Lectures & objectives

ISAPP 2014 (Belgirate) 21-30 July 2014

Transport of cosmic rays in the Galaxy and in the heliosphere (~4h30)

- What is GCR (Galactic Cosmic Ray) physics and transport
- Relevant time scales: \neq species have \neq phenomenology
- Main modelling ingredients: key parameters and uncertainties
- Tools to solve the transport equation

Charged signals: electrons/positrons, antibaryons (~1h30)

- What is astroparticle physics and DM (Dark Matter) indirect detection
- What are the astrophysical backgrounds + uncertainties [nuclear]
- Phenomenology of DM signals + uncertainties [transport and dark matter]
- Pros and Cons of DM indirect detection with charged GCRs

David Maurin (LPSC) dmaurin@lpsc.in2p3.fr

Transport of cosmic rays (CR) in the Galaxy

I. Introduction; Galactic Cosmic Rays

- 1. Early history of CRs: discovery and disputes
- 2. GCR journey (from source to detector)
- 3. Timeline
- 4. Observables and questions
- II. Processes, ingredients, characteristic times
 - 1. Definitions
 - 2. Diffusion (space and momentum)
 - 3. Convection and adiabatic losses
 - 4. Energy losses
 - 5. Catastrophic losses
 - 6. All together

III. Solving the equations: GCR phenomenology

- 1. The full transport equation
- 2. Source terms: primary and secondary contributions
- 3. A matrix of transport equations
- 4 (Semi-)Analytical, numerical, & MC solutions
- 5. Stable species: degeneracy K₀ /L
- 6. Radioactive species and local ISM
- 7. Leptons and local sources

GCRs-II.pdf

Transport of cosmic rays (CR) in the Galaxy

II. Processes, ingredients, characteristic times

1. Definitions

- 2. Diffusion (space and momentum)
- 3. Convection and adiabatic losses
- 4. Energy losses
- 5. Catastrophic losses
- 6. All together

• "Energy" units

 $\begin{cases} c = \hbar = e \equiv 1 \\ m_e = 511 \text{ keV} \\ m_p = 0.938 \text{ GeV} \end{cases}$

$$\begin{cases} E_k(=T) = E - m \\ \beta \equiv \frac{v}{c} = \frac{p}{1E} \\ \gamma \equiv \frac{1}{\sqrt{1 - \beta^2}} = \frac{E}{m} \end{cases}$$

II.1 Definitions

3	Expression	Unit	Natural for	$c = \hbar = e \equiv 1$
Rigidity	$R = \frac{pc}{Ze} = \frac{p}{Z} = r_l B$	[GV]	Acceleration, diffusion	$\begin{cases} m_e = 511 \text{ keV} \\ m_p = 0.938 \text{ GeV} \end{cases}$ $\begin{cases} E_k(=T) = E - m \\ \beta \equiv \frac{v}{c} = \frac{p}{1E} \end{cases}$
				$\int \gamma \equiv \frac{1}{\sqrt{1-\beta^2}} = \frac{B}{m}$

8	Expression	Unit	Natural for	$c = \hbar = e \equiv 1$
Rigidity	$R = \frac{pc}{Ze} = \frac{p}{Z} = r_l B$	[GV]	Acceleration, diffusion	$\begin{cases} m_e = 511 \text{ keV} \\ m_p = 0.938 \text{ GeV} \end{cases}$
Total Energy	$E^2 = p^2 + m^2$	[GeV]	Calorimeter	$\begin{cases} E_k(=T) = E - m \\ \beta \equiv \frac{v}{c} = \frac{p}{1E} \\ \gamma \equiv \frac{\sqrt{1 - \beta^2}}{\sqrt{1 - \beta^2}} = \frac{E}{m} \end{cases}$

Е	Expression	Unit	Natural for	$c = \hbar = e \equiv 1$
Rigidity	$R = \frac{pc}{Ze} = \frac{p}{Z} = r_l B$	[GV]	Acceleration, diffusion	$\begin{cases} m_e = 511 \text{ keV} \\ m_p = 0.938 \text{ GeV} \end{cases}$
Total Energy	$E^2 = p^2 + m^2$	[GeV]	Calorimeter	$\mathcal{L}E_k(=T) = E - m$
Energy per nucleon	$E_{/n} = \frac{E}{A}$	[GeV/n]	Production in CR showers	$\begin{cases} \mathcal{L}_{\mathcal{K}}(-1) = \mathcal{L} & m \\ \beta \equiv \frac{v}{c} = \frac{p}{1E} \\ \gamma \equiv \frac{v}{\sqrt{1 - \beta^2}} = \frac{E}{m} \end{cases}$

3	Expression	Unit	Natural for	$c = \hbar = e \equiv 1$
Rigidity	$R = \frac{pc}{Ze} = \frac{p}{Z} = r_l B$	[GV]	Acceleration, diffusion	$\begin{cases} m_e = 511 \text{ keV} \\ m_p = 0.938 \text{ GeV} \end{cases}$
Total Energy	$E^2 = p^2 + m^2$	[GeV]	Calorimeter	$\int E_k(=T) = E - m$
Energy per nucleon	$E_{/n} = \frac{E}{A}$	[GeV/n]	Production in CR showers	$\begin{cases} B_{k}(-1) = B & m \\ \beta \equiv \frac{v}{c} = \frac{p}{1E} & E \end{cases}$
Kinetic E per nucleon	$E_{k/n}(=T) = \frac{E_k}{A}$	[GeV/n]	CR fragmentation on ISM	$\int \gamma \equiv \frac{1}{\sqrt{1-\beta^2}} = \frac{1}{m}$

• "Energy" units

8	Expression	Unit	Natural for	$c = \hbar = e \equiv 1$
Rigidity	$R = \frac{pc}{Ze} = \frac{p}{Z} = r_l B$	[GV]	Acceleration, diffusion	$\begin{cases} m_e = 511 \text{ keV} \\ m_p = 0.938 \text{ GeV} \end{cases}$
Total Energy	$E^2 = p^2 + m^2$	[GeV]	Calorimeter	$\mathcal{C}E_k(=T) = E - m$
Energy per nucleon	$E_{/n} = \frac{E}{A}$	[GeV/n]	Production in CR showers	$\begin{cases} \mathcal{L}_{k}(=T) = \mathcal{L} - m \\ \beta \equiv \frac{v}{c} = \frac{p}{1E} \\ E \end{cases}$
Kinetic E per nucleon	$E_{k/n}(=T) = \frac{E_k}{A}$	[GeV/n]	CR fragmentation on ISM	$\int \gamma \equiv \frac{1}{\sqrt{1-\beta^2}} = \frac{1}{m}$

• CR intensity

Intensity:
$$I = \# \text{ particles } \text{m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

Differential intensity: $\frac{dI}{d\mathcal{E}} = \# \text{ particles } \text{m}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \mathcal{E}^{-1}$
Differential density: $N = \frac{dN}{d\mathcal{E}} = \frac{4\pi}{v} \frac{dI}{dE}$ (# particules $\text{m}^{-3} \mathcal{E}^{-1}$)

• "Energy" units

8	Expression	Unit	Natural for	$c = \hbar = e \equiv 1$
Rigidity	$R = \frac{pc}{Ze} = \frac{p}{Z} = r_l B$	[GV]	Acceleration, diffusion	$\begin{cases} m_e = 511 \text{ keV} \\ m_p = 0.938 \text{ GeV} \end{cases}$
Total Energy	$E^2 = p^2 + m^2$	[GeV]	Calorimeter	$\int E_k(=T) = E - m$
Energy per nucleon	$E_{/n} = \frac{E}{A}$	[GeV/n]	Production in CR showers	$\begin{cases} \beta \equiv \frac{v}{c} = \frac{p}{1E} \\ E \end{cases}$
Kinetic E per nucleon	$E_{k/n}(=T) = \frac{E_k}{A}$	[GeV/n]	CR fragmentation on ISM	$\int \gamma \equiv \frac{1}{\sqrt{1-\beta^2}} = \frac{1}{m}$

• CR intensity

Intensity:

$$I = \# \text{ particles m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$
Differential intensity:

$$\frac{dI}{d\mathcal{E}} = \# \text{ particles m}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \mathcal{E}^{-1}$$
Differential density:

$$N \equiv \frac{dN}{d\mathcal{E}} = \frac{4\pi}{v} \frac{dI}{dE} \quad (\# \text{ particules m}^{-3} \mathcal{E}^{-1})$$

• Warm up...

- 1. Suppose IS flux is $dI/dR = I_0 R^{-\gamma}$: express dI/dR in terms of $dI/dE_{k/n}$
- 2. If R_{max} maximum rigidity of a CR source, at which E is there a cut-off in EAS?

