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INTRODUCTION



The Nuclear Many-Body Problem:

>

Nucleus: from few to more than 200 strongly interacting
and self-bound fermions.

Underlying interaction is not perturbative at the
(low)energies of interest for the study of masses, radii,
deformation, giant resonances,...

Complex systems: spin, isospin, pairing, deformation, ...
Many-body calculations based on NN scattering data in
the vacuum are not conclusive yet:

» different nuclear interactions in the medium are found
depending on the approach

> EoS and (only very recently) few groups in the world are
able to perform extensive calculations for light and
medium mass nuclei

Based on effective interactions, Nuclear Energy Density
Functionals are successful in the description of masses,
nuclear sizes, deformations, Giant Resonances,...



Nuclear Energy Density Functionals:

Main types of successful EDFs for the description of masses,
deformations, nuclear distributions, Giant Resonances, ...
Relativistic mean-field models, based on Lagrangians where
effective mesons carry the interaction:
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Non-relativistic mean-field models, based on Hamiltonians
where effective interactions are proposed and tested:

Veff long range Vshortfrange
Nucl — attractlve repulsive

+ Vso + Vpair

» Fitted parameters contain (important) correlations
beyond the mean-field

» Nuclear energy functionals are phenomenological — not
directly connected to any NN (or NNN) interaction
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The Nuclear Equation of State: Infinite System
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The Nuclear Equation of State: Infinite System
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The Nuclear Equation of State: Infinite System
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The Nuclear Equation of State: Infinite System
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The Nuclear Equation of State: Infinite System
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Isovector properties in nuclei

» In the past (and also in the present), neutron properties in
stable medium and heavy nuclei have been mainly
measured by using strongly interacting probes.

Limited knowledge of isovector properties
» At present,
> the use of rare ion beams has opened the possibility of
measuring properties of exotic nuclei = more info
> parity violating elastic electron scattering (PVES), a model
independent technique, has allowed to estimate the
neutron radius of a stable heavy nucleus like 2°®Pb

4

Promising perspectives for the near future
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Some basics ...

\4

Electrons interact by exchanging a y or a Z, boson.

v

While protons couple basically to v, neutrons do it to Zo.

\4

Electron motion governed by the Dirac equation:
[&-P+ Bme + V(r)p =EP

where V(r) = Ve (1) + v Vi (1)

Dirac equation for helicity states (m. ~ 0)

[&- P+ (Velr) £ Vw(r))lb+ = B
Ultra-relativistic electrons, depending on their helicity,
will interact with the nucleus seeing a slightly different
potential “aZ” + “Gg”.

v

v

Refs: Phys. Rev. C 57 3430 (1998); Phys. Rev. C 63, 025501 (2001); Phys. Rev. C 78, 044332 (2008); Phys. Rev. C 82,

054314 (2010); Phys. Rev. Lett. 106 252501 (2011)



Some basics ...

» The interference between the DCS of electrons with + and
— helicity states,

_ do,/dQ—do_/dQ
PV doy /dQ + do_/dQ

» Ultra-relativistic electrons moving under the effect of V.
where Coulomb distortions are important = solution of
the Dirac equation via the Distorted Wave Born
Approximation (DWBA).

» Input for the calculation of V. are the p,, and p,, (main
uncertainty in p,) and nucleon form factors for the
e-m and the weak neutral current.




Qualitative considerations ...

Within the Plane Wave Born Approximation,

B Grq?
PV 42

.2 Fn(q) —Fplq)
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... which depends on F,,(q) — F,(q). For q — 0, it is approximately,

—L (-0 = L (AR 4 03)12)
= —q—z (2(1‘2)1/2Ar + Ar? )
6 P np np

variation of A, at a fixed q¢ dominated by the variation of
Arnp. Fp(q) well fixed by experiment



Qualitative considerations ...
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variation of A, at a fixed q¢ dominated by the variation of

Arnp. Fp(q) well fixed by experiment
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Qualitative considerations ...

Within the Plane Wave Born Approximation,
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So, let us check DWBA results...



