x H_5(x,\xi,t) = G_{1,2}(t) + \xi^2 G_{3,2}(t)$$

$$\int dx x H_2(x,\xi,t) = G_{5,2}(t)$$

$$\int dx x H_3(x,\xi,t) = G_{2,2}(t) + \xi^2 G_{4,2}(t)$$

$$\frac{1}{4\xi} \int dx x H_4(x,\xi,t) = \frac{M^2}{t} \int dx x H_5(x,\xi,t) = G_{6,2}(t)$$

...inserting the energy momentum tensor i $\langle p'|\int d^3x (ec x imes T_{q,g}^{0i})_z |p
angle$

$$J_q = \frac{1}{2} \int dX X H_2^q(X, 0, 0) \equiv \frac{1}{2} G_{5,2}(0)$$

An essential piece of information for extracting quarks angular momentum!

4He: nuclear GPDs as tools to

study in medium modifications

Experiments on ⁴He are feasible at Jlab:

Spatial structure of quarks and gluons in nuclei

 π^o Electroproduction Observables and GPDs

Exclusive π^{o} electroproduction $e^{p} \rightarrow e'p'\pi^{o}$ (b) $\frac{d\sigma}{dt\,d\phi} = \left(\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt}\right) + \epsilon \frac{d\sigma_{TT}}{dt}\cos 2\phi + \sqrt{2\epsilon(\epsilon+1)}\frac{d\sigma_{LT}}{dt}\cos\phi$ P' P LAB p₀, h $d\sigma \propto L^{h=\pi^o}_{\mu u}W_{\mu u}$ $L^{h=\pi^o}_{\mu\nu} \approx \gamma^*$ polarization density matrix p $W_{\mu\nu} = \sum J_{\mu}J_{\nu}^*\delta(E_i - E_f) = \text{hadronic tensor}$ $\frac{d\sigma_{TT}}{dt} = W_{yy} - W_{xx} \equiv 2\Re e(J_1 J_{-1} *)$

Dual Representation?

Only chiral-odd GPDs!!! 🖄 JPC=1" JPC=1+ $i\sigma_{\mu u}\gamma_5$ $\Leftrightarrow J^{PC}=1^{--}, 1^{+-}, ... \Leftrightarrow H_T, E_T, ...$ \Leftrightarrow J^{PC}=1⁺⁺, ... (a₁-type exchange) \Leftrightarrow H, E. ...

What goes into the quark-hadron amplitudes?

$$\begin{split} \mathcal{F}(\zeta,t) &= -i\pi \sum_{q} e_q^2 \left[F^q(\zeta,\zeta,t) - F^q(-\zeta,\zeta,t) \right] + \\ \mathcal{P} \int_{1-\zeta}^1 dX \left(\frac{1}{X-\zeta} + \frac{1}{X} \right) F^q(X,\zeta,t). \end{split}$$

Generalized Form Factors

 $\begin{aligned} \mathcal{H}_{T}, & \widetilde{\mathcal{E}}_{T}, & \widetilde{\mathcal{H}}_{T}, & \widetilde{\mathcal{E}}_{T} \end{aligned}$ $H_{T}(X, 0, 0) = h_{1}(X) = \text{transversity}$ $\int h_{1}(X, Q^{2}) \, dX = \, \delta q = \text{tensor charge} \qquad \widetilde{\mathcal{E}}_{2} = 2\widetilde{\mathcal{H}}_{T} + \mathcal{E}_{T}$ $\int E_{2}(X, 0, 0) \, dX = \mathcal{K}_{T} = \text{Burkardt's moment}$ $\int h_{1} \perp (X) \, dX \, d^{2}k_{T} \sim -\mathcal{K}_{T} (A.Metz)$

<u>Main Result</u>: Tensor Charge and Anomalous Transverse Moment treated as free parameters to be extracted form data \implies Show sensitivity!

GPDs & hadron tensor for Spin 0 nuclear target (Liuti and Taneja, PRC 2005) π^{o} production (with G. Goldstein) - 1st consider nucleon target GPDs & Regge Cuts -l ike π +N \rightarrow π +N 2 invariant amps (A,B)-> 2 leading twist GPDs •Like ~ $H(x,\zeta,t)$ & $E(x,\zeta,t)$ or $H_{\tau}(x,\zeta,t)$ $-H(x,0,0) \sim A(x), H_{\tau}(x,0,0) \sim B(x)$ ()flips 1/2 particle helicity $\bullet E_{\tau}$ more like Chiral-odd GPDs for nucleons than E -Carries over to $4He \rightarrow q q' \rightarrow 4He'$ -Can coherent $e_{+4}He \rightarrow e'_{+}\pi^{0}_{+4}He'$ be treated as pure spin 0 target? -Need 2 steps involving ${}^{4}\text{He} \rightarrow N == N' \rightarrow {}^{4}\text{He}' \& N \rightarrow q == q' \rightarrow N'$ and (PQCD?) $\gamma^*+q \rightarrow \pi^0+q'$ -2 helicity amps longitudinal & transverse γ^* -How can these distinguish H from chiral odd, C=parity odd structures?

Conclusions and Outlook

- Comparison between GPD models and data is indeed possible...GPD extraction is possible!!!
- Approaching "Global Analysis"
- Interesting connections between TMDs and GPDs
- Proposed extraction of tensor charge and transverse anomalous moment from neutral pion production data
- Spatial structure of Nuclei