• "Energy" units

8	Expression	Unit	Natural for	$c = \hbar = e \equiv 1$
Rigidity	$R = \frac{pc}{Ze} = \frac{p}{Z} = r_l B$	[GV]	Acceleration, diffusion	$\begin{cases} m_e = 511 \text{ keV} \\ m_p = 0.938 \text{ GeV} \end{cases}$
Total Energy	$E^2 = p^2 + m^2$	[GeV]	Calorimeter	$\int E_k(=T) = E - m$
Energy per nucleon	$E_{/n} = \frac{E}{A}$	[GeV/n]	Production in CR showers	$\beta \equiv \frac{v}{c} = \frac{p}{1^E} \qquad E$
Kinetic E per nucleon	$E_{k/n}(=T) = \frac{E_k}{A}$	[GeV/n]	CR fragmentation on ISM	$\int \gamma \equiv \frac{1}{\sqrt{1-\beta^2}} = \frac{1}{m}$

• CR intensity

Intensity:

$$I = \# \text{ particles m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$
Differential intensity:

$$\frac{dI}{d\mathcal{E}} = \# \text{ particles m}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \mathcal{E}^{-1}$$
Differential density:

$$N \equiv \frac{dN}{d\mathcal{E}} = \frac{4\pi}{v} \frac{dI}{dE} \quad (\# \text{ particules m}^{-3} \mathcal{E}^{-1})$$

• Warm up...

- 1. Suppose IS flux is $dI/dR = I_0 R^{-\gamma}$, express it in terms of $dI/dE_{k/n}$?
- 2. If R_{max} maximum rigidity of a CR source, at which E is there a cut-off in EAS?

Transport of cosmic rays (CR) in the Galaxy

II. Processes, ingredients, characteristic times

1. Definitions

2. Diffusion (space and momentum)

- 3. Convection and adiabatic losses
- 4. Energy losses
- 5. Catastrophic losses
- 6. All together

• Diffusion (or Heat) equation

$$\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla} \cdot \vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \end{cases} \qquad \frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0 \end{cases}$$

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0\\ \vec{j_d} = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

Comments

- Dimensionality
- Geometry
- D(r) spatial dependenceBoundary conditions

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$N(z,t) = \frac{N_0}{(4\pi Dt)^{1/2}} \exp\left(\frac{-z^2}{4Dt}\right)$$
$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

Comments

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi D t)^{1/2}} \exp\left(\frac{-z^2}{4D t}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

Comments

- Dimensionality
- Geometry
- D(r) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi Dt)^{1/2}} \exp\left(\frac{-z^2}{4Dt}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Mean distance

Calculate
$$\langle z(t) \rangle$$
 and $\langle z^2(t) \rangle$, using $\int_{-\infty}^{-\infty} e^{-x^2/A} dx = \sqrt{A\pi}$

Comments

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

1. Write equation in 1D

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi Dt)^{1/2}} \exp\left(\frac{-z^2}{4Dt}\right)$$

$$\int N(t=0, z=0) = N_0$$

$$N(t, z=\pm\infty) = 0$$

• Mean distance

$$\begin{aligned} \text{Calculate } <\mathbf{z}(t) > \text{ and } <\mathbf{z}^{2}(t) >, \text{ using } \int_{-\infty}^{-\infty} e^{-x^{2}/A} dx = \sqrt{A\pi} \\ \\ \hline \left\{ \begin{aligned} \langle z(t) \rangle &= \frac{\int_{-\infty}^{+\infty} zN(z,t) dz}{\int_{-\infty}^{+\infty} N(z,t) dz} = 0 \\ d_{\text{diff}} &= \sqrt{2Dt} \end{aligned} \right. \\ \\ d_{\text{diff}}^{2} &\equiv \langle z^{2}(t) \rangle = \frac{\int_{-\infty}^{+\infty} z^{2}N(z,t) dz}{\int_{-\infty}^{+\infty} N(z,t) dz} = 2Dt \end{aligned} \qquad \begin{aligned} d_{\text{diff}} &= \sqrt{2nDt} \\ \end{aligned}$$

Comments

N.B.: solution (behaviour) depends on

- Dimensionality
- Geometry
- D(r) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

1. Write equation in 1D

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi D t)^{1/2}} \exp\left(\frac{-z^2}{4D t}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Mean distance

$$\begin{aligned} \text{Calculate } <\mathbf{z}(t) > \text{ and } <\mathbf{z}^{2}(t) >, \text{ using } \int_{-\infty}^{-\infty} e^{-x^{2}/A} dx = \sqrt{A\pi} \\ \begin{cases} \langle z(t) \rangle = \frac{\int_{-\infty}^{+\infty} zN(z,t) dz}{\int_{-\infty}^{+\infty} N(z,t) dz} = 0 \\ d_{\text{diff}} = \langle z^{2}(t) \rangle = \frac{\int_{-\infty}^{+\infty} z^{2}N(z,t) dz}{\int_{-\infty}^{+\infty} N(z,t) dz} = 2Dt \end{cases} \quad \begin{aligned} d_{\text{diff}} = \sqrt{2Dt} \\ d_{\text{diff}}^{n-dim} = \sqrt{2nDt} \end{cases} \end{aligned}$$

Comments

N.B.: solution (behaviour) depends on

- Dimensionality
- Geometry
- D(r) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi Dt)^{1/2}} \exp\left(\frac{-z^2}{4Dt}\right)$$

$$\int \begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

Comments

- Dimensionality
- Geometry
- D(r) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi Dt)^{1/2}} \exp\left(\frac{-z^2}{4Dt}\right)$$

$$\int \left\{ N(t=0, z=0) = N_0 \\ N(t, z=\pm\infty) = 0 \right\}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift):
$$D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle - d_{\text{diff}} = \sqrt{2Dt}$$

Comments

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi D t)^{1/2}} \exp\left(\frac{-z^2}{4D t}\right)$$

$$\begin{cases} N(t=0,z=0) = N_0\\ N(t,z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift):
$$D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle - d_{diff} = \sqrt{2Dt}$$

 $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(- \left\langle \frac{\Delta E}{\Delta t} \right\rangle N \right) + \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right)$

Comments

- Dimensionality
- Geometry
- D(r) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0\\ \vec{j_d} = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi Dt)^{1/2}} \exp\left(\frac{-z^2}{4Dt}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift): $D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle d_{\text{diff}} = \sqrt{2Dt}$ $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(- \left\langle \frac{\Delta E}{\Delta t} \right\rangle N \right) + \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right)$
- Natural mechanisms for reacceleration: Fermi 2nd order
 - CR (v) collides with magnetic scatterer (V): $\Delta E = \frac{2Vvcos\theta}{c^2} + 2\left(\frac{V}{v}\right)^2$

Comments

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi Dt)^{1/2}} \exp\left(\frac{-z^2}{4Dt}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift): $D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle \frac{1}{d_{\text{diff}}} = \sqrt{2Dt}$ $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(- \left\langle \frac{\Delta E}{\Delta t} \right\rangle N \right) + \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right)$
- Natural mechanisms for reacceleration: Fermi 2nd order
 - CR (v) collides with magnetic scatterer (V): $\Delta E = \frac{2Vvcos\theta}{c^2} + 2\left(\frac{V}{v}\right)^2$
 - More head-on (1+V) than tail-in (1-V) collisions (take limit $v \rightarrow c$)

$$\left\langle \frac{\Delta E}{E} \right\rangle = 4 \left(\frac{V}{c} \right)^2 \qquad \left\langle (\Delta E)^2 \right\rangle = 4E^2 \left(\frac{V}{c} \right)^2$$

Comments

N.B.: solution (behaviour) depends on

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi Dt)^{1/2}} \exp\left(\frac{-z^2}{4Dt}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift): $D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle d_{\text{diff}} = \sqrt{2Dt}$ $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(- \left\langle \frac{\Delta E}{\Delta t} \right\rangle N \right) + \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right)$
- Natural mechanisms for reacceleration: Fermi 2nd order
 - CR (v) collides with magnetic scatterer (V): $\Delta E = \frac{2Vvcos\theta}{c^2} + 2\left(\frac{V}{v}\right)^2$
 - More head-on (1+V) than tail-in (1-V) collisions (take limit $v \rightarrow c$)

$$\left\langle \frac{\Delta E}{E} \right\rangle = 4 \left(\frac{V}{c} \right)^2 \qquad \left\langle (\Delta E)^2 \right\rangle = 4E^2 \left(\frac{V}{c} \right)^2$$

Comments

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

$$\mathbf{Fermi 2} \\ \beta = V/c \sim 10^{-4} \\ \Delta E/E \propto \beta^2$$
Fermi 1

$$\beta = V/c \sim 10^{-1} \\ \Delta E/E \propto \beta^2$$
Fermi 1

$$\beta = V/c \sim 10^{-1} \\ \Delta E/E \propto \beta$$
II 2 Diffusion

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

1. Write equation in 1D

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi D t)^{1/2}} \exp\left(\frac{-z^2}{4D t}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift): $D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle \frac{1}{d_{\text{diff}}} = \sqrt{2Dt}$ $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(- \left\langle \frac{\Delta E}{\Delta t} \right\rangle N \right) + \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right)$
- Natural mechanisms for reacceleration: Fermi 2nd order
 - CR (v) collides with magnetic scatterer (V): $\Delta E = \frac{2Vvcos\theta}{c^2} + 2\left(\frac{V}{v}\right)^2$
 - More head-on (1+V) than tail-in (1-V) collisions (take limit $v \rightarrow c$)

$$\left\langle \frac{\Delta E}{E} \right\rangle = 4 \left(\frac{V}{c} \right)^2 \qquad \left\langle (\Delta E)^2 \right\rangle = 4E^2 \left(\frac{V}{c} \right)^2$$

Comments

N.B.: solution (behaviour) depends on

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

N.B.: In more details

• Fokker-Planck equation on isotropic part of space phase density *f*(*r*,*p*,*t*)

