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The Nuclear Many-Body Problem:

◮ Nucleus: from few to more than 200 strongly interacting
and self-bound fermions.

◮ Underlying interaction is not perturbative at the
(low)energies of interest for the study of masses, radii,
deformation, giant resonances,...

◮ Complex systems: spin, isospin, pairing, deformation, ...
◮ Many-body calculations based on NN scattering data in

the vacuum are not conclusive yet:
◮ different nuclear interactions in the medium are found

depending on the approach
◮ EoS and (only very recently) few groups in the world are

able to perform extensive calculations for light and
medium mass nuclei

◮ Based on effective interactions, Nuclear Energy Density

Functionals are successful in the description of masses,

nuclear sizes, deformations, Giant Resonances,...
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Nuclear Energy Density Functionals:
Main types of successful EDFs for the description of masses,

deformations, nuclear distributions, Giant Resonances, ...

Relativistic mean-field models, based on Lagrangians where
effective mesons carry the interaction:

Lint = Ψ̄Γσ(Ψ̄, Ψ)ΨΦσ +Ψ̄Γδ(Ψ̄, Ψ)τΨΦδ

−Ψ̄Γω(Ψ̄, Ψ)γµΨA
(ω)µ −Ψ̄Γρ(Ψ̄, Ψ)γµτΨA

(ρ)µ

−eΨ̄Q̂γµΨA
(γ)µ

Non-relativistic mean-field models, based on Hamiltonians
where effective interactions are proposed and tested:

Veff
Nucl = V

long−range
attractive + V

short−range
repulsive + VSO + Vpair

◮ Fitted parameters contain (important) correlations

beyond the mean-field
◮ Nuclear energy functionals are phenomenological → not

directly connected to any NN (or NNN) interaction
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The Nuclear Equation of State: Infinite System
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The Nuclear Equation of State: Infinite System

0 0.05 0.1 0.15 0.2 0.25

ρ  ( fm
−3

 )

-20

-10

0

10

20

30
e 

 (
 M

eV
 )

 

S(ρ)~

e(ρ,δ=1)
neutron matter

symmetric matter
e(ρ,δ=0) 

            Saturation

 (0.16 fm
−3

, −16.0 MeV)

E

A
(ρ, β) =

E

A
(ρ, β = 0) + S(ρ)β2 + O(β4)

◮ Nuclear
Matter

◮ Symmetric
Matter

◮ Symmetry energy

[

β =
ρn − ρp

ρ

]

8



The Nuclear Equation of State: Infinite System
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The Nuclear Equation of State: Infinite System
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Isovector properties in nuclei

◮ In the past (and also in the present), neutron properties in
stable medium and heavy nuclei have been mainly
measured by using strongly interacting probes.

⇓
Limited knowledge of isovector properties

◮ At present,
◮ the use of rare ion beams has opened the possibility of

measuring properties of exotic nuclei ⇒ more info
◮ parity violating elastic electron scattering (PVES), a model

independent technique, has allowed to estimate the
neutron radius of a stable heavy nucleus like 208Pb

⇓
Promising perspectives for the near future
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PARITY VIOLATING
ASYMMETRY

12



Some basics ...

◮ Electrons interact by exchanging a γ or a Z0 boson.
◮ While protons couple basically to γ, neutrons do it to Z0.
◮ Electron motion governed by the Dirac equation:

[~α · ~p+ βme + V(r)]ψ = Eψ

where V(r) = VC(r) + γ
5VW(r)

◮ Dirac equation for helicity states (me ≈ 0)
[~α · ~p+ (VC(r)± VW(r))]ψ± = Eψ±

◮ Ultra-relativistic electrons, depending on their helicity,

will interact with the nucleus seeing a slightly different
potential “αZ” ± “GF”.

Refs: Phys. Rev. C 57 3430 (1998); Phys. Rev. C 63, 025501 (2001); Phys. Rev. C 78, 044332 (2008); Phys. Rev. C 82,

054314 (2010); Phys. Rev. Lett. 106 252501 (2011)
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Some basics ...

◮ The interference between the DCS of electrons with + and
− helicity states,

Apv =
dσ+/dΩ− dσ−/dΩ

dσ+/dΩ+ dσ−/dΩ

◮ Ultra-relativistic electrons moving under the effect of V±

where Coulomb distortions are important ⇒ solution of
the Dirac equation via the Distorted Wave Born
Approximation (DWBA).

◮ Input for the calculation ofV± are the ρn and ρp (main

uncertainty in ρn) and nucleon form factors for the
e-m and the weak neutral current.
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Qualitative considerations ...

