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‣ The equation of state (EOS) of nuclear matter:  

‣ of fundamental interest 

‣ object of intense theoretical efforts since several decades 

‣ an important ingredient in modeling fascinating astrophysical phenomena such as: 

‣ compact stars [1] 

‣ core collapse supernovae[2] 

‣ The calculation of the nuclear EOS from first principles, such as very recently attempted in 
[3], is a very complex task. 

‣ Nuclear physics based on empirical observations => even the most ’fundamental’ theory of 
nuclear forces requires a confrontation with empirical facts. 

‣ 1st method, from astrophysicists:  from ’neutron’ star masses and radii. But missing:  

‣ precise model-independent radii, 

‣ composition of the matter in the centre of the stars.

NGC 1952, Crab Nebula 
pulsar neutron star imaged by 
the NASA/ESA Hubble Space 
Telescope
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IQMD Au+Au@2 A.GeV simulation

‣ Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident 
energies, system sizes and compositions.  
‣ flow method: limited to Ebeam<10 A.GeV ⬅ some kind of a clock is available (sound 

velocity versus participant-spectator interaction).  
‣ KaoS (1990’s), C+C, Au+Au, K+ yields -> ’soft’ EOS. But: 

‣ kaons rare at Ebeam=0.8 A.GeV (max. sensitivity to the EOS). 
‣ all ’bulk’ observables (multiplicities, clusterisation, stopping, flow) under control in 

the transport model ?  
‣ EoS (1996), Au+Au @ 0.25 to 1.15 A.GeV, radial & sideward flow, squeeze-out versus 

QMD -> no strong sensitivity on the nuclear incompressibility K0. 
‣ FOPI (2005), Au+Au @ 0.09-1.5 A.GeV, Z=1 elliptic flow, versus 4 different transport 

codes -> ’no strong constraint on the EOS can be derived at this stage’. 
‣ BEVALAC & AGS accelerators, proton flows versus transport theories -> K0 = 167-200 

MeV (soft) from V1, K0 = 300 MeV (semi-stiff) from V2 -> contradictions.
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z

x

y
V2

Y = rapidity  
pt = transverse momentum 
ΦR = reaction plane azimuthal angle

’Elliptic flow’:  cos(2(Φ-ΦR)) mode, competition between ‘in-plane’ (V2>0) and 
‘out-of-plane’ ejection (V2<0).

V1 = ‘side/directed flow’, cos(Φ-ΦR) mode

Flows at high density in heavy-ion collisions
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Data: C. Sturm et al., PRL 86 (2001) 
39  
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P. Danielewicz et al. 
Science 298, 1592 (2002)

elliptic flow

side flow
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Beam energy dependence of elliptic flow
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elliptic flow 
➢ pressure gradient of compression 

zone 
➢ shadowing of spectators 
➢ at low energies 

− attraction due to mean field of 
nucleons  

➢ at high energies 
− lacking shadowing of 

spectators
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‣ Present work: improve the situation in the 1 A.GeV regime, from 
extensive flow data published recently by the FOPI Collaboration  
(Au+Au @ 0.4-1.5 A.GeV) [4]  
➜ close look at the elliptic flow data with improvements: 
‣ 1) not only protons: d, t, 3He 4He having larger flow signals than 

single nucleons. 
‣ 2) not only mid-rapidity data: 80% of the target- projectile 

rapidity gap. 

[4] W. Reisdorf, et al. (FOPI Collaboration), Nucl. Phys. A 876 (2012) 1.
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Complete shape of v2(y0): 
a new observable: 
v2n = |v20| + |v22|,  
from fit  
v2(y0) = v20 + v22 . y02

K0 =  
380 MeV (‘stiff’) 
200 MeV (‘soft’)
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➜ v2n(Ebeam) varies by a factor 
≈1.6, >> measured uncertainty 
(≈1.1)
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➜ clearly favors a ’soft’ EOS : 
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‣ Phenomenological EOS  
HM and SM include the saturation 
point at ρ/ρ0 = 1,  
E/A = −16 MeV by construction. 

‣ ➜ fixes the absolute position of 
the curves:  

‣ the heavy ion data are only 
sensitive to the shape, i.e. the 
pressure (derivative).  

‣ ➜ a stiff EOS, characterised by  
K0 = 380 MeV is not in agreement 
with the flow data in the incident 
energy range 0.4 - 1.5 A.GeV. 
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Purpose = characterise 
which ’typical’ densities 
where probed in the FOPI 
experiments 
=> at which time V2 develops, 
and which conditions 
influence it the most.
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Purpose = characterise 
which ’typical’ densities 
where probed in the FOPI 
experiments 
=> at which time V2 develops, 
and which conditions 
influence it the most.

IQMD transport model[5,6] 
various phenomenological 
EOS’s:  
» ‘stiff’ = HM  

(+ momentum dependent), 
K0 = 380 MeV 

» ‘soft’ = SM (+ momentum 
dependent), K0 = 200 
MeV. 

Here: protons in Au+Au at 
1.5 A.GeV, b=3 fm

[5]  J. Aichelin, Phys. Rep. 202 (1991) 233.
[6]  C. Hartnack, et al., Eur. Phys. J. A 1 (1998) 151. 
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= time / passing time

Density at centre of collision

Number of collisions 
(protons)*

Mean-field 
momentum transfer 

(protons)*

Density around protons* 
*selected by FOPI 

Simulations: the scenario

10

Purpose = characterise 
which ’typical’ densities 
where probed in the FOPI 
experiments 
=> at which time V2 develops, 
and which conditions 
influence it the most.