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

1. Write equation in 1D

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi D t)^{1/2}} \exp\left(\frac{-z^2}{4D t}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift): $D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle \frac{1}{d_{\text{diff}}} = \sqrt{2Dt}$ $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(- \left\langle \frac{\Delta E}{\Delta t} \right\rangle N \right) + \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right)$
- Natural mechanisms for reacceleration: Fermi 2nd order
 - CR (v) collides with magnetic scatterer (V): $\Delta E = \frac{2Vvcos\theta}{c^2} + 2\left(\frac{V}{v}\right)^2$
 - More head-on (1+V) than tail-in (1-V) collisions (take limit $v \rightarrow c$)

$$\frac{\Delta E}{E} \right\rangle = 4 \left(\frac{V}{c}\right)^2 \qquad \left\langle (\Delta E)^2 \right\rangle = 4E^2 \left(\frac{V}{c}\right)^2$$

Comments

N.B.: solution (behaviour) depends on

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

N.B.: In more details

- Fokker-Planck equation on isotropic part of space phase density *f*(*r*,*p*,*t*)
- Same scatterer, moving at the speed $V_A \approx \sqrt{\langle B \rangle^2 / \rho} \simeq 20 \text{ km s}^{-1}$
- Space and momentum D related: $D_{xx}D_{pp}\approx p^2V_A^2/9$

[Thornbury & Drury, MNRAS 442 (2014) 3010]

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

1. Write equation in 1D

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi Dt)^{1/2}} \exp\left(\frac{-z^2}{4Dt}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift): $D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle - \frac{1}{d_{\text{diff}}} = \sqrt{2Dt}$ $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(- \left\langle \frac{\Delta E}{\Delta t} \right\rangle N \right) + \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right)$

Order of magnitude for VA

$$<\Delta E >^2 = 2D_{EE}t \approx \frac{2}{9} \frac{p^2}{DV_A^2} t$$

$$\begin{cases} <\Delta E > ~1 \text{ GeV} \\ T_{esc} \sim 50 \text{ Myr} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} \end{cases} \rightarrow \text{VA} \sim 10 \text{ km/s} \\ 1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-1} \end{cases}$$

Comments

N.B.: solution (behaviour) depends on

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

N.B.: In more details

- Fokker-Planck equation on isotropic part of space phase density *f*(*r*,*p*,*t*)
- Same scatterer, moving at the speed $V_A \approx \sqrt{\langle B \rangle^2 / \rho} \simeq 20 \text{ km s}^{-1}$
- Space and momentum D related: $D_{xx}D_{pp} \approx p^2 V_A^2/9$

[Thornbury & Drury, MNRAS 442 (2014) 3010]

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

1. Write equation in 1D

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi D t)^{1/2}} \exp\left(\frac{-z^2}{4D t}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift): $D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle - \frac{1}{d_{\text{diff}}} = \sqrt{2Dt}$ $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(- \left\langle \frac{\Delta E}{\Delta t} \right\rangle N \right) + \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right)$

Order of magnitude for V_A

$$<\Delta E >^2 = 2D_{EE}t \approx \frac{2}{9} \frac{p^2}{DV_A^2}t$$

$$\begin{cases} <\Delta E >\sim 1 \text{ GeV} \\ T_{esc} \sim 50 \text{ Myr} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} \end{cases} \rightarrow V_A \sim 10 \text{ km/s}$$

Comments

N.B.: solution (behaviour) depends on

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

N.B.: In more details

- Fokker-Planck equation on isotropic part of space phase density *f*(*r*,*p*,*t*)
- Same scatterer, moving at the speed $V_A \approx \sqrt{\langle B \rangle^2 / \rho} \simeq 20 \text{ km s}^{-1}$
- Space and momentum D related: $D_{xx}D_{pp} \approx p^2 V_A^2/9$

[Thornbury & Drury, MNRAS 442 (2014) 3010]

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0\\ \vec{j_d} = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi D t)^{1/2}} \exp\left(\frac{-z^2}{4D t}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift): $D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle - \frac{1}{d_{\text{diff}}} = \sqrt{2Dt}$ $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(- \left\langle \frac{\Delta E}{\Delta t} \right\rangle N \right) + \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right)$

Order of magnitude for VA

$$<\Delta E>^2 = 2D_{EE}t \approx \frac{2}{9} \frac{p^2}{DV_A^2} t$$

$$\begin{cases} <\Delta E>\sim 1 \text{ GeV} \\ T_{esc} \sim 50 \text{ Myr} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} \end{cases} \rightarrow \text{VA}\sim 10 \text{ km/s}$$

- Typical time for reacceleration

$$t_{\rm reac} \propto \beta^{-2} D$$

Comments

N.B.: solution (behaviour) depends on

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

N.B.: In more details

- Fokker-Planck equation on isotropic part of space phase density *f*(*r*,*p*,*t*)
- Same scatterer, moving at the speed $V_A \approx \sqrt{\langle B \rangle^2 / \rho} \simeq 20 \text{ km s}^{-1}$
- Space and momentum D related: $D_{xx}D_{pp} \approx p^2 V_A^2/9$

[Thornbury & Drury, MNRAS 442 (2014) 3010]

• Diffusion (or Heat) equation

[continuity]
$$\begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j}_d = 0\\ \vec{j}_d = -D\vec{\nabla}N(r,t) \end{cases}$$

$$\frac{\partial N(r,t)}{\partial t} - \vec{\nabla} \cdot [D\vec{\nabla}N(r,t)] = 0$$

• 1D geometry, constant D

- 1. Write equation in 1D
- 2. Check that the solution is

N.B.: boundary conditions are

$$\frac{\partial N(z,t)}{\partial t} - D \frac{\partial^2 N(z,t)}{\partial z^2} = 0$$

$$N(z,t) = \frac{N_0}{(4\pi D t)^{1/2}} \exp\left(\frac{-z^2}{4D t}\right)$$

$$\begin{cases} N(t=0, z=0) = N_0\\ N(t, z=\pm\infty) = 0 \end{cases}$$

• Diffusion in momentum space (reacceleration)

- Analog to spatial diffusion (+ drift): $D_{EE} \equiv \frac{1}{2} \left\langle \frac{(\Delta E)^2}{\Delta t} \right\rangle - \frac{1}{d_{\text{diff}}} = \sqrt{2Dt}$ $\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(- \left\langle \frac{\Delta E}{\Delta t} \right\rangle N \right) + \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right)$

Order of magnitude for V_A

$$<\Delta E>^2 = 2D_{EE}t \approx \frac{2}{9} \frac{p^2}{DV_A^2} t$$

$$\begin{cases} <\Delta E>\sim 1 \text{ GeV} \\ T_{esc}\sim 50 \text{ Myr} \\ D_0\simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} \end{cases} \rightarrow V_A\sim 10 \text{ km/s}$$

- Typical time for reacceleration

$$t_{\rm reac} \propto \beta^{-2} D$$

Comments

N.B.: solution (behaviour) depends on

- Dimensionality
- Geometry
- D(**r**) spatial dependence
- Boundary conditions

1. Fourier Transform

$$N(z) = 1/(2\pi) \times \int_{-\infty}^{-\infty} e^{iwz} \tilde{N}(z) dw$$
2. Solve for $\tilde{N}(w)$
3. Integration complex plan (residue)
 $\tilde{N}(w) = \int_{-\infty}^{-\infty} e^{-iwz} N(z) dz$

N.B.: In more details

- Fokker-Planck equation on isotropic part of space phase density *f*(*r*,*p*,*t*)
- Same scatterer, moving at the speed $V_A \approx \sqrt{\langle B \rangle^2 / \rho} \simeq 20 \text{ km s}^{-1}$
- Space and momentum D related: $D_{xx}D_{pp} \approx p^2 V_A^2/9$

[Thornbury & Drury, MNRAS 442 (2014) 3010]

$$\rightarrow \text{Energy gain } @ \text{ GeV/n} \\ \rightarrow \text{Strength mediated by V}_{A}$$

Transport of cosmic rays (CR) in the Galaxy

II. Processes, ingredients, characteristic times

- 1. Definitions
- 2. Diffusion (space and momentum)
- 3. Convection and adiabatic losses
- 4. Energy losses
- 5. Catastrophic losses
- 6. All together

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) & \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) & \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \end{cases}$

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{array}{l} \mbox{[continuity]} \\ \mbox{[Fick's law]} \\ \mbox{[drift]} \end{array} \left\{ \begin{array}{l} \displaystyle \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \\ \displaystyle \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \\ \displaystyle \vec{j_c} = \vec{V_c}N(r,t) \end{array} \right. \quad \begin{array}{l} \displaystyle \frac{\partial N}{\partial t} - \vec{\nabla}.\left[D\vec{\nabla}N + \vec{V_c}N\right] = 0 \\ \\ \displaystyle \vec{j_c} = \vec{V_c}N(r,t) \end{array} \right.$

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V_c spatial dependence and direction
 - Boundary conditions

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.\left[D\vec{\nabla}N + \vec{V_c}N\right] = 0$ $\begin{bmatrix} \text{drift} \end{bmatrix} \quad \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V

