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Outline 
• Motivation 

– Heavy Ion Collision studies and their 
implications on the description of core collapse 
supernovae. 

– Challenges in comparison 
• Experiment 

– Coalescence analysis 
– Results 

• Systematic comparison to Astrophysical 
models 

• Calculations of neutrinos from Black Hole 
accretion disks 

• Aspects of clustering 
 



• Core-collapse supernovae (SN)  
– Explosions of massive stars that radiate 99% of their energy in 

neutrinos 
– Birth places of neutron stars 
– Wide range of densities range from much lower than normal 

nuclear density to much higher 
• Neutrinosphere 

– Last scattering site of neutrinos in proto-neutron star: ~1012 
g/cm3 (~6x10-4 fm-3), T~5 MeV 

– A thermal surface from which around 1053 ergs (1037 MeV) are 
emitted in all neutrino species during the explosion 

• Core Collapse Supernovae dynamics and the neutrino signals 
can be sensitive to the details of neutrino interactions with 
nucleonic matter. 
– Neutrino properties determine the nucleosynthesis conditions in 

the so-called neutrino-driven wind 
– Detailed information on the composition and other 

thermodynamic properties of nucleonic matter are important to 
evaluate role of neutrino scattering. 

– Details of neutrino heating depend both on matter properties of 
low density nuclear matter and the conditions at the 
neutrinosphere 



• Relevance of heavy ion collisions to core 
collapse supernovae 
– Allow to probe the lower densities in the lab 
– Comparisons of heavy ion data to supernovae 

calculations may help discriminate between 
different models. 

• Clusters appear in shock heated nuclear matter 
– Clusters Role on the explosion dynamics and the 

subsequent cooling and compression of the proto-
neutron star is not yet fully understood 

– Valid treatment of the correlations and 
clusterization in low density matter is a vital 
ingredient of astrophysical models 

• Equation of state (EOS)  
– Many fundamental connections between the 

equation of state and neutrino interactions 
– Crucial input for understanding proto-neutron star 

evolution 
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Supernova 

Mass: 4.6 ± 1.8 M☉. (~9.2x1030kg) 

IV Source femtonova 

Mass: 20-30 amu  (~3.3x10-26 kg) 

Nuclear Reaction from 
Heavy Ion Collision 

http://en.wikipedia.org/wiki/Solar_mass
http://en.wikipedia.org/wiki/Solar_mass


T. Fischer et al., ApJS 194, 39 (2011) 

Core collapse supernova simulation 

Supernova Heavy Ion 
Nuclear reaction 

Density 
(nuc/fm3) 

10-10 < ρ < 2 2x10-3 < ρ < 3x10-2 

Temperature 
(MeV) 

~0 < T < 100 5 < T < 11 

Electron 
fraction 

0 < Yp < 0.6 Yp ~0.41 

Challenges in comparisons 
• Lower proton fraction, Yp 

• SN are “infinite”, but HIC are finite 
• The “infinite” matter in SN is charge neutral, but HIC has a net 

charge 
• Composition of nuclear matter in calculations 

– Different calculations include different species which are probably 
different from the SN 
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Experiment Analysis 
• 47 MeV/u Ar + 112,124Sn 
• Select the most violent collisions 
• Identify the femtonova 

– Intermediate velocity source 
• nucleon-nucleon collisions early in 

the reaction 

– Choose light particles at 45 deg 
because moving source fits 
suggest that most products at 
that angle result from that 
source. 

• Density from Coalescense analysis 
• Temperature from Albergo model 
• Time scale from velocity of 

products from intermediate 
velocity source 
 PRC 72 (2005) 024603 



Coalescence Parameters 
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Awes et al., PRC 24, 89 (1981). 

Mekjian et al., PRC 17, 1051 (1978). 



Temperatures and Densities 
• Recall vsurf vs time calculation 

• System starts hot and expands as 
it cools 

47 MeV/u 40Ar + 112Sn 
Core collapse supernova simulation 



Equilibrium constants from α-
particles model predictions 

• Many tests of EOS are done using mass 
fractions and various calculations include 
various different competing species. 

• If any relevant species are not included, 
mass fractions are not accurate. 