IQMD transport model[5,6] 
various phenomenological 
EOS’s:  
» ‘stiff’ = HM  

(+ momentum dependent), 
K0 = 380 MeV 

» ‘soft’ = SM (+ momentum 
dependent), K0 = 200 
MeV. 

Here: protons in Au+Au at 
1.5 A.GeV, b=3 fm

[5]  J. Aichelin, Phys. Rep. 202 (1991) 233.
[6]  C. Hartnack, et al., Eur. Phys. J. A 1 (1998) 151. 

full target-projectile overlap
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full target-projectile overlap

The highest density phase 
initiates the high pressure, 
hence the flow. 

Tested: a high density cut-
off in the EOS => no elliptic 
flow. 
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Simulations: the scenario

10

Purpose = characterise 
which ’typical’ densities 
where probed in the FOPI 
experiments 
=> at which time V2 develops, 
and which conditions 
influence it the most.

full target-projectile overlap

The highest density phase 
initiates the high pressure, 
hence the flow. 

Tested: a high density cut-
off in the EOS => no elliptic 
flow. 

The (flow) dynamics 
develops up to later times, 
hence lower densities.
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Simulations: the scenario

11

UrQMD Au+Au at 1.5 A.GeV, b=3 fm

just after full passing
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Simulations: the scenario

11

UrQMD Au+Au at 1.5 A.GeV, b=3 fm

‣ The elliptic flow at mid-rapidity develops fast: already stabilised at the passing time. 
‣ At tpass, the elliptic flow, in its rapidity dependance, depends already strongly on the EOS. 

‣ The elliptic flow around the spectators (|y0| close to 1) stabilises twice slower.

just after full passing
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Simulations: the scenario

11

UrQMD Au+Au at 1.5 A.GeV, b=3 fm

‣ The shape of its rapidity dependance shows a universality with the EOS’s (through scaling).
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600 A.MeV

1 A.GeV

1.5 A.GeV

SM HM

Simulations: the scenario

12

‣ The elliptic flow in strength and 
shape is mostly influenced by the 
force of the mean field (hence 
EOS). 

‣ A ‘mean’ density characterising the 
development of the elliptic flow can 
be built from the mean value 
weighted by this force up to around 
the passing time.
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Simulations: the scenario

13

‣ In the QMD model, the EOS 
must be correct over a broad 
range of densities in order to 
predict the observed elliptic 
flow.  

‣ The density range, relevant to 
the EOS evidenced by the FOPI 
Collaboration, spans in the range 

ρ ≃ (1 − 3) ρ0.

high densities trigger the flow

the elliptic flow develops and stabilises 

with lower densities
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‣ A single parameter v2n, characterising the elliptic flow over a large rapidity interval, for 
protons and other light isotopes -> clear discrimination for soft EOS. 
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‣ A single parameter v2n, characterising the elliptic flow over a large rapidity interval, for 
protons and other light isotopes -> clear discrimination for soft EOS. 
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protons and other light isotopes -> clear discrimination for soft EOS. 

‣ Relevant density range: estimated from the simulations to span ρ ≃ (1 − 3)ρ0. 

‣ The ’flow method’: competitive and complementary with the ’kaon method’ (which is as 
discriminating only for the narrow energy range Ebeam = 0.8 A.GeV, close to threshold). 

‣ Both methods lead to the same conclusion (with same transport model IQMD).

‣ Convincing conclusions on basic nuclear properties imply a successful simulation:  
‣  of the full set of experimental observables  
‣  with the same code  
‣  using the same physical and technical parameters. 

‣ Has been reached for a number of observables, for some other data not yet the case.

‣ Radial flow of the light clusters was well reproduced, but insensitive to the EOS.

‣ Pion yields: differ only by about 10% between HM and SM options, imply high experimental 
accuracy and better transport model predictions (elementary pion cross sections not 
precisely known).
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energy/nucleon EOS is too flat -> low pressure) to 4 A.GeV (above, participant-spectator 
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Thank you for your attention!
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Katayama 2013
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Dirac-Brueckner-Hatree-Fock (DBHF) 
calculation[10] using the Bonn A[11] 
nucleon-nucleon potential

(three representative microscopic calculations compared with our new constraints)

[10]  R. Brockmann, R. Machleidt, Phys. Rev. C 42 (1990) 1965. 

[11]  T. Katayama, K. Saito, Phys. Rev. C 88 (2013) 035805. 
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Sammarruca 2012
s DBHF
∆ Chiral

0.5 1.0 1.5 2.0
ρ/ ρ0

-16

-12

-8

-4

E/
A 

(M
eV

)

(three representative microscopic calculations compared with our new constraints)

2 symmetric nuclear matter EOS’s 
from [12]: 

1) ’DBHF’ = meson theoretic potential 
together with the DBHF method 
2) ’Chiral’= use of effective field 
theory (EFT) with density dependent 
interactions derived from leading 
order chiral three-nucleon forces.

[12]  P. Danielewicz, G. Odyniec, Phys. Lett. B 157 (1985) 168. 
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Fritsch 2005
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(three representative microscopic calculations compared with our new constraints)

Using the chiral approach[13]: 2 rather 
different EOS’s  including or not 
virtual ∆ excitations.  
» the virtual ∆-excitations help locate 

the EOS at the right horizontal 
place around ρ = 0.16 fm−3. 

» the ∆ leads to a rather marked 
stiffening of the EOS (K0 = 304 
MeV)  

» because ’cold’ EOS ? 
» finite temperature in the reaction => 

the ∆ are real rather than virtual. 
The theoretical ’∆ stiffness’ could 
then be a dispersion effect rapidly 
changing with temperature.

[13]  S. Fritsch, N. Kaiser, W. Weise, Nucl. Phys. A 750 (2005) 259. 