- N.B.: $D(R) = \beta D_0 R^{\delta}$

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.\left[D\vec{\nabla}N + \vec{V_c}N\right] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V $\rightarrow t_{diff} \text{ and } t_{conv}$? - N.B.: D(R) = $\beta D_0 R^{\delta}$

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

$$\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$$

$$1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-3}$$
• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.\left[D\vec{\nabla}N + \vec{V_c}N\right] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V $t_{\text{diff}} \simeq 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ - N.B.: D(R) = $\beta D_0 R^{\delta}$ $t_{\text{conv}} \simeq 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

$$\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$$

$$1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-3}$$

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V - N.B.: D(R) = $\beta D_0 R^{\delta}$ $t_{diff} \simeq 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ $t_{conv} \simeq 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

 $\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$

 $1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-1}$

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V - N.B.: D(R) = $\beta D_0 R^{\delta}$ $t_{diff} \simeq 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ $t_{conv} \simeq 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$

• Adiabatic losses (in expanding plasma)

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

$$\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$$

$$1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-3}$$

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V $t_{\text{diff}} \simeq 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ $- \text{ N.B.: } D(R) = \beta D_0 R^{\delta}$ $t_{\text{conv}} \simeq 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$

• Adiabatic losses (in expanding plasma)

V: volume N (# particles) = nV U (internal energy) = NE E (average energy/particle) Non-relativistic E = 3/2 kT P = NkT/VP=2/3 nE

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

 $\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$

$$1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-1}$$

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V - N.B.: D(R) = $\beta D_0 R^{\delta}$ $t_{diff} \simeq 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ $t_{conv} \simeq 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$

• Adiabatic losses (in expanding plasma)

V: volume N (# particles) = nV U (internal energy) = NE E (average energy/particle) Non-relativistic E = 3/2 kT P = NkT/VP=2/3 nE Relativistic U=3NkT P = 1/3 U

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

$$\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$$

$$1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-1}$$

II.3 Convection

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.\left[D\vec{\nabla}N + \vec{V_c}N\right] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V $t_{\text{diff}} \approx 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ - N.B.: D(R) = $\beta D_0 R^{\delta}$ $t_{\text{conv}} \approx 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$

• Adiabatic losses (in expanding plasma)

V: volumeNon-relativisticRelativisticN (# particles) = nVE = 3/2 kTU=3NkTU (internal energy) = NEP = NkT/VP = 1/3 UE (average energy/particle)P=2/3 nEP=2/3 nEAdiabatic: dU = -PdV (work done by gas) \rightarrow NdE = -2/3 nE dV

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

$$\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$$

$$1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-1}$$

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V - N.B.: D(R) = $\beta D_0 R^{\delta}$ $t_{diff} \approx 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ $t_{conv} \approx 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$

• Adiabatic losses (in expanding plasma)

V: volume N (# particles) = nV U (internal energy) = NE E (average energy/particle) Adiabatic: dU = -PdV (work done by gas) \rightarrow NdE = -2/3 nE dV $\frac{dE}{dt} = -\frac{2}{3}\frac{nE}{N}\frac{dV}{dt}$

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

$$\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$$

$$1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-3}$$

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) & \frac{\partial N}{\partial t} - \vec{\nabla}.\left[D\vec{\nabla}N + \vec{V_c}N\right] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) & \frac{\partial N}{\partial t} - \vec{\nabla}.\left[D\vec{\nabla}N + \vec{V_c}N\right] = 0 \end{cases}$

Characteristic time scales: diffusion vs convection

- Competition D vs V $t_{\rm diff} \simeq 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ $t_{\rm conv} \simeq 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$ - N.B.: $D(R) = \beta D_0 R^{\delta}$

• Adiabatic losses (in expanding plasma)

V: volume Non-relativistic N (# particles) = nV E = 3/2 kTU (internal energy) = NE P = NkT/VE (average energy/particle) P=2/3 nEAdiabatic: dU = -PdV (work done by gas) $\rightarrow NdE = -2/3$ nE dV dE2 nE dV $\overline{dt} = -\overline{3} \overline{N} \overline{dt}$

Comments

- *N.B.: solution (behaviour) depends on*
 - Dimensionality
 - Geometry

Relativistic

U=3NkT

P = 1/3 U

- D(**r**) spatial dependence
- V spatial dependence and direction
- Boundary conditions

Numerical application (Galaxy)

 $L \simeq 10 \text{ kpc}$ Halo half $D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1}$ Diffusion Halo half-size $\begin{array}{ll} \delta\simeq 0.5 \\ V_c\simeq 10 \ {\rm km \ s^{-1}} \end{array} \qquad \begin{array}{ll} {\rm Diffusion \ slope} \\ {\rm Convection} \end{array}$

$$1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-1}$$

1. Rate of expansion in velocity field
$$\mathbf{v}(\mathbf{r})$$

$$\frac{dV}{dt} = (v_{x+dx} - v_x)dydz + \cdots$$

$$= \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}\right)dxdydz = \left(\vec{\nabla} \cdot \vec{v}(\vec{r})\right)V$$

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V $t_{\text{diff}} \simeq 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ - N.B.: D(R) = $\beta D_0 R^{\delta}$ $t_{\text{conv}} \simeq 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$

• Adiabatic losses (in expanding plasma)

V: volume N (# particles) = nV U (internal energy) = NE E (average energy/particle) Adiabatic: dU = -PdV (work done by gas) \rightarrow NdE = -2/3 nE dV $\begin{cases}
\frac{dE}{dt} = -\frac{2}{3}\frac{nE}{N}\frac{dV}{dt} \\
\frac{dV}{dt} = (\vec{\nabla} \cdot \vec{v}(\vec{r}))V
\end{cases}$ Non-relativistic E = 3/2 kT U = 3NkT P = NkT/V P = 1/3 U P=2/3 nE Adiabatic: dU = -PdV (work done by gas) \rightarrow NdE = -2/3 nE dV $\begin{cases}
\frac{dE}{dt} = -\frac{2}{3}\frac{nE}{N}\frac{dV}{dt} \\
\frac{dE}{dt} = -\frac{2}{3}(\vec{\nabla} \cdot \vec{v}(\vec{r}))E \\
\frac{dE}{dt} = -\frac{2}{3}(\vec{\nabla} \cdot \vec{v}(\vec{r}))E
\end{cases}$

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

 $\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$

$$1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-1}$$

1. Rate of expansion in velocity field
$$\mathbf{v}(\mathbf{r})$$

$$\frac{dV}{dt} = (v_{x+dx} - v_x)dydz + \cdots$$

$$= \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}\right)dxdydz = \left(\vec{\nabla} \cdot \vec{v}(\vec{r})\right)V$$

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V $t_{\text{diff}} \simeq 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ $- \text{ N.B.: } D(R) = \beta D_0 R^{\delta}$ $t_{\text{conv}} \simeq 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$

• Adiabatic losses (in expanding plasma)

V: volume N (# particles) = nV U (internal energy) = NE E (average energy/particle) Adiabatic: dU = -PdV (work done by gas) \rightarrow NdE = -2/3 nE dV $\begin{cases}
\frac{dE}{dt} = -\frac{2}{3}\frac{nE}{N}\frac{dV}{dt} \\
\frac{dV}{dt} = (\vec{\nabla} \cdot \vec{v}(\vec{r}))V
\end{cases}$ Non-relativistic E = 3/2 kT P = NkT/V P = NkT/V P = 1/3 U P=2/3 nE $\frac{dE}{dt} = -\frac{2}{3}(\vec{\nabla} \cdot \vec{v}(\vec{r}))E = -\frac{1}{3}(\vec{\nabla} \cdot \vec{v}(\vec{r}))E$

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V_c spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

 $\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$

$$1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-1}$$

- 1. Rate of expansion in velocity field $\mathbf{v}(\mathbf{r})$ $\frac{dV}{dt} = (v_{x+dx} - v_x)dydz + \cdots$ $= \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}\right)dxdydz = \left(\vec{\nabla} \cdot \vec{v}(\vec{r})\right)V$
- 2. Application: spherical case, $v(r) = v_0$

• Use
$$(\vec{\nabla} \cdot \vec{v})_r = \frac{1}{r^2} \frac{\partial (r^2 v_r)}{\partial r}$$

• Calculate E=f(r)

II.3 Convection

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V $t_{\text{diff}} \simeq 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{Myr}$ $- \text{ N.B.: } D(R) = \beta D_0 R^{\delta}$ $t_{\text{conv}} \simeq 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{Myr}$

• Adiabatic losses (in expanding plasma)

V: volume N (# particles) = nV U (internal energy) = NE E (average energy/particle) Adiabatic: dU = -PdV (work done by gas) \rightarrow NdE = -2/3 nE dV $\begin{cases}
\frac{dE}{dt} = -\frac{2}{3}\frac{nE}{N}\frac{dV}{dt} \\
\frac{dV}{dt} = (\vec{\nabla} \cdot \vec{v}(\vec{r}))V
\end{cases}$ Non-relativistic E = 3/2 kT P = NkT/V P = NkT/V P = 1/3 U P=2/3 nE Adiabatic: dU = -PdV (work done by gas) \rightarrow NdE = -2/3 nE dV $\begin{cases}
\frac{dE}{dt} = -\frac{2}{3}\frac{nE}{N}\frac{dV}{dt} \\
\frac{dE}{dt} = -\frac{2}{3}(\vec{\nabla} \cdot \vec{v}(\vec{r}))E \\
\frac{dE}{dt} = -\frac{2}{3}(\vec{\nabla} \cdot \vec{v}(\vec{r}))E
\end{cases}$