... which depends on Fn(q) − Fp(q). For q→ 0, it is approximately,

Within the Plane Wave Born Approximation,

Apv =
GFq

2

4πα
√
2

[

4 sin2 θW +
Fn(q) − Fp(q)

Fp(q)

]

−
q2

6

(

〈r2n〉− 〈r2p〉
)

= −
q2

6

[

∆rnp(〈r2n〉1/2 + 〈r2p〉1/2)
]

= −
q2

6

(

2〈r2p〉1/2∆rnp + ∆r2np

)

variation of Apv at a fixed q dominated by the variation of
∆rnp. Fp(q) well fixed by experiment
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So, let us check DWBA results...
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208Pb: direct
correlations

δApv ∼ 1%;

δ∆rnp ∼ 0.02 fm;

δL 10 MeV

X. Roca-Maza, et al., PRL 106 252501 (2011)
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ISOVECTORGIANT
RESONANCES
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Isovector Giant Resonances

◮ In isovector giant resonances neutrons and protons

“oscillate” out of phase

e.g. within a classical picture: “e-m interacting probes

basically excite protons, protons drag neutrons thanks to

the nuclear strong interaction, when neutrons approach

too much to protons, they are pushed out”

◮ Isovector resonances will depend on oscillations of the
density ρiv ≡ ρn − ρp ⇒ S(ρ) will drive such “oscillations”

◮ The excitation energy (Ex) within a Harmonic Oscillator

approach is expected to depend on the symmetry energy:

ω =

√

1

m

d2U

dx2
∝

√
k→ Ex ∼

√

δ2e

δβ2
∝

√

S(ρ)

where β = (ρn − ρp)/(ρn + ρp)
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Polarizability, Strength distribution and its moments

◮ The linear response or dynamic polarizability of a nuclear

system excited from its g.s., |0〉, to an excited state, |ν〉, due
to the action of an external isovector oscillating field

(dipolar/quadrupolar in our case) of the form
(Feiwt + F†e−iwt):

FJM =

A∑

i

rJYJM(r̂)τz(i) (∆L = 1, 2→ Dipole,Quadrupole)

◮ is proportional to the static polarizability for small
oscillations
α = (8π/9)e2m−1 = (8π/9)e2

∑

ν

|〈ν|F|0〉|2/E where m−1 is

the inverse energy weighted moment of the strength

function, defined as, S(E) =
∑

ν

|〈ν|F|0〉|2δ(E− Eν)
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Isovector Giant Dipole Resonance:
Dipole polarizability: a macroscopic approach

electric polarizability measures tendency of the nuclear

charge distribution to be distorted (α ∼

electric dipole moment
external electric field

)

◮ The dielectric theorem establishes that the m−1 moment
can be computed from the expectation value of the
Hamiltonian in the constrained ground state H ′ = H + λD.

Adopting the Droplet Model:

m−1 ≈ A〈r2〉1/2
48J

(

1+
15

4

J

Q
A−1/3

)

within the same model, connection with the neutron skin
thickness:

αD ≈ A〈r2〉
12J



1+
5

2

∆rnp +

√

3
5
e2Z
70J − ∆rsurface

np

〈r2〉1/2(I− IC)




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Isovector Giant Dipole Resonance in 208Pb:

Dipole polarizability: microscopic results HF+RPA
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X. Roca-Maza, et al., Phys. Rev. C 88, 024316 (2013).

Experimental dipole polarizability αD = 20.1± 0.6 fm3; A.
Tamii et al., PRL 107, 062502 (RCNP).
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Isovector Giant Dipole Resonance in 68Ni:
Dipole polarizability: microscopic results HF+RPA
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208Pb vs 68Ni:
Dipole polarizability: microscopic results HF+RPA
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Isovector Giant Quadrupole Resonance:
Quadrupole polarizability in 208Pb
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Giant Quadrupole Resonances

IVGQR: was
experimentally known [R.

Pitthan, proceedings of

Giant Multiple Resonance

conference, Oak Ridge

1980] but via a recent
experimental technique the
accuracy has been
improved [S.S. Henshaw,

M.W. Ahmed, G. Feldman,

A.M. Nathan, and H.R.

Weller PRL107 (2011)]

Eexcitation, width and EWSR
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Eexcitation, width and EWSR

Key features in the new polarized Compton scat-
tering experiment:
◮ almost monoenergetic and polarized γ−ray

beam

◮ E1− E2 interference term has opposite signs

in the forward and backward angles
[S.S. Henshaw, M.W. Ahmed, G. Feldman, A.M. Nathan, and H.R. Weller PRL107 (2011)]
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Isovector Giant Quadrupole Resonance:

Within the Quantum Harmonic
Oscillator approach
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Isovector Giant Quadrupole Resonance:
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MeV−1fm; DD-ME slope 0.057 MeV−1fm; 31



CONCLUSIONS
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Conclusions:

◮ A precise and model-independent determination of ∆rnp

in 208Pb via PVES experiments probes the symmetry

energy.
◮ We demonstrate a close linear correlation between Apv

and ∆rnp within the same framework in which the ∆rnp is
correlated with L (expected to be better as heavier the
nucleus).

◮ Other experiments fairly agree with the correlation

between Apv and ∆rnp in 208Pb.
◮ EDFs show a linear correlation between αD,QJ and ∆rnp

◮ Apv and αD are complementary observables that may set
tight constraints on the density dependence of the

symmetry energy around saturation density, if precisely

and/or systematically measured.
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