? — Linear Fit, r = 0.979
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p, JLab and Mainz
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Different experiments on
proton elastic scattering,
antirpotonic atoms and
pion-photoproduction

agrees with the correlation
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Isovector Giant Resonances

» In isovector giant resonances neutrons and protons
“oscillate” out of phase
e.g. within a classical picture: “e-m interacting probes
basically excite protons, protons drag neutrons thanks to
the nuclear strong interaction, when neutrons approach
too much to protons, they are pushed out”

» Isovector resonances will depend on oscillations of the
density pj;, = pn — pp = S(p) will drive such “oscillations”

» The excitation energy (E,) within a Harmonic Oscillator
approach is expected to depend on the symmetry energy:

/1 d2u [ 82e

where 3 = (pn — pp)/(Pn + Pp)



Polarizability, Strength distribution and its moments

» The linear response or dynamic polarizability of a nuclear
system excited from its g.s., |0), to an excited state, [v), due
to the action of an external isovector oscillating field
(dipolar/quadrupolar in our case) of the form
(Feiwt + FT efiwt):

A
Fim = Z vY;m(F)72(1) (AL = 1,2 — Dipole, Quadrupole)
i

» is proportional to the static polarizability for small
oscillations

o= (8m/9)e*m_; = (8m/9)e* > |(V[FI0)|*/E where m_; is

the inverse energy weighted moment of the strength
function, defined as, S(E) = Z |(v[FI0)[*5(E — E+)

22



Isovector Giant Dipole Resonance:

Dipole polarizability: a macroscopic approach

electric polarizability measures tendency of the nuclear
charge distribution to be distorted (- cectric dipole moment))

external electric field

» The dielectric theorem establishes that the m_; moment
can be computed from the expectation value of the
Hamiltonian in the constrained ground state 3’ = 3 + AD.

Adopting the Droplet Model:

2\1/2

Al 12T s
48] 4 Q

within the same model, connection with the neutron skin

thickness:

m_1 =

AG2) | 50yt 35F — Ay
12] 2 <T~2>1/2(I_IC)
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Isovector Giant Dipole Resonance in **Pb:

Dipole polarizability: microscopic results HF+RPA
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X. Roca-Maza, et al., Phys. Rev. C 88, 024316 (2013).

Experimental dipole polarizability «p = 20.1 £ 0.6 fm3; A.
Tamii et al., PRL 107, 062502 (RCNP).



Isovector Giant Dipole Resonance in **Ni:
Dipole polarizability: microscopic results HF+RPA
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28Pb vs **Ni:
Dipole polarizability: microscopic results HF+RPA
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Isovector Giant Quadrupole Resonance:
Quadrupole polarizability in 2°3Pb
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Giant Quadrupole Resonances
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Giant Quadrupole Resonances
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Key features in the new polarized Compton scat-
tering experiment:
» almost monoenergetic and polarized y—ray
beam

» E1 — E2 interference term has opposite signs
in the forward and backward angles

[S.S. Henshaw, M.W. Ahmed, G. Feldman, A.M. Nathan, and H.R. Weller PRL107 (2011)]
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Isovector Giant Quadrupole Resonance:

Within the Quantum Harmonic  6————
Oscillator approach T I
2 V. 2 A
EY =2hwo /1 + >h7 Symg ) Zat
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and connecting Vsym with the 8 |
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Macroscopic and non-relativistic formula, estimate on asym(A),
difficult to assess systematic errors.

30



. D
Isovector Giant Quadrupole Resonance:
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CONCLUSIONS



Conclusions:

>

>

A precise and model-independent determination of Ar,,,
in 2°8Pb via PVES experiments probes the symmetry
energy.

We demonstrate a close linear correlation between A,
and Ar,, within the same framework in which the Ary,;, is
correlated with L (expected to be better as heavier the
nucleus).

Other experiments fairly agree with the correlation
between A, and Ary,, in 2°*Pb.

EDFs show a linear correlation between «p o] and Ary,,

A,y and ap are complementary observables that may set
tight constraints on the density dependence of the
symmetry energy around saturation density, if precisely
and/or systematically measured.
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