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

 $\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$

 $1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-1}$

1. Rate of expansion in velocity field $\mathbf{v}(\mathbf{r})$ $\frac{dV}{dt} = (v_{x+dx} - v_x)dydz + \cdots$ $= \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}\right)dxdydz = \left(\vec{\nabla} \cdot \vec{v}(\vec{r})\right)V$

P. Application: spherical case,
$$v(r) = v_0$$

• Use $(\vec{\nabla} \cdot \vec{v})_r = \frac{1}{r^2} \frac{\partial (r^2 v_r)}{\partial r}$
• Calculate E=f(r) $E = E_0 \left(\frac{r_0}{r}\right)^{4/3}$

II.3 Convection

• Advection/diffusion or drift/diffusion (or Smoluchowski equation)

 $\begin{bmatrix} \text{continuity} \end{bmatrix} \begin{cases} \frac{\partial N(r,t)}{\partial t} + \vec{\nabla}.\vec{j_d} = 0 \\ \vec{j_d} = -D\vec{\nabla}N(r,t) \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases} \quad \frac{\partial N}{\partial t} - \vec{\nabla}.[D\vec{\nabla}N + \vec{V_c}N] = 0 \\ \vec{j_c} = \vec{V_c}N(r,t) \end{cases}$

• Characteristic time scales: diffusion vs convection

- Competition D vs V $t_{\text{diff}} \simeq 300 \left(\frac{L}{10 \text{ kpc}}\right)^2 \left(\frac{D_0}{0.05 \text{ kpc}^2 \text{ Myr}^{-1}}\right)^{-1} \left(\frac{R}{1 \text{ GV}}\right)^{-\delta} \text{ Myr}$ $- \text{ N.B.: } D(R) = \beta D_0 R^{\delta}$ $t_{\text{conv}} \simeq 10^3 \left(\frac{L}{10 \text{ kpc}}\right) \left(\frac{V_c}{10 \text{ km s}^{-1}}\right)^{-1} \text{ Myr}$

• Adiabatic losses (in expanding plasma)

V: volume N (# particles) = nV U (internal energy) = NE E (average energy/particle) Adiabatic: dU = -PdV (work done by gas) \rightarrow NdE = -2/3 nE dV $\begin{cases} \frac{dE}{dt} = -\frac{2}{3}\frac{nE}{N}\frac{dV}{dt} \\ \frac{dV}{dt} = (\vec{\nabla} \cdot \vec{v}(\vec{r}))V \end{cases}$ $\frac{dE}{dt} = -\frac{2}{3}(\vec{\nabla} \cdot \vec{v}(\vec{r}))E \qquad -\frac{1}{3}(\vec{\nabla} \cdot \vec{v}(\vec{r}))E \end{cases}$

Comments

- N.B.: solution (behaviour) depends on
 - Dimensionality
 - Geometry
 - D(r) spatial dependence
 - V spatial dependence and direction
 - Boundary conditions

Numerical application (Galaxy)

 $\begin{cases} L \simeq 10 \text{ kpc} & \text{Halo half-size} \\ D_0 \simeq 0.05 \text{ kpc}^2 \text{ Myr}^{-1} & \text{Diffusion} \\ \delta \simeq 0.5 & \text{Diffusion slope} \\ V_c \simeq 10 \text{ km s}^{-1} & \text{Convection} \end{cases}$

 $1 \text{ km s}^{-1} = 10^{-3} \text{kpc Myr}^{-1}$

1. Rate of expansion in velocity field $\mathbf{v}(\mathbf{r})$ $\frac{dV}{dt} = (v_{x+dx} - v_x)dydz + \cdots$ $= \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}\right)dxdydz = \left(\vec{\nabla} \cdot \vec{v}(\vec{r})\right)V$

2. Application: spherical case,
$$v(r) = v_0^{-1}$$

• Use $(\vec{\nabla} \cdot \vec{v})_r = \frac{1}{r^2} \frac{\partial (r^2 v_r)}{\partial r}^{-1}$
• Calculate E=f(r) $E = E_0 \left(\frac{r_0}{r}\right)^{4/3}$
 \rightarrow Solar modulation: CRs loose
energy in expanding Solar wind
II.3 Convection

Transport of cosmic rays (CR) in the Galaxy

II. Processes, ingredients, characteristic times

- 1. Definitions
- 2. Diffusion (space and momentum)
- 3. Convection and adiabatic losses
- 4. Energy losses
- 5. Catastrophic losses
- 6. All together

Synchrotron

Inverse Compton

Synchrotron

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} \rightarrow $(\varepsilon_{\gamma})^{(p-1)/2}$
- $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 \text{ MHz} \text{ (for 100 MeV e}^-)$

Inverse Compton

Synchrotron

408 MHz

- Power emitted || and H to B (polarised emission)
 If (E)^{-s} → (ε_γ)^{(p-1)/2}
- $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) \text{ Hz} \sim 300 \text{ MHz} \text{ (for 100 MeV e}^-)$

Inverse Compton

Synchrotron

408 MHz

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} $\rightarrow (\epsilon_{\gamma})^{(p-1)/2}$
- $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 MHz (for 100 MeV e)$

electron B radio waves

Ingredients

B tracers

- Faraday rotation: free e (ionised regions)
- Synchrotron emission: CR e
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Inverse Compton

Synchrotron

408 MHz

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} $\rightarrow (\epsilon_{\gamma})^{(p-1)/2}$
- $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 \text{ MHz} \text{ (for 100 MeV e}^-\text{)}$

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Inverse Compton

ev'

Bremsstrahlung (or free-free)

Ionisation and Coulomb

Synchrotron

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} \rightarrow $(\varepsilon_{\gamma})^{(p-1)/2}$
- $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 \text{ MHz} (\text{for } 100 \text{ MeV e}^-)$

 $-\frac{dE}{dt}_{\rm sync} \propto \sigma_{\rm T} B_{\perp}^2 \gamma$

408 MHz

Inverse Compton

Ionisation and Coulomb

Bremsstrahlung (or free-free)

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Synchrotron

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} $\rightarrow (\varepsilon_{\gamma})^{(p-1)/2}$ • $\nu(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 \text{ MHz} (\text{for 100 MeV e}^-)$

$$-\frac{dE}{dt}_{
m sync} \propto \sigma_{
m T} B_{\perp}^2 \gamma$$

408 MHz 🔹

$$_{\rm c} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Inverse Compton

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

electron

radio

waves

Bremsstrahlung (or free-free)

Ionisation and Coulomb

Synchrotron

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} $\rightarrow (\epsilon_{\gamma})^{(p-1)/2}$ • $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 \text{ MHz} (\text{for } 100 \text{ MeV e}^-)$

$-\frac{dE}{dt}_{ m sync} \propto \sigma_{ m T} B_{\perp}^2 \gamma^2$

408 MHz

 $t_{\rm sync} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$

Inverse Compton (2 regimes) Thomson

Klein-Nishina

electron

radio

waves

Bremsstrahlung (or free-free)

e-

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties $[2 \mu G < B_{sync} < 6 \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

hina

Synchrotron

- Power emitted || and H to B (polarised emission)
- If $(E)^{-s} \rightarrow (\epsilon_{\gamma})^{(p-1)/2}$ • $\nu(P_{max}) \sim 2\gamma^2 (B/1\mu G) \text{ Hz} \sim 300 \text{ MHz} \text{ (for 100 MeV e})$

$-rac{dE}{dt}_{ m sync} \propto \sigma_{ m T} B_{\perp}^2$

• Scattered ε^{IC}

408 MHz

$$300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Inverse Compton (2 regimes) Thomso

$$n$$
 Klein-Nisk
 γ^2 $\sim 4 \epsilon^0 \gamma$

• Power: fold cross-section to density of photons

 $t_{\rm sync} \simeq$

• Energy losses $\propto \gamma^2 \qquad \propto \ln(\gamma)$

 $[\varepsilon_{v}^{0} - 4\varepsilon_{v}^{0}]$

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Bremsstrahlung (or free-free)

Ionisation and Coulomb

Synchrotron

408 MHz

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} $\rightarrow (\epsilon_{\gamma})^{(p-1)/2}$ • $\nu(P_{max}) \sim 2\gamma^2 (B/1\mu G) \text{ Hz} \sim 300 \text{ MHz} (\text{for 100 MeV e}^-)$

$-rac{dE}{dt}_{ m sync} \propto \sigma_{ m T} B_{\perp}^2$

• Scattered ε^{IC}

$$= 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Inverse Compton (2 regimes)

- $\begin{array}{ll} \textit{Thomson} & \textit{Klein-Nishina} \\ [\epsilon_{\gamma}^{\ 0} 4\epsilon_{\gamma}^{\ 0}\gamma_{e}^{\ 2}] & \sim 4\epsilon_{\gamma}^{\ 0}\gamma_{e}^{\ 2} \end{array}$
- Power: fold cross-section to density of photons

l_{sync}

• Energy losses $\propto \gamma^2 \qquad \propto \ln(\gamma)$

γ αι

Bremsstrahlung (or free-free)

