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•To 

To progress, you need the relevant Equations of State for matter in the star 

EoS at  0 

EoS at  0 

EoS at  0 

EoS at  
0 

momentum dependence 

Strange or quark matter? 

Key to understanding 

maximum N-star mass 



• Symmetry energy calculated 

here with effective interactions 

constrained by Sn masses 

• The density dependence of  S() 

is the most uncertain part of the 

EoS at  < 0. 

 

 

 

For N-stars T0 Can use energy/nucleon as EoS 

 (,)=(E/A (,) = E/A (,0) + 2S() 

 = (n- p)/ (n+ p) = (N-Z)/A 
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Symmetry energy at 

0 

=1

p=0 

=0 

n=p 

Curvature given by  

Giant Monopole Resonance 

nuclear  binding energy 

This was the situation in 2001  

EoS is now much more constrained 

Need measuements 

with neutron-rich 

nuclei to probe this 

Need probes of high 

densities to constrain 

this.  



Improvement  Improved constraints on the potential energy 

contributions to S() which provide the largest uncertainties 

• In a neutron-rich system, the 

symmetry energy attracts protons 

and repels neutrons 

• Observables that can probe sub-

saturation densities: 

– Isospin diffusion: 

– Neutron-proton spectra and 

flows. 

– Difference between neutron 

and proton matter radii.  

– Giant and pygmy dipole 

resonances 

– El dipole polarizability D 

– Nuclear binding energies and 

isobaric analog resonance 

energies. 
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Laboratory constraints on Symmetry energy at <0 

• Taylor expand about 0 

• Experimental observables are mainly 

sensitive to S0=S(0) and L.  

• Some sensitive observables: 

– masses 

– Isobaric Analog States (IAS) 

– Electric dipole polarizability (0) 

– Diffusion of neutrons and protons 

between nuclei of different N/Z in 

peripheral collisions HIC (Sn+Sn) 

– Transverse flow  HIC (RIB) 

• Slope of constraint indicates the sensitive 

density 

 

• Neutron skin Rnp = <rn
2>1/2- <rp

2>1/2  is 

only sensitive to L.  

• Realistic theoretical “Error bars” are key 

to combining constraints.  
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Past vs. Present status of S( 

• Have initial constraints at sub and supra-saturation densities: 

– Contours reflect assessment of theoretical and experimental uncertainties 

• Relevant questions: 

– How do we improve the constraints at <0? 

– How do we improve the constraints at supra-saturation densities? 

– How do we deal with momentum dependencies of mean fields? 

• Important for non-zero temperatures and non-equilibrium systems 

 

Constraints 2014 showing sensitive densities 
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Brown 2001 obtained by fitting Sn masses 

Crossing point reflects 

sensitivity at 0.70 

Xiao et al.,  

pions 
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Improving constraints on Symmetry energy at <0 

 Sensitive observables that are or will be 

more extensively explored : 

– masses: 

• Penning traps, TOF 

– Isobaric Analog States (IAS) 

• Reaccelerated  RIB’s ReA3 and 

CARABU: AT-TPC collab. 

– Isospin diffusion between nuclei of 

different N/Z in peripheral HIC 

• Sn+Sn  NSCL: new results soon 

– Neutron skins: 

• PREX, CREX at JLAB 

– Isoscalar GMR 

• RCNP-ND, MAYA, AT-TPC 

collaborations 

– Neutron and proton transverse  and 

elliptical flow   

– Fragmentation of hot nuclei: 

• TAMU 

– .  

 (at =0.1 fm-3 ) 

stiffer softer 

Pneut. matt. (MeV/fm3) 
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HIC(Sn+Sn) < 0.450 
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• Steiner et al., ApJ 722, 33 extract R=12.51.5 km 

from both x-ray bursters and quiescent x-ray 

binaries consistent with a soft neutron matter EoS. 

• EoS & Symmetry energy 
influence:  

– Neutron star stability against 
gravitational collapse 

– Stellar density profile 

– Internal structure: occurrence 
of various phases. 

• Observational consequences: 

– Cooling rates of proto-
neutron stars: D. Yakovlev  
et al, Phys.Rep 354, 1 (2001) 

– Correlation between stellar 
masses and radii–two sites: 

• X-ray bursters 

• Quiescent x-ray binary 
systems 

 

 

 

 

Steiner et al., ApJ 722, 33 (2012) 
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New challenge: probing supra-saturation densities 20 



• Steiner et al., ApJ 722, 33 extract R=12.51.5 km, 

larger than Ozel (R=102 km) arXiv:1210.0916v1. 

• Sensitive to modeling of radiation transport – see 

Suleimanov et al, ApJ 742, 122 who extract ~ 2 km 

larger radii.  

