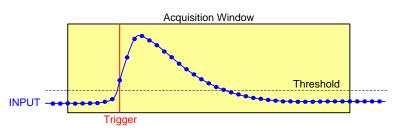
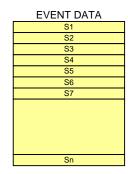


Digital DAQ State-of-the-art in Physics Application

- Digital Acquisition is now a standard approach in many Physics fields:
 - High Energy
 - Nuclear
 - Neutrino
 - Dark Matter
 - Fusion
 - **>** ...
- Different Sampling Rate, Bit Depth, FW for different application/detectors

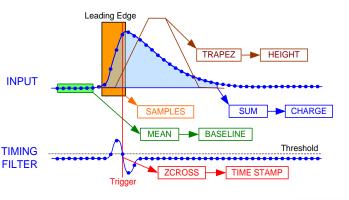




Key Factor of the Digital Approach

- Two basic ways of operation:
 - Waveform Mode: Readout and storage of full waveforms/pulses
 - List Mode: Readout and storage only of relevant information (Energy, Time Stamp)

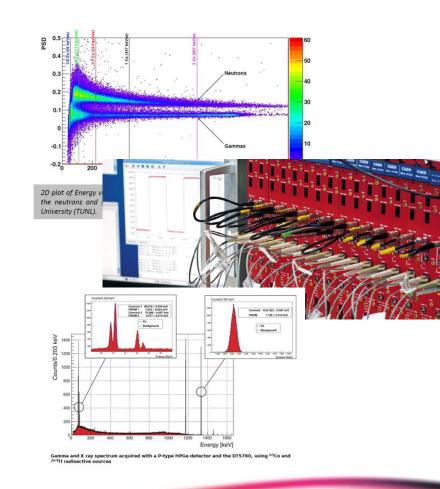
through Digital Pulse Processing



Logic And Event Selection

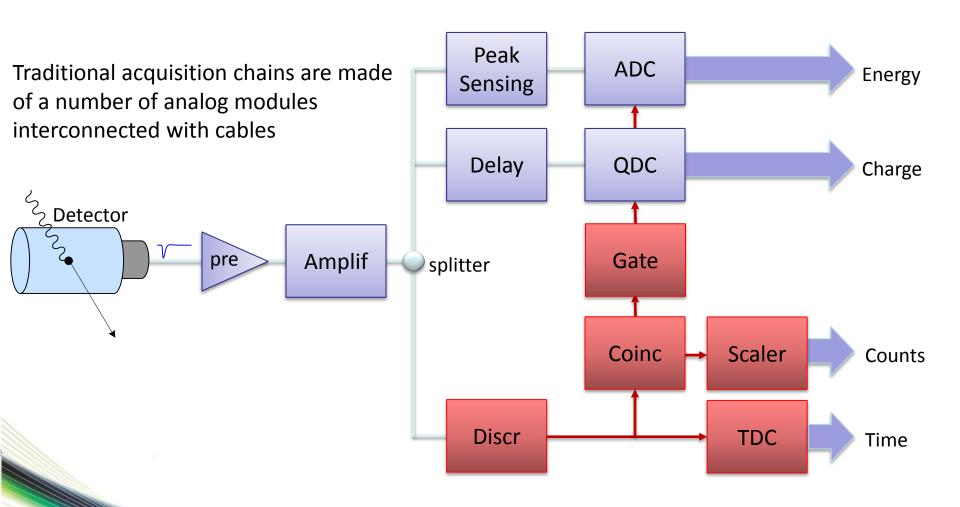
(And, Or, Majority, Coincidence, High Level Trigger):

- On board on-line
- Hardware via Digital External Logic Units INPUT
- Off-line via Software