• Equilibrium constants should be more 
robust with respect to the choice of 
competing species assumed in a particular 
model if interactions are the same 

• Differences in the equilibrium constants 
may offer the possibility to study the 
interactions 

• Models converge at lowest densities, but 
are significantly below data 
 

PRL 108 (2012) 172701. 
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Further Study 

• M. Hempel et al. 
– arXiv:1503:00518 
– Submitted for publication to PRC 

• Dependence of Equilibrium constants on various 
quantities 
– Asymmetry of system 
– Coulomb effects 
– Particle degrees of freedom 

• Include comparison where possible to other 
particle types observed in experiment (d, t, 3He) 

• Other EOS models 



Composition 
• Ideal gas  

– Chemical potentials cancel 
in the case of equilibrium 

– Function of temperature 
only. 

– no ρ or Yp dependence. 
• When interaction is 

present 
– Composition dependent 
– Values converge to ideal 

gas at low densities 
– Increase in Keq with 

increasing Yp at as density 
increases. 

• Use Yp = 0.41 in remainder 
of calculations since that 
is what was extracted 
from experiment. 



Coulomb effects 

• In SN matter, 
coulomb interactions 
screened by 
surrounding 
electrons in contrast 
to matter in heavy 
ion collisions 

• Small effect in 
calculations when 
screening is turned 
off. 



Particle Degrees of Freedom 
• Almost no dependence 

when constraining to A 
≤ 10. 

• Larger dependence 
when constraining to A 
≤ 4 
– Production of A>4 very 

small in experiment 
• Best agreement when 

only n,p,α included 
– Coincidence 
– Not realistic since 

significant d, t, 3He 
observed in 
experiment. 

– Indicates importance 
of considering all 
experimental data 
 



• All reaction 
products 
considered 

• Species not 
included have Keq = 
0 which does not 
match data 

• Including all 
reaction products 
and constraining 
to A ≤ 4 yields 
good agreement 
with data within 
error bars. 



Constraining the EOS 
• STOS 

– Treats only n, p, α 
– Fits Keq(α) with heavy nuclei suppression, but 

cannot fit d, t, 3He 

• LS 
– Treats n, p, α and heavy nuclei 
– Fits Keq(α) in unmodified form, but not when heavy 

nuclei suppressed 

• NL3, FSUgold 

– Uses different assumptions in different density 
regimes 
• Large rho: uniform nuclear matter of nucleons 
• Intermediate rho: RMF with Hartree calculations 

leading to nucleons and heavy nuclei 
• Small rho: viral EOS to second order 

• gRDF 
– Treats nucleons, light and heavy nuclei 
– Interaction is meson-exchange based relativistic 

mean field approach. 

• QS 

– Microscopic treatment  with systematic quantum 
statistical approach 

– Effects of medium on cluster are taken into 
account. 



Comparison of all models together 

• Two groups of calculations 
– n, p, α calculations which 

predict Keq(α), but cannot 
predict other species. 

– Models with n, p, d, t, 
3He, α 

• Low densities 
– All Keq(α) converge to 

ideal gas 
– But are below 

experimental data which 
result from the very late 
stages of the reaction  

• Models that treat all light 
particles are generally 
within error bars 



• Keq(T) 
• Uncertainity in 

temperature 
measurement 
including at low 
density 

• Ideal gas Keq is 
function of T only. 

• Keq(T) for models 
that treat all 
particles are within 
experimental error 
bars. 

Keq(T) 



Neutrinos and gravitational attraction 
from Black Hole accretion disks 

• O. L.  Caballero et al. 



Neutrinosphere 

PRL 108, 172701 (2012). 

PRL 108, 062702 (2012). 



Summary 
• Comparisons of objects that are different by 56 

orders of magnitude in mass. 
– Femtonova and supernova 

• Can use heavy ion collisions to create femtoscale 
objects having similar temperatures and densities 
of very large mass objects. 

• Density and temperatures achieved in the range of 
those of the neutrinosphere 

• Further study of properties and behavior of 
equilibrium constants 

• Importance of including “important” ingredients in 
model calculations 

• Importance of taking into account all available 
experimental data. 



Clustering aspects in heavy ion 
collisions 

• Coalescence analysis (shown in 
this talk) 
– Density and temperature 
– Low density and clustering 

• Studies of reactions with alpha 
conjugate nuclei 
– Have 40Ca and 28Si projectiles with 

40Ca, 28Si, 12C, 181Ta at 35, 25 and 10 
MeV/u 

– 35 MeV/u analyzed so far 
– Various reactions with Ca and Si 

projectiles at 35 MeV/u have a 
large probability of breaking into 
alpha-like fragments 

– Further analysis into non-statistical 
behavior of these systems 
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