• Rutledge studied quiesent only x-ray binary 

systems and extracts ~ 3km smaller radii.  

 It is important to obtain laboratory constraints. For 

high densities, one needs heavy-ion collisions.    

 

• EoS & Symmetry energy 
influence:  

– Neutron star stability against 
gravitational collapse 

– Stellar density profile 

– Internal structure: occurrence 
of various phases. 

• Observational consequences: 

– Cooling rates of proto-
neutron stars: D. Yakovlev  
et al, Phys.Rep 354, 1 (2001) 

– Correlation between stellar 
masses and radii–two sites: 

• X-ray bursters 

• Quiescent x-ray binary 
systems 
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New challenge: probing supra-saturation densities 20 
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• Flow confirms the softening of the 

EOS at high density.   

• Constraints from kaon production are 

consistent with the flow constraints 

and bridge gap to GMR constraints.  

• Note: analysis requires additional 

constraints on m* and  NN.   

 

Laboratory Constraints on symmetric matter EOS at  >2 0. 

E/A (, ) = E/A (,0) + 2S()         = (n- p)/ (n+ p) = (N-Z)/A1 

• The symmetry energy dominates the 

uncertainty in the n-matter EOS. 

• Improved laboratory constraints on 

the density dependence of the 

symmetry energy are needed to 

tighten the constraints.  

Boundary determined by 

comparing  relativistic 

Au+Au transverse and 

elliptical flow data to 

transport  calculations  
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• Densities of 20 can be achieved at E/A 400 MeV. 

– Provides information relevant to the mass-radius relation of neutron stars and 

possibly about direct URCA cooling in proto-neutron stars. 

– Stronger (stiffer) density dependence  of symmetry energy expels more 

neutrons from densest region. Since - originates from n-n collisions and + 

originates from p-p collisions, this reduces the -/ +  spectral ratio 

 

Symmetry energy studies at 20 

R 

larger 

-/+ 

smaller

- /+ 

B-A Li  



Comparisons of neutron and proton observables : 

• Most models predict the differences 

between neutron and proton flows and 

t and 3He flows to be sensitive to the 

symmetry energy and the n and p 

effective mass difference. 

• At this energy, the ratio of neutron 

over proton spectra out of the reaction 

plane displays a significant sensitivity 

the symmetry energy.  
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• A new experiment was performed at 

GSI and new results may be expected: 

− Asyeos exp.   

Xiao et al.,  
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E/A = 300 MeV 

Probing >0  via  pion  production 

• Most calculations and measurements have focused on total  pion yields,  but this is a 10-30% 
effect – difficult to measure and calculate. Ratios of spectra are more sensitive than ratios of  
integrated yields.  

– Most clear sensitivity is for early pion emission at higher energies. 

– The integrated yields are difficult to measure because they require measuring the full 
pion spectrum down to very low energies in the CM. system.  

– Low energy pions strongly reflect pion charge exchange, and pion optical potentials. 
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Coulomb and  

optical potential 

more n-n than p-p 

collisions for soft 

Symmetry energy 
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• Larger values for n/  p at high 

density for the soft asymmetry 

term (x=0) causes stronger 

emission of negative pions for the 

soft asymmetry term (x=0) than 

for the stiff one (x=-1).  

• Expectations for Y( -)/Y( +) 

– In delta resonance model, 

Y( -)/Y( +)(n,/p)
2 

– In equilibrium, 

     (+)-(-)=2( p-n) 
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Comparison to other calculated pion spectra 

• Calculations of 132Sn+124Sn 

and 112S+112Sn spectral ratios 

were performed by Yong et 

al.,  

• Behavior at low TCM are 

very different.  (no pion 

optical potential)  

• Why does the  latest calc. 

increase at low TCM? 

Yong et al., Phys. Rev. C 73, 034603 (2006) 
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How spectra influence these ratios 

• Higher energy emissions reflect the asymmetry dependence predicted 

by the delta resonance model. 

– Y( -)/Y( +)(n,/p)
2 

• Low energy emission reflect the combined influence of the Coulomb 

and optical potentials. 

 - spectra 

Central 132Sn+124Sn 

E/A=300 MeV  

 + spectra 

Central 132Sn+124Sn 

E/A=300 MeV  

TCM (MeV) TCM (MeV) 
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E/A = 300 MeV 

Difference between 132Sn+ 124Sn and 108Sn+ 112Sn  collisions 

• Comparing two systems with different asymmetries enhances the sensitivity to the 
symmetry energy.  

• Experiment has been approved for 13.5 days of running at the RIBF facility at 
RIKEN. 

Y
(

 -  
)/

Y
(

 +
 )

1
3

2
+

1
2

4
 -
  
Y

(
 -  

)/
Y

(
 +

 )
1

0
8

+
1
1

2
  

0.5 :  asy-soft

0.9 :  nearly linear

1.75 :  asy-stiff













E/A = 300 MeV 

Y
(

 -  
)/

Y
(

 +
 )

 

J. E
stee, J. H

o
n

g
, P. D

an
ielew

icz, p
riv. co

m
. (2

0
1

3
) TCM (MeV) TCM (MeV) 

J. E
stee, J. H

o
n

g
, P. D

an
ielew

icz, p
riv. co

m
. (2

0
1

3
) 



Devices: SAMURAI TPC and AT-TPC 

• U.S./Japan collaboration 

– Uses SAMURAI dipole 

– Recently completed (2013) 

– Measure  +,  -, t, 
3He, n, p next 

year, hopefully.  

SAMURAI T SRIT TPC  Active Target -TPC 

• U.S. Collaboration (NSF MRI) 

• Solenoidal (MRI) magnet 

• Recently completed (2013) 

• Will enable future measurements of 

 +,  -, t, 
3He, n, p 



MSU, Texas A&M, WMU, 

Kyoto U., Riken, Seoul U.,  

Tsinghua U., Liverpool  



Another issue: momentum dependence  of mean fields 

• Momentum dependence of the mean field (real 

part of optical potential) is well established for 

symmetric matter.  

– At low energies, it can be described by 

effective mass,  m*: 

 

– Momentum dependence increases with ρ, 

is maximal at p=pF and vanishes as p→. 

• Symmetry potential mom. dependence? 

• This  uncertainty influences  m*n, and m*p and 

has an significant influence on the  excitation 

energy – temperature relationship for neutron 

stars. 

• It also influences the neutrino flux from 

neutron stars: (Baldo etal  PRC 89, 048801 

(2014)). 
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Emission of neutrons and protons from a neutron-rich 

system 
• For an expanding and statistically emitting source, it is easy to show that that the 

n/p ratio depends on n and p,  at low T (in the effective mass approx. and 

neglecting VCoul). 

 

 

– The effective mass effects dominate at  early higher energies, corresponding 

to early emission times when density is higher.  

• Trend is well supported by transport theory and by simple dynamical arguments.  
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From dynamical point of view (e.g. in transport theory) 

Central 124Sn+124Sn Collision 

E/A = 120 MeV/A 

R
n
/p

=
 Y

(n
)/

Y
(P

) 

•m*
n<m*

p - neutrons  more 

easily accelerated to high 

energies 

p 

n 

•m*
p<m*

n – protons more 

easily accelerated to high 

energies 

n 

p 

Y
. Z

h
an

g
., p

riv
ate co

m
m

. (2
0

1
3

) 



Experimental Layout 

PhD theses: Daniel Coupland & Michael Youngs 

•Courtesy Mike Famiano 

•Wall A 

•Wall B 

•LASSA – charged particles 

•Miniball – impact parameter 

•Neutron walls – neutrons 

•Forward Array – time start 

•Proton Veto scintillators  



Comparisons with transport theory: n,p 

ImQMD: 
- Cluster production does not have the 

correct binding energies for light 

fragmentstoo few fragments. 

- Test semi-classical dynamics by 

constructing “coalescence invariant” 

nucleon spectra, which represent 

flows prior to clusterization.  

Coalescence invariance:  
- Coalescence protons  or neutrons 

spectra include both free neutrons and 

protons  and those within clusters. 

This is done for both experiment data 

and theoretical calculations.   

Free particles 

E/A=50MeV 

 ImQMD05_sky: incorporate Skyrme interactions 

Y. Zhang (2013) Private Communication 

Tsang (2013) Private Communication 

D. Coupland, M. Youngs (2013) 
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E/A=50MeV 

The data suggest only a weak 

momentum dependence of the 

symmetry mean field potential 



 

Summary and Outlook 

• Experiment is beginning to provide constraints on the EoS. 

• Isospin diffusion, n/p spectral ratios, mass, IAS’s, GMR, Pigmy  and Giant 

Dipole resonances, E1 polarizabilities and neutron skin thicknesses already 

provide some constraints at 0. These constraints should become more 

stringent. 

• These constraints <0 may be helpful to understand phenomena occurring 

in the inner crust of neutrons stars.  

• New results for - , +, n, p , t, and 3He spectra and flows will provide 

sensitivity to the symmetry energy at supra-saturation densities of 20. 

•Neutron star observations provide complimentary 

information. 

• Comparisons of  laboratory and astronomical constraints on EoS at 20 

should prove to be very interesting.  

•The importance of strange and quark matter in the inner core 

is an open question. 

• How can laboratory experiments contribute? 