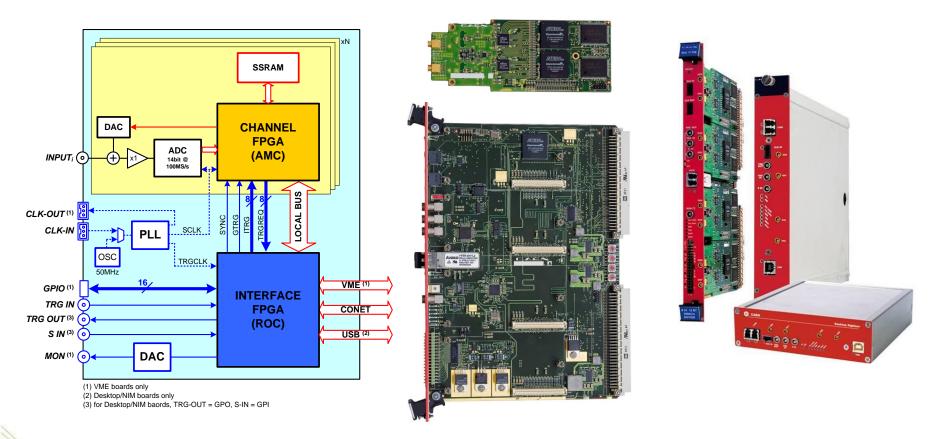
Key Factor of the Digital Approach

Benefits:

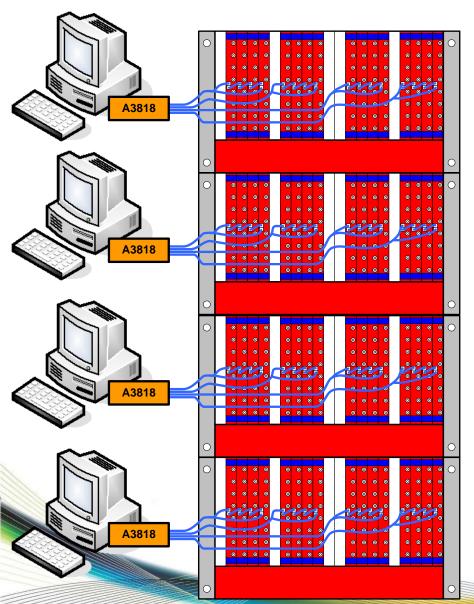

- Programmable Digital Pulse Processing
- System scalability, Flexibility
- Waveforms for off-line SW analysis
 Interfaces for Data Transfer
- Simplified Logic/Triggering Front panel I/Os
- Simplified Electronic Chain

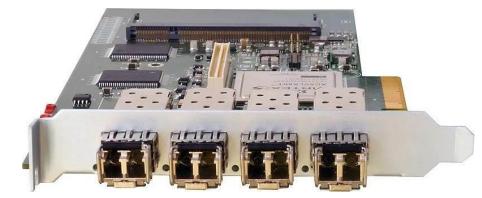
Traditional acquisition chain

A/D conversion at the end of the chain


Fully digital acquisition chain

The aim of the Digital Pulse Processing is to make a "all in digital" version of analog modules such as Shaping Amplifiers, Discriminators, QDCs, Peak Sensing ADCs, TDCs, Scalers, Coincidence Units, etc.


Architecture


- VME (VME64, VME64X compliant), NIM, Desktop form factors
- Interfaces: Optical Link (CONET), USB 2.0

CONET2 readout example: XMASS

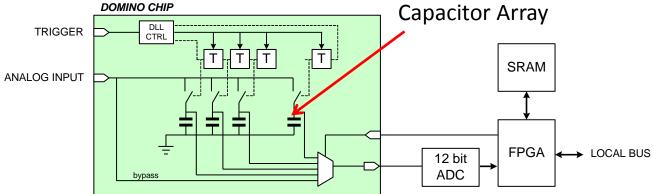
- 64 V1751 modules in 4 VME crates
- 512 channels (10 bit @ 1GHz)
- 4 A3818s 4 link PCle cards
- 16 parallel CONET2 links
- 4 digitizers daisy chained
- Readout Bandwidth = ~2 MB/s/ch
- Total Bandwidth = ~ 1GB/s

Fast ADC Technology

Wide offer

- Sampling frequency: from 62.5 MHz to 4 GHz
- Resolution up to 14 bits
- No conversion dead time