Ionisation and Coulomb

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Synchrotron

- Power emitted || and H to B (polarised emission)
- If $(E)^{-s} \rightarrow (\epsilon)^{(p-1)/2}$ $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 \text{ MHz} \text{ (for 100 MeV e}^{-})$

408 MHz

dt syne

dF

$$_{\rm nc} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Inverse Compton (2 regimes)

$$\begin{bmatrix} 1 \text{ nomson} & K \\ E^0 - 4E^0 \sqrt{2} \end{bmatrix}$$

$$A = c^0 \alpha^2$$

 $\propto \ln(\gamma)$

 $U_{\rm rad}$

ľ,

Mvr

Power: fold cross-section to density of photons

Ellergy losses	•	Energy	losses
----------------	---	--------	--------

• Scattered ε^{IC}

 $\propto \sigma_{
m T} B_\perp^2$

$$t_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}}\right)^{-1}$$

$$\frac{1}{dt} \frac{\alpha \sigma_{\rm T} U_{\rm rad} \gamma^2}{t_{\rm IC}} = t_{\rm I}$$

Bremsstrahlung (or free-free)

Ingredients

B tracers

electron

radio

waves

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar. •

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Uncertainties [Porter et al., ApJ 682 (2008) 400]

Ionisation and Coulomb

Synchrotron

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} \rightarrow (ϵ)^{(p-1)/2} • $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) \text{ Hz} \sim 300 \text{ MHz} \text{ (for 100 MeV e}^-)$

408 MHz

$$\frac{dE}{dt}_{
m sync} \propto \sigma_{
m T} B_{\perp}^2$$

$$4 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Inverse Compton (2 regimes)

ThomsonKlein-Ni
$$[\varepsilon_{\gamma}^{0} - 4\varepsilon_{\gamma}^{0}\gamma_{e}^{2}]$$
 $\sim 4\varepsilon_{\gamma}^{0}$

$$\sim 4 \epsilon^0 \gamma^2$$

 $\propto \ln(\gamma)$

Mvr

- Power: fold cross-section to density of photons
- Energy los

• Scattered ε^{IC}

• Energy losses
$$\frac{dE}{dt} \propto \sigma_{\rm T} U_{\rm rad} \gamma^2$$
 $t_{\rm IC} \simeq 300 \left(\frac{H}{1000}\right)$

^lsync

$$_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}^{-1}}\right)^{-1}$$

Thoms

Bremsstrahlung (or free-free)

- Loss in plasma or atomic hydrogen within a factor of two
- In the ISM: H (neutral and molecular) and He dominant •
- $\varepsilon_{\gamma} \sim E/2$, and $(E)^{-s} \rightarrow (\varepsilon_{\gamma})^{-s}$

Ionisation and Coulomb

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties [2 $\mu G < B_{sync} < 6 \mu G$]

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Synchrotron

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} \rightarrow (ϵ)^{(p-1)/2} $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) \text{ Hz} \sim 300 \text{ MHz} \text{ (for 100 MeV e}^-)$

408 MHz

$$-\frac{dE}{dt}_{
m sync} \propto \sigma_{
m T} B_{\perp}^2$$

$$(4.300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Inverse Compton (2 regimes)

$$n$$
 Klein-Nis

$$\gamma^2$$
] ~ $2 \epsilon_0^0 \gamma^2$

 $\propto \ln(\gamma)$

Myr

Power: fold cross-section to density of photons

^lsync

Energy los

• Scattered ε^{IC}

Energy losses
$$\propto \tau$$

 $\propto \sigma_{\rm T} U_{\rm rad} \gamma^2$ $t_{\rm IC} \simeq 300 \left(\frac{E}{1 \ {\rm GeV}}\right)$

$$_{\rm IC} \simeq 300 \, \left(\frac{E}{1 \, {\rm GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \, {\rm GeV} \, {\rm m}^{-3}}\right)^{-1}$$

Thoms

 $\left[\epsilon^{0} - 4\epsilon\right]$

Bremsstrahlung (or free-free)

- Loss in plasma or atomic hydrogen within a factor of two
- In the ISM: H (neutral and molecular) and He dominant

•
$$\varepsilon_{\gamma} \sim E/2$$
, and $(E)^{-s} \rightarrow (\varepsilon_{\gamma})^{-s}$

$$-\frac{dE}{dt} \propto \sigma_{\rm T} n_{\rm ISM} \gamma$$

Ionisation and Coulomb

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)

Dust thermal emission, starlight polar. •

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Synchrotron

- Power emitted || and H to B (polarised emission)
- If $(E)^{-s} \rightarrow (\epsilon)^{(p-1)/2}$ $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) \text{ Hz} \sim 300 \text{ MHz} \text{ (for 100 MeV e}^-\text{)}$

dt sync

dE

$$_{\rm T}B_{\perp}^2\gamma^2$$
 $t_{\rm sync}\simeq 300~\left(\frac{1}{100}\right)$

$$800 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Inverse Compton (2 regimes)

ThomsonKlein-Nishina
$$[\varepsilon_{1}^{0} - 4\varepsilon_{1}^{0}\gamma^{2}]$$
 $\sim 4\varepsilon_{1}^{0}\gamma^{2}$

$$\gamma^2$$
] ~ $2 \epsilon^0 \gamma^2$

 $\propto \ln(\gamma)$

Mvr

- Power: fold cross-section to density of photons
- **Energy** losses

 $\propto \sigma_{\rm T} U_{\rm rad} \gamma$

• Scattered ε^{IC}

$$\propto \gamma^2 \qquad \propto \tau^2$$
$$t_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}}\right)^{-1}$$

Thoms

Bremsstrahlung (or free-free)

- Loss in plasma or atomic hydrogen within a factor of two
- In the ISM: H (neutral and molecular) and He dominant

•
$$\varepsilon_{\gamma} \sim E/2$$
, and $(E)^{-s} \rightarrow (\varepsilon_{\gamma})^{-s}$

$$-\frac{dE}{dt} \propto \sigma_{\rm T} n_{\rm ISM} \gamma$$

Ionisation and Coulomb

- Ionisation: interaction in neutral matter •
- Coulomb: scattering off free electrons

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)

• Dust thermal emission, starlight polar.

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Synchrotron

- Power emitted || and H to B (polarised emission)
- If $(E)^{-s} \rightarrow (\epsilon_{s})^{(p-1)/2}$ • $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 \text{ MHz} \text{ (for 100 MeV e}^-\text{)}$

$$-\frac{dE}{dt}_{
m sync} \propto \sigma_{
m T} B_{\perp}^2 \gamma$$

$$\simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Inverse Compton (2 regimes)

ThomsonKlein-Ni.
$$[\varepsilon_{\gamma}^{0} - 4\varepsilon_{\gamma}^{0}\gamma_{e}^{2}]$$
~ 4 ε_{γ}^{0}

$$\sim 4 \epsilon^0 \gamma^2$$

 $\propto \ln(\gamma)$

Myr

Power: fold cross-section to density of photons

l_{svnc}

Energy losse

 $_{_{
m T}} \propto \sigma_{
m T} U_{
m rad} \gamma$

• Scattered ε^{IC}

$$\frac{\alpha \gamma^2}{2} + \frac{\alpha \gamma^2}{(E - 1)^{-1}}$$

$$e \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\text{rad}}}{0.3 \text{ GeV m}^{-3}}\right)^{-1}$$

Thoms

Bremsstrahlung (or free-free)

- Loss in plasma or atomic hydrogen within a factor of two
- In the ISM: H (neutral and molecular) and He dominant

•
$$\varepsilon_{\gamma} \sim E/2$$
, and $(E)^{-s} \rightarrow (\varepsilon_{\gamma})^{-s}$

$$-\frac{dE}{dt} \propto \sigma_{\rm T} n_{\rm ISM} \gamma$$

Ionisation and Coulomb

- Ionisation: interaction in neutral matter •
- Coulomb: scattering off free electrons 0

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Synchrotron

- Power emitted || and H to B (polarised emission)
- If $(E)^{-s} \rightarrow (\epsilon_{s})^{(p-1)/2}$ • $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 \text{ MHz} \text{ (for 100 MeV e}^-\text{)}$

dE

$$_{\rm ync} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} N_{\rm s}$$

Inverse Compton (2 regimes)

 $\propto \sigma_{
m T} B_{\perp}^2$

ThomsonKlein-Ni
$$[\varepsilon_{0}^{0} - 4\varepsilon_{0}^{0}\gamma^{2}]$$
~ 4 $\varepsilon_{0}^{0}\gamma^{2}$

$$\gamma_{a}^{2}$$
] ~ ~4 $\varepsilon_{\gamma}^{0} \gamma_{a}^{2}$

 $\propto \ln(\gamma)$

Myr

Power: fold cross-section to density of photons

 $-rac{dE}{dt}_{IC} \propto \sigma_{
m T} U_{
m rad} \gamma^2$

• Scattered ε^{IC}

$$t_{\rm IC} \simeq 300 \left(\frac{E}{1 \, {\rm GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.2 \, {\rm GeV}}\right)^{-1}$$

Thoms

Bremsstrahlung (or free-free)

- Loss in plasma or atomic hydrogen within a factor of two
- In the ISM: H (neutral and molecular) and He dominant

•
$$\varepsilon_{\gamma} \sim E/2$$
, and $(E)^{-s} \rightarrow (\varepsilon_{\gamma})^{-s}$

$$-\frac{dE}{dt} \propto \sigma_{\rm T} n_{\rm ISM} \gamma$$

Ionisation and Coulomb

- Ionisation: interaction in neutral matter •
- Coulomb: scattering off free electrons 0

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)

• Dust thermal emission, starlight polar.

