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NEOS for Asymmetric Nuclear Matter:
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The Symmetry Term:
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c1 and c2 by fixing S(ρ) and L(ρ) values at ρ0.
Second order phase transition in a Neutron Star (PPNP paper)
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K = 200MeV =⇒ A1 = −356MeV ,B1 = 303MeV , σ = 7
6

S(ρ0) = S = 28.3MeV , L = 50± 40MeV =⇒ Ksym =
−85.5÷ 194.5MeV
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L=14.4 MeV c1 = 0.564, c2 = 0.832 - Asy-Soft
L=72 MeV c1 = 0.08315, c2 = 8.581 · 10−3 - Asy-Stiff
L=96.6 MeV c1 = −0.359, c2 = −0.343 - Asy-SuperStiff
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Comparing Symmetry Terms - Form Factors
(B.-A. Li, L-W Chen, C. M. Ko Phys. Rep. 464 (2008) 113-281, V. Baran, M. Colonna, V.Greco, M. Di Toro Phys.
Rep. 410 (2005) 335-466, M. Papa and G. Giuliani, Eur. Phys. J. A 39, 117-124 (2009))

Asy-Soft: S(ρ) = 5
9 ε̃f ρ̃

2/3 + (482− 1638ρ)ρ2 (V. Baran et al Phys. Rev. C

88 044610 (2013))
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Same S0 = 28.3MeV and L=14.4, 72, 96.6 MeV values

Different behaviors as a function of the density (except for the
Asy-Stiff case)

S, L and Ksym are differently related - Asy-SuperStiff:
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Different Ksym values

L(MeV) K
(1)
sym(MeV) K

(2)
sym(MeV)

14.4 179.1 -402
72 -22.5 -24

96.6 -109 47
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Hamiltonian in the CoMD Framework
M. Papa Phys. Rev. C 87 014001 (2013) - (Symmetry Potential in
the CoMD Model in Nuclear Matter and Nuclei)

H = T + V2B + V3B + VSym + VSurf + VCoul
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S̄V average overlap integral per nucleon
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Constraining the NEOS:
L,Ksym ↔ EGDR = 31.2A−1/3 + 20.6A−1/6 (M. N. Harakeh A. Van
Der Woude, Giant Resonances, first ed. Oxford Science
Publications (2001))

t=0 fm/c: protons and neutrons displeased in momentum
space
∆Pz = EGDR

A~ ,

Pn
z → Pn

z − (ZA∆Pz)

Pp
z → Pp

z − (NA ∆Pz)

Time evolution: dipole momentum in coordinate and
momentum spaces
DR(t) = NZ

A (Rp − Rn)

DK(t) = NZ
A (Kp −Kn)

IVGDR strength: dP
dE ∝ |D(E )|2

132Sn −→ EGDR = 15.26MeV
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(1): A1 = −356MeV ,B1 = 303MeV , σ = 7
6 ,K = 200MeV , L =

14.4, 72, 96.6MeV
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(2): L=96.6 MeV (Asy-SuperStiff), K=200, 250, 300 MeV

E(MeV)
2 4 6 8 10 12 14 16 18

/M
e
V

)
2

S
(E

)(
fm

0

10

20

30

40

50

60
K=200 MeV, L=96.6 MeV

K=250 MeV, L=96.6 MeV

K=300 MeV, L=96.6 MeV

K(MeV)
200 220 240 260 280 300

(M
e
V

)
G

D
R

1
,2

E

7

7.5

8

8.5

9

9.5

10

10.5

Iso-Scalar and Iso-Vector parts of
the NEOS cannot be completely
disentangled

Gianluca Giuliani Iso-Vector Giant Dipole Resonance Mode within the Constrained Molecular Dynamics Approach



The Nuclear Equation Of State (NEOS) for Asymmetric Nuclear Matter
The Symmetry Potential Term in the CoMD Approach

Constraining the NEOS
Conclusions and Outlook

Iso-Vector Giant Dipole Resonance (IVGDR)(preliminary)
Neutron Skin Thickness (NST)(preliminary)

Momentum Dependent Potential U(pi ,j) = αp2i ,j
(3): K=200 MeV, m∗/m = 0.7 - L = 14.4, 72, 96.6MeV (A1,B1, σ)
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∆rnp = 〈R2
n〉

1
2 − 〈R2

p〉
1
2

Dependence and connection with collective modes (IVPDR):

Non-Relativistic and Relativistic mean field calculations

[B. Alex Brown Phys. Rev. Lett. 85 (2000),R. J. Furnstahl Nucl. Phys. A 706 (2002); C. J. Horowitz, J.

Piekarewicz Phys. Rev. Lett. 86 (2001),X. Roca-Maza et al, Phys. Rev. Lett. 106 (2011)]
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A=40 Isotopes Calculations - Neutron-Proton concentration
Dependence

∆rnp = (0.90± 0.15)mχ + (−0.03± 0.02) fm

Odd-Even staggering effect 40V (odd-odd), 40Fe(even-even);
40Al(odd-odd), 40Si(even-even)
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Geometrical effects: ΨR =
〈R2

n 〉−〈R2
p 〉

〈R2
n 〉+〈R2

p 〉
=

+1,mχ=1
−1,mχ=−1

Approximately linear relation
for systems having the same
mass - A=40

Sensitivity on whether the
nuclei are odd-odd or
even-even

Fixing A and varying mχ,
=⇒ aa coefficient (similar to
the IAS method)

N=Z system:
∆rnp(40Ca) ≈ −0.12fm⇔
ΨR(40Ca) ≈ −0.035

remove Coulomb effects ΨR(40Ca) = Ψ0: Ψ
′
R = |ΨR −Ψ0|
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Conclusions:

A Symmetry Potential Term having a 2+3 body dependence
has been suggested. The comparison with other Symmetry
Terms shows the dependence of the L and Ksym parameters
on the details of the NEOS
The CoMD model is suitable to perform collective modes
calculations to constrain the NEOS
Calculations for the 132Sn nucleus reveal that IVGDR mode
and NST constrain the symmetry term, however effective
mass plays a role to reproduce experimental results

Outlook:

Calculations for further S and L values (in progress)
IVPDR, IVGDR for Tin Isotopes and other nuclei (EWSR,
N − Z/A dependence, Surface Effects)
Comparisons with Dynamical (MD), Transport Models
(Landau-Vlasov) and available experimental data
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