Coming Soon: waveform digitizer x725


- Up to 16 channels in one board
- 250 MS/s, 125 MHz analog bandwidth, with 14 bits dynamic
- Double input dynamic range: 0.5 and 2 Vpp software set
- Available in VME, NIM and Desktop form factors
- Two firmware algorithms available
- Cost effective digitizer, still high level

Switched Capacitor Technology

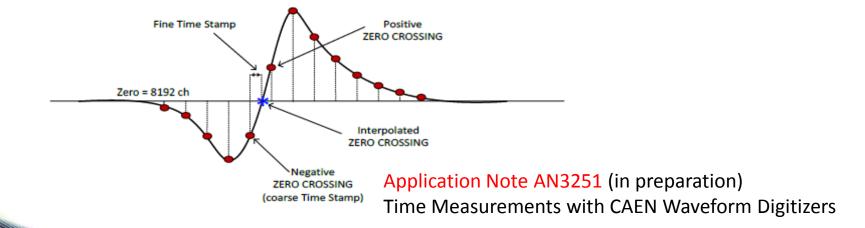
- Domino Ring Sample, DRS4
 - Chip developed at PSI, Switzerland: http://www.psi.ch/drs/
 - 8 channels per chip, integrated on the x742 family
 - Up to 5 GSa/s, 500 MHz analogic bandwidth

- Swift Analog Memory (long), SAMLONG
 Design of CEA/IRFU LAL Orsay, France
 - 2 channels per chip, integrated on the x743 family
 - Up to 3.2 GSa/s, 500 MHz analogic bandwidth
 - Dedicated software with GUI

Digital Pulse Processing

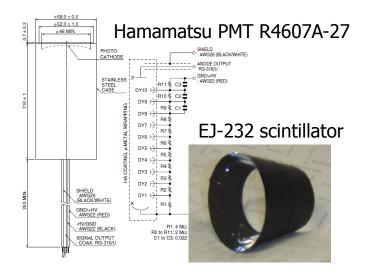
Digital DAQ: a step to a complete solution

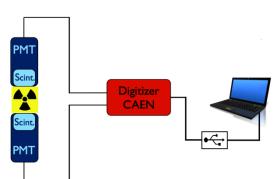
- > Energy Measurement:
 - ✓ Same resolution of Analog solutions achieved for most detectors (Pulse Height Analysis, Charge Integration)
 - ✓ Pulse Shape Discrimination algorithm available
- Time Measurement?
- Up to now fine <u>Time Measurements</u> still relied on traditional chains (CFD+TDC):
 - Digitizers have coarse time stamp, typicaly > 1 ns
 - Off-line interpolation possibility --> waveform acquisition --> high bandwidth requirements

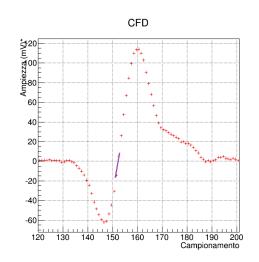


Time Measurement

Digital DAQ: a step to a complete solution


CAEN recently developed *On-line Fine Time Measurement*

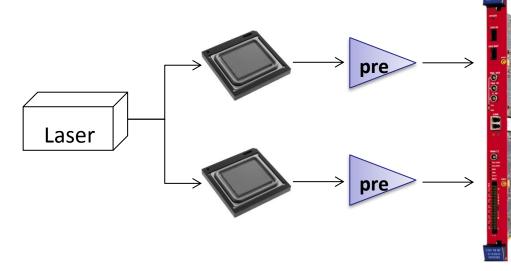

- Implementation of a digital CFD-like algorithm on FPGA
- Available on 500 MS/s digitizers, soon available on 250 and 1000 MS/s ones
- Sub-nanosecond measurement easily achievable, typically limited by the detector
- List Mode now complete: Energy, PSD, Coarse Timing, Fine Timing

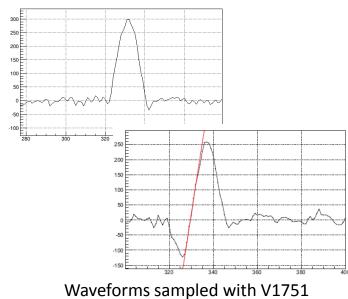


Benchmark test: PMTs

Waveform sampled by V1761 4 GS/s, 1 GHz bandwidth

Modello	$\sigma_{LIN1}(ps)$	$\sigma_{LIN2}(ps)$
720	(398 ± 10)	
724	(434 ± 24)	
751	$(357, 3 \pm 7, 9)$	$(367, 3 \pm 7, 9)$
751 DESmode	$(354, 2 \pm 6, 3)$	$(350, 6 \pm 5, 9)$
761	$(353, 5 \pm 7, 7)$	$(357, 1 \pm 5, 8)$


- Signal rise time ~4 ns
- Offline CFD algorithm used
 - linear fits around the zero-crossing
- No significant inprovements with sampling spead increase



Benchmark test: Silicon Pixels

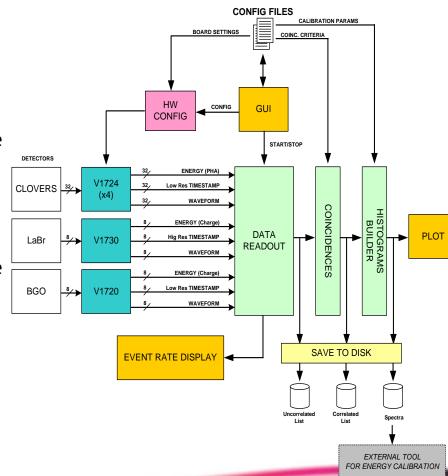
(Low-Gain Avalanche Detectors)

Measurements done at the University of Turin

at 2 GS/s 500 MHz bandwidth

- Signal rise and fall time about 4 ns
- On-line CFD resolution was roughly 200 ps using 500 MS/s digitizer
- Offline analysis
 - Reject noisy events
 - Baseline Calibration (correcting for drifting)

Digitizer	Time Resolution
V1751 @ 2 GS/s	61.7 ± 0.5 ps
V1751 @ 1 GS/s	68.1 ± 0.7 ps
DT5730 @ 500 MS/s	68.8 ± 1.6 ps

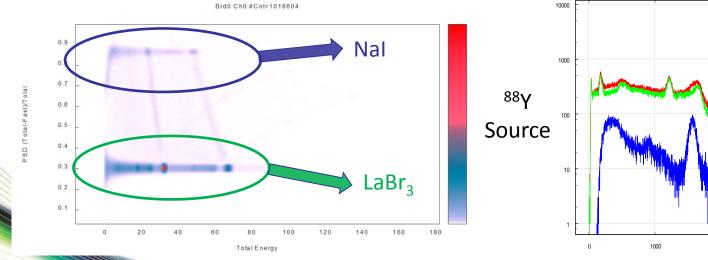


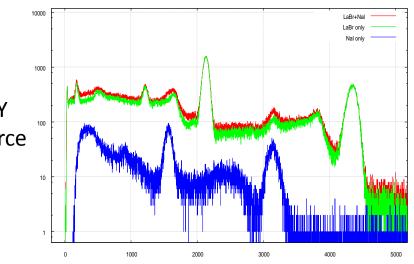
Case History

Full Digital DAQ: clover detectors and scintillator arrays

BARC (India) required a complete DAQ system to readout n.8 HPGe Clover detectors (32 ch.) provided with BGO Anti-Compton Shields (8 ch.) and pair the resulting events with the LaBr₃ scintillators (16 ch.) to increase the timing resolution

- √ n.4 V1724 (14 bit, 100 MS/s) running on-line Pulse
 Height Analysis for Clovers
 - → High Energy Resolution
- √ n.1 V1720 (12 bit, 250 MS/s) running on-line Charge Integration for ACS
 - → Background subtraction and "bad events" rejection
- √ n.1 V1730 (14 bit, 500 MS/s) running on-line Charge Integration and Fine Timing for LaBr₃
 - → Excellent sub-ns Timing Resolution
- ✓ Dedicated SW for event analysis (list mode)
 - → Coincidences, Multiplicity, Event Selection, Calibration, Histogram Builder


Case History


Full Digital DAQ: Phoswich detectors

Recently explored the possibility to build a full digital DAQ to readout an array of Phoswich detectors made of LaBr₃ and NaI

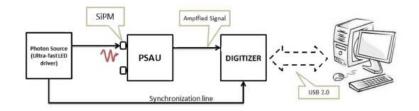
- ✓ Pulse Shape Discrimination needed to separate the energy released in each scintillator and apply the proper calibration separately
- ✓ Fine Timing needed to exploit the excellent timing capabilities of LaBr₃

Test made with DT5730 (14 bit, 500 MS/s) running Pulse Shape Discrimination w/ dual charge integration gate

SiPM Kits

- Silicon Photo-Multipliers (SiPM) are state of the art light detectors and R&D on going
- Despite some drawbacks, fundamental advantages compared to PMTs
 - ✓ high photon sensitivity
 - ✓ reduced noise
- Two kits developed together with the University of Insubria, Como
 - for users who want to test sensors and characterize them
 - to perform a series of experiments for undergraduate students

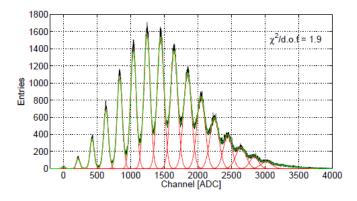
AdvanSiD ASD-RGB1S-M(G), ASD-NUV1S-M(G)

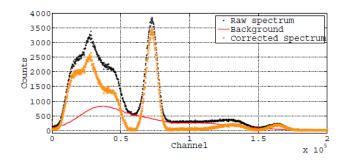

SiPM Educational Kit Content

- ✓ A Labview based Control SW and a MATLAB analysis tool
- ✓ Educational Notes

Didactic Experiment

Educational Note ED3127


- LED driver as light source
- Introduction to the SiPM sensor technology
- Photon counting statistic
- Energy resolution


Educational Note ED3163

- Spectrometer with LYSO/BGO/CsI crystals
- Y-ray spectroscopy
- Background evaluation, energy calibration, resolution

Educational Note ED3235

After-pulses in SiPM

Conclusive Remarks on Digitizers

- Suited both for small laboratory tests and highly segmented systems such as particle physics experiments
- May replace several analog devices: discriminator, QDC, ADC, TDC, logic units, all in one
- Possibility to implement sophisticated event correlation on-line with board connectivity
- Competitive in time and energy resolution
 - Offline algorithms, using analytic fitting, may give significant improvements

Digital technology always improving

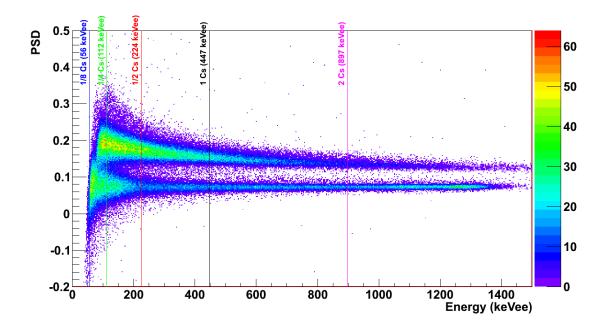
- New communication interfaces
- FPGAs are quickly improving
 - More resources, more processing capabilities
 - Embed microprocessors with high speed communication bus
 - More room for onboard algorithm development

Backup

CAEN Digitizer Offer

Model (1)	Form Factor	N. of ch. ⁽²⁾	Max. Sampling Frequency (MS/s) (2)	N. of Bits	Input Dynamic Range (Vpp) ⁽²⁾	Single Ended / Differential Input	Bandwidth (MHz) ⁽²⁾	Memory (MS/ch) (2)
x720	VME	8	250	12	2	SE/D	125	1.25 / 10
	Desktop/NIM	4/2				SE		
x721	VME	8	500	8	1	SE/D	250	2
x724	VME	8	100	14	0.5 / 2.25 / 10	SE/D	40	0.5 / 4
	Desktop/NIM	4/2				SE		
x730	VME	16	500	14	0.5 - 2	SE	250	0.64 / 5.12
NEW	Desktop/NIM	8	500					
x731	VME	8-4	500 - 1000	8	1	SE/D	250 / 500	2/4
x740	VME	64	62.5	12	2/10	SE	30	0.19 / 1.5
	Desktop/NIM	32	02.5					
v7E1	VME	8-4	1000 - 2000	10	1	SE/D	500	1.8 - 3.6 / 14.4 - 28.8
x751	Desktop/NIM	4-2				SE		
x761	VME	2	4000	10	1	SE/D	1000	7.2 / 57.6
	Desktop/NIM	1				SE		
x742	VME	32+2	5000 ⁽⁴⁾	12	1	SE	500	0.128 / 1
	Desktop/NIM	16+1	500017					
x743	VME	16	3200 ⁽⁴⁾	12	2.5	SE	500	0.007
NEW SE	Desktop/NIM	8		12	2.5	SE	500	0.007

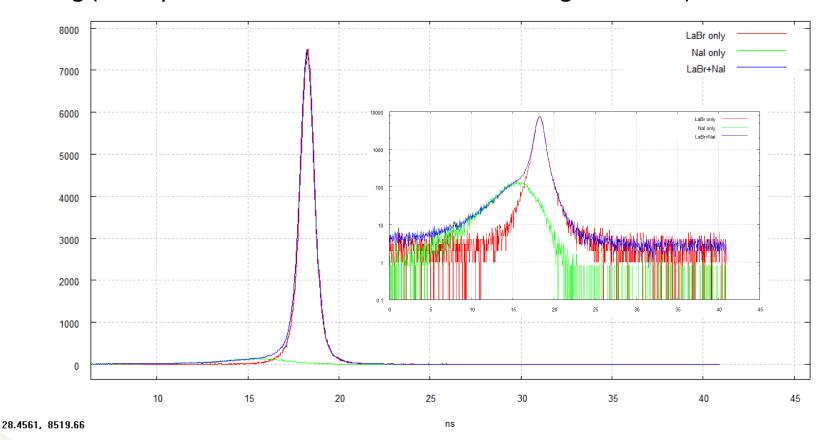
γ -n Discrimination: Test Result


Application Note AN2506

Detector: BC501A liquid scintillator 5x2 inches

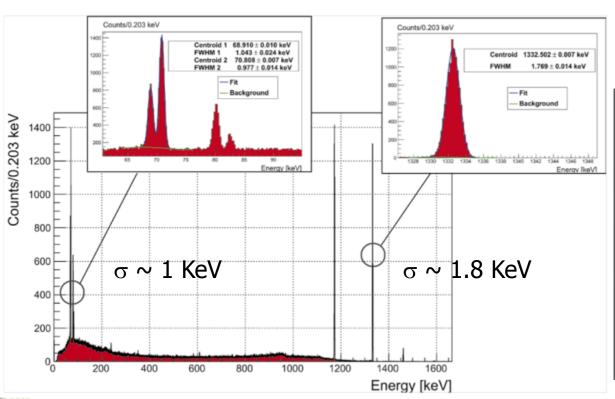
PMT: Hamamatsu R1250

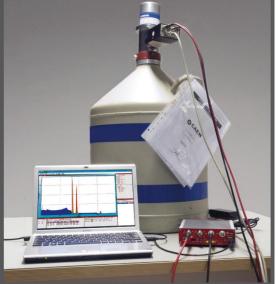
x720, 250 MS/s 12 bit digitizer



Time of Flight Spectrum

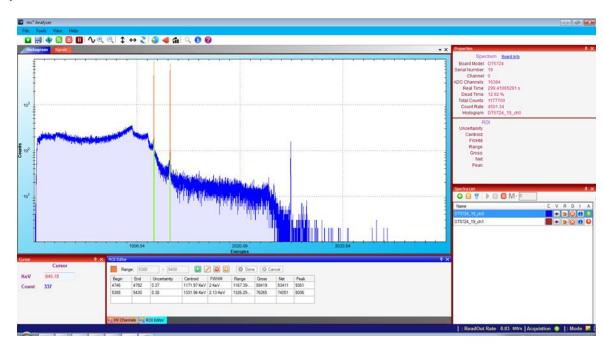
3"x3" LaBr₃ to Phoswitch Time Of Flight

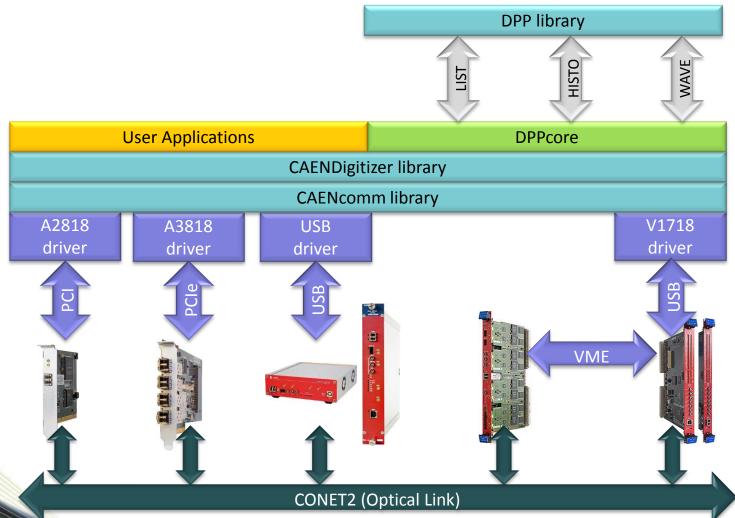

Resolution = down to ~500 ps FWHM depending on the energy range windowing (mainly due to intrinsic resolution of the large detector)



Test Results with HPGe Detector

- Tests with CANBERRA Coaxial P-Type detector (20% eff.)
 - Application Note AN3110





- Spectroscopy software for MCA
- DPP parameters auto-setting, save/restore configuration, manual setting
- Spectra and List files saving and reading (csv, ANSI42)
- Live display of waveforms (input, timing filter, trapezoid) and digital traces (trigger, peaking time, etc.)
- Basic analysis tools:
 - Multiple ROIs definition
 - Energy calibration
 - Peak Search
 - Background subtraction
 - Peak fitting
 - Rebinning

Libraries for Waveform Digitizers

Set/Get Params, Start/Stop Read Events, etc.

Open/Close, Read, Write

Educational Kit Technical Spec.

SP5600 General Purpose Power Supply and Amplification Unit - Power Supply	Max Voltage 120V, Max Current 100 uA, Temp. Feedback Res. 0.1 °C
SP5600 General Purpose Power Supply and Amplification Unit - Wideband Amplifier	Gain: 1-50 dB, Gain Setting Step: 1 dB, Bandwidth: 100 kHz - 500 MHz, Output Dynamic Range: ± 2V, Discriminator Threshold: ± 2V, min step = 61 uV
DT5720A Desktop Digitizer	Sampling Rate: 250 MS/s , Resolution: 12 bit, Dynamic range: 2 Vpp, DAC Offset: ± FSR/2, Digital Pulse Processing Firmware (DPP-CI) Installed
SP5601 LED Driver	Wavelength: 405 nm (Violet), Pulse Width: 8 ns (Typ.), Triggered via internal pulse generator, or via external source, Tunable intensity and repetition rate, Frequency: From 500 Hz to 5 MHz, FC terminated optical fiber included
SP5602 Scintillating Tile	Scintillating Material: Polystyrene with WLS Fiber embedded, Dimensions: 200x150x10 mm^3 (Active Area: 150x150x10 mm^3), Fiber Termination: FC
SP5603 Mini Spectrometer	Embedded SiPM: Hamamatsu MPPC S10362 -33-50C 100C 3x3 mm^2 Active Area, Crystals (3x3x15 mm^3): LYSO, BGO, CsI, Temperature feedback sensor embedded
SP5650A Sensor Holder	Embedded SiPM: Hamamatsu MPPC S10362 -11-100C 100C 1x1 mm^2 Active Area, Temperature feedback sensor embedded