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Synchrotron

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} \rightarrow (ϵ_{γ})^{(p-1)/2} • $\nu(P_{max}) \sim 2\gamma^2$ (B/1 μ G) Hz \sim 300 MHz (for 100 MeV e⁻)

dt syne

dE

$$_{\rm nc} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ My}$$

Inverse Compton (2 regimes)

 $\propto \sigma_{
m T} B_\perp^2$

$$n$$
 Klein-Nis

$$\gamma_a^2$$
] ~ ~ 4 $\epsilon_{\gamma}^0 \gamma_a^2$

 $\propto \ln(\gamma)$

Mvi

• Power: fold cross-section to density of photons

• Energy	losses
----------	--------

 $\overline{dt}_{IC} \propto \sigma_{
m T} U_{
m rad} \gamma^2$

• Scattered ϵ^{IC}

$$\frac{\alpha \gamma}{t_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}}\right)^{-1}}$$

Thomse

 $\left[\epsilon_{...}^{0} - 4\epsilon_{...}^{0}\right]$

Bremsstrahlung (or free-free)

- Loss in plasma or atomic hydrogen within a factor of two
- In the ISM: H (neutral and molecular) and He dominant

•
$$\varepsilon_{\gamma} \sim E/2$$
, and $(E)^{-s} \rightarrow (\varepsilon_{\gamma})^{-s}$

$$-\frac{dE}{dt} \propto \sigma_{\rm T} n_{\rm ISM} \gamma$$

Ionisation and Coulomb

- Ionisation: interaction in neutral matter
- Coulomb: scattering off free electrons

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties [2 μ G < B_{sync} < 6 μ G]

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Uncertainties [Porter et al., ApJ 682 (2008) 400]

Uncertainties $[n_{disc} \sim 1 - 2 \text{ cm}^{-3}]$

- Distribution of HI, HII, H2, He...
- Geometry: radial and z-dependence
 - Arm-interarm contrast

Plasma (Coulomb)

Atomic matter (ionisation)

Synchrotron

- Power emitted || and H to B (polarised emission)
- If $(E)^{-s} \rightarrow (\epsilon_{s})^{(p-1)/2}$ • $v(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 \text{ MHz} (\text{for } 100 \text{ MeV e}^-)$

dE

 \overline{dt} sync

$$_{\rm c} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Inverse Compton (2 regimes)

ThomsonKlein-Nise
$$[\boldsymbol{\varepsilon}_{y}^{0} - 4\boldsymbol{\varepsilon}_{y}^{0}\boldsymbol{\gamma}_{e}^{2}]$$
 $\sim 4 \boldsymbol{\varepsilon}_{y}^{0} \boldsymbol{\gamma}_{e}^{3}$

1(Y)

Myr

e-

Power: fold cross-section to density of photons

 $\frac{dT}{dt}_{IC} \propto \sigma_{\rm T} U_{\rm rad} \gamma^2$

• Scattered ϵ^{IC}

 $\propto \sigma_{
m T} B_\perp^2$

$$t_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}^{-3}}\right)^{-3}$$

Thomso

Bremsstrahlung (or free-free)

- Loss in plasma or atomic hydrogen within a factor of two
- In the ISM: H (neutral and molecular) and He dominant

•
$$\varepsilon_{\gamma} \sim E/2$$
, and $(E)^{-s} \rightarrow (\varepsilon_{\gamma})^{-s}$
 $-\frac{dE}{dt}_{\text{brem}} \propto \sigma_{\text{T}} n_{\text{ISM}} \gamma$

$$t_{\rm brem} \simeq 300 \left(\frac{n_{\rm ISM}}{1 \,{\rm cm}^{-3}}\right)^{-1} \,{\rm Myr}$$

Ionisation and Coulomb

- Ionisation: interaction in neutral matter •
- Coulomb: scattering off free electrons

$$\frac{dE^{\text{ion}}}{dt} \propto \sigma_{\rm T} n_{\rm plasma}^{\rm ISM} \qquad t_{\rm ion} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right) \left(\frac{n_{\rm ISM}}{1 \text{ cm}^{-3}}\right)^{-1} \text{ M}$$

K-rav

<u>e-</u>

 (\mathbf{f})

Plasma (Coulomb) Atomic matter (ionisation)

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e⁻
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties $[2 \ \mu G < B_{sync} < 6 \ \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Uncertainties [Porter et al., ApJ 682 (2008) 400]

Uncertainties $[n_{disc} \sim 1 - 2 \text{ cm}^{-3}]$

- Distribution of HI. HII, H2, He...
- Geometry: radial and z-dependence
 - Arm-interarm contrast

hina

Myr

e-

n(Y)

Synchrotron

- Power emitted || and H to B (polarised emission)
- If (E)^{-s} $\rightarrow (\epsilon_{\gamma})^{(p-1)/2}$ • $\nu(P_{max}) \sim 2\gamma^2 (B/1\mu G) Hz \sim 300 \text{ MHz} (\text{for 100 MeV e}^-)$

dt syne

dE

$$v_{\rm nc} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu \text{G}}\right)^{-1} \text{ M}$$

Inverse Compton (2 regimes)

 $\propto \sigma_{
m T} B_\perp^2 \gamma$

$$[\epsilon_{\gamma}^{0} - 4\epsilon_{\gamma}^{0}\gamma_{e}^{2}] \sim$$

• Power: fold cross-section to density of photons

•	Energy losses	
dE	$\sim \sigma U \sigma^2$	
dt	$C \propto \sigma_{\rm T} \sigma_{\rm rad}$	

• Scattered ε^{IC}

$$t_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}^{-3}}\right)^{-1}$$

Thoms

Bremsstrahlung (or free-free)

- Loss in plasma or atomic hydrogen within a factor of two
- In the ISM: H (neutral and molecular) and He dominant

•
$$\varepsilon_{\gamma} \sim E/2$$
, and $(E)^{-S} \rightarrow (\varepsilon_{\gamma})$
 $-\frac{dE}{dt}_{\text{brem}} \propto \sigma_{\text{T}} n_{\text{ISM}} \gamma$

$$t_{\text{brem}} \simeq 300 \left(\frac{n_{\text{ISM}}}{1 \text{ cm}^{-3}}\right)^{-1} \text{ Myr}$$

Ionisation and Coulomb

- Ionisation: interaction in neutral matter
- Coulomb: scattering off free electrons

$$-\frac{dE^{\text{ion}}}{dt_{\text{Coulomb}}} \propto \sigma_{\text{T}} n_{\text{plasma}}^{\text{ISM}} \qquad t_{\text{ion}} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right) \left(\frac{n_{\text{ISM}}}{1 \text{ cm}^{-3}}\right)^{-1} \text{ My}$$

K-rav

<u>e-</u>

 (\mathbf{f})

Plasma (Coulomb)+× Atomic matter (ionisation)

Ingredients

B tracers

- Faraday rotation: free e⁻ (ionised regions)
- Synchrotron emission: CR e
- Zeeman splitting: lines (neutral regions)
- Dust thermal emission, starlight polar.

Uncertainties $[2 \mu G < B_{sync} < 6 \mu G]$

- Geometry (z dependence)
- Arm-interarm strenght
- Regular vs irregular component

Uncertainties [Porter et al., ApJ 682 (2008) 400]

Uncertainties $[n_{disc} \sim 1 - 2 \text{ cm}^{-3}]$

- Distribution of HI, HII, H2, He...
- Geometry: radial and z-dependence
 - Arm-interarm contrast

 \rightarrow Crucial for γ -ray emissions

II.4 E losses

Synchrotron [disc + halo]

$$-rac{dE}{dt}_{
m sync} \propto \sigma_{
m T} B_{\perp}^2 \gamma^2$$

$$_{\rm sync} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Are the formulae the same for electrons and nuclei?

Inverse Compton [disc + CMB halo]

$$-\frac{dE}{dt}_{IC} \propto \sigma_{\rm T} U_{\rm rad} \gamma^2 \qquad t_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}^{-3}}\right)^{-1} \text{ Myr}$$

Bremsstrahlung [disc]

$$-\frac{dE}{dt}_{\rm brem} \propto \sigma_{\rm T} n_{\rm ISM} \gamma$$

$$_{\rm em} \simeq 300 \left(\frac{n_{\rm ISM}}{1 \,{\rm cm}^{-3}}\right)^{-1} \,{\rm Myr}$$

Ionisation and Coulomb [disc]

$$-\frac{dE^{\rm ion}}{dt_{\rm Coulomb}} \propto \sigma_{\rm T} n_{\rm plasma}^{\rm ISM} \quad t_{\rm ion} \simeq 300$$

Mvr

$$-rac{dE}{dt}_{
m sync} \propto \sigma_{
m T} B_{\perp}^2 \gamma^2$$

$$_{\rm ync} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

Inverse Compton [disc + CMB halo]

$$-\frac{dE}{dt_{IC}} \propto \sigma_{\rm T} U_{\rm rad} \gamma^2 \qquad t_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}^{-3}}\right)^{-1} \text{ Myr}$$

- Lepton X-section \rightarrow nucleus X-section

$$\sigma_{\rm T} = 8\pi r_e^2/3$$

$$r_e \propto e^2/m_e$$

Relate $\sigma_{_N}$ to $\sigma_{_T}$

Bremsstrahlung [disc] $-\frac{dE}{dt} \propto \sigma_{\rm T} n_{\rm ISM} \gamma \qquad t_{\rm brem} \simeq 300 \left(\frac{n_{\rm ISM}}{1 \,{\rm cm}^{-3}}\right)^{-1} \,{\rm Myr}$ Ionisation and Coulomb [disc]

$$-\frac{dE^{\rm ion}}{dt_{\rm Coulomb}} \propto \sigma_{\rm T} n_{\rm plasma}^{\rm ISM} \qquad t_{\rm ion} \simeq 30$$

Mvr

🗴-ray

Synchrotron [disc + halo]

$$-\frac{dE}{dt}_{
m sync} \propto \sigma_{
m T} B_{\perp}^2 \gamma^2$$

$$_{\rm ync} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

- Changes in formulae
 - Lepton X-section \rightarrow nucleus X-section

$$\sigma_{\rm T} = 8\pi r_e^2/3$$
$$r_e \propto e^2/m_e$$

$$\sigma_{\rm N} = \frac{Z^4}{A^2} \frac{m_e^2}{m_p^2} \sigma_{\rm T} \simeq Z^2 \cdot 10^{-7} \sigma_{\rm T}$$

Inverse Compton [disc + CMB halo]

$$-\frac{dE}{dt_{IC}} \propto \sigma_{\rm T} U_{\rm rad} \gamma^2 \qquad t_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}^{-3}}\right)^{-1} \text{ Myr}$$

e-

X-ray

$$-\frac{dE}{dt}_{\rm brem} \propto \sigma_{\rm T} n_{\rm ISM}$$

$$t_{\rm brem} \simeq 300 \left(\frac{n_{\rm ISM}}{1\,{\rm cm}^{-3}}\right)^{-1} {\rm Myr}$$

 $n_{\rm ISM}$

1cm

Mvr

Ionisation and Coulomb [disc]

$$-\frac{dE^{\rm ion}}{dt_{\rm Coulomb}} \propto \sigma_{\rm T} n_{\rm plasma}^{\rm ISM} \qquad t_{\rm ion} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right) ($$

(+)

Synchrotron [disc + halo]

$$-rac{dE}{dt}_{
m sync} \propto \sigma_{
m T} B_{\perp}^2 \gamma^2$$

$$_{\rm rnc} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

• Changes in formulae

- Lepton X-section \rightarrow nucleus X-section

$$\sigma_{\rm T} = 8\pi r_e^2/3$$
$$r_e \propto e^2/m_e$$

$$\sigma_{\rm N} = \frac{Z^4}{A^2} \frac{m_e^2}{m_p^2} \sigma_{\rm T} \simeq Z^2 \cdot 10^{-7} \sigma_{\rm T}$$

- At 1 GeV,
$$\gamma_{e} \neq \gamma_{I}$$

$$\frac{\gamma_N}{\gamma_e} (E^e = E^N_{k/n}) = \frac{m_e}{m_N} \simeq 5 \cdot 10^{-4}$$

Inverse Compton [disc + CMB halo]

$$-\frac{dE}{dt_{IC}} \propto \sigma_{\rm T} U_{\rm rad} \gamma^2 \qquad t_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}^{-3}}\right)^{-1} \text{ Myr}$$

Bremsstrahlung [disc]

 $-\frac{dE}{dt}_{\rm brem} \propto \sigma_{\rm T} n_{\rm ISM} \gamma$

$$t_{\rm brem} \simeq 300 \left(\frac{n_{\rm ISM}}{1\,{\rm cm}^{-3}}\right)^{-1} {\rm Myr}$$

 $n_{\rm ISM}$

1cm

Mvr

Ionisation and Coulomb [disc]

$$\frac{dE^{\rm ion}}{dt_{\rm Coulomb}} \propto \sigma_{\rm T} n_{\rm plasma}^{\rm ISM} \quad t_{\rm ion} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right) \left(\frac{E}{1 \text{ GeV}}\right)$$

$$-rac{dE}{dt}_{
m sync} \propto \sigma_{
m T} B_{\perp}^2 \gamma^2 \qquad t_{
m sync}$$

$$_{\rm nc} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{B_{\perp}}{3 \,\mu\text{G}}\right)^{-1} \text{ Myr}$$

electron B radio waves

Inverse Compton [disc + CMB halo]

$$-\frac{dE}{dt}_{IC} \propto \sigma_{\rm T} U_{\rm rad} \gamma^2 \qquad t_{\rm IC} \simeq 300 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \left(\frac{U_{\rm rad}}{0.3 \text{ GeV m}^{-3}}\right)^{-1} \text{ Myr}$$

 $(\mathbf{+})$

Plasma (Coulomb)+ Atomic matter (ionisation)

e-

X-rav

e-

• Changes in formulae

- Lepton X-section \rightarrow nucleus X-section

$$\sigma_{\rm T} = 8\pi r_e^2/3$$
$$r_e \propto e^2/m_e$$

$$\sigma_{\rm N} = \frac{Z^4}{A^2} \frac{m_e^2}{m_p^2} \sigma_{\rm T} \simeq Z^2 \cdot 10^{-7} \sigma_{\rm T}$$

- At 1 GeV, $\gamma_e \neq \gamma_p$ $\frac{\gamma_N}{\gamma_e} (E^e = E_{k/n}^N) = \frac{m_e}{m_N} \simeq 5 \cdot 10^{-4}$
- Suppression factors in dE/dt

 all effects: Z² 10⁻⁷
 each time a γ is in dE/dt: 5 10⁻⁴

Which losses can be neglected?

 $-rac{dE}{dt}_{
m brem} \propto \sigma_{
m T} n_{
m ISM} \gamma$

$$t_{\rm brem} \simeq 300 \left(\frac{n_{\rm ISM}}{1\,{\rm cm}^{-3}}\right)^{-1} {\rm Myr}$$

Ionisation and Coulomb [disc]

$$-\frac{dE^{\rm ion}}{dt}_{\rm Coulomb} \propto \sigma_{\rm T} n_{\rm plasma}^{\rm ISM}$$

- Changes in formulae
- Lepton X-section \rightarrow nucleus X-section

$$\sigma_{\rm T} = 8\pi r_e^2/3$$

$$r_e \propto e^2/m_e$$

$$\sigma_{\rm N} = \frac{Z^4}{A^2} \frac{m_e^2}{m_p^2} \sigma_{\rm T} \simeq Z^2 \cdot 10^{-7} \sigma_{\rm T}$$

- At 1 GeV, $\gamma_e \neq \gamma_p$

$$\frac{\gamma_N}{\gamma_e} (E^e = E^N_{k/n}) = \frac{m_e}{m_N} \simeq 5 \cdot 10^{-4}$$

- Suppression factors in dE/dt - all effects: Z² 10⁻⁷
 - each time a γ is in dE/dt: 5 10⁻⁴

- Changes in formulae
- Lepton X-section \rightarrow nucleus X-section

$$\sigma_{\rm T} = 8\pi r_e^2/3$$

$$r_e \propto e^2/m_e$$

$$\sigma_{\rm N} = \frac{Z^4}{A^2} \frac{m_e^2}{m_p^2} \sigma_{\rm T} \simeq Z^2 \cdot 10^{-7} \sigma_{\rm T}$$

- At 1 GeV, $\gamma_e \neq \gamma_p$ $\frac{\gamma_N}{\gamma_e} (E^e = E_{k/n}^N) = \frac{m_e}{m_N} \simeq 5 \cdot 10^{-4}$
- Suppression factors in dE/dt

 all effects: Z² 10⁻⁷
 each time a γ is in dE/dt: 5 10⁻⁴

Why do we keep ionisation and Coulomb?

• Changes in formulae

- Lepton X-section \rightarrow nucleus X-section

$$\sigma_{\rm T} = 8\pi r_e^2/3$$

$$r_e \propto e^2/m_e$$

$$\sigma_{\rm N} = \frac{Z^4}{A^2} \frac{m_e^2}{m_p^2} \sigma_{\rm T} \simeq Z^2 \cdot 10^{-7} \sigma_{\rm T}$$

- At 1 GeV, $\gamma_e \neq \gamma_p$ $\frac{\gamma_N}{\gamma_e} (E^e = E_{k/n}^N) = \frac{m_e}{m_N} \simeq 5 \cdot 10^{-4}$
- Suppression factors in dE/dt - all effects: Z² 10⁻⁷
 - each time a γ is in dE/dt: 5 10⁻⁴
 - → Coulomb/ion amplitude redeemed [non-relativistic nucleus vs relativisic leptons for same kinetic energy]

N.B.: ionisation and heating of the ISM!

Transport of cosmic rays (CR) in the Galaxy

II. Processes, ingredients, characteristic times

- 1. Definitions
- 2. Diffusion (space and momentum)
- 3. Convection and adiabatic losses
- 4. Energy losses
- 5. Catastrophic losses
- 6. All together

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$
- Inelastic: $N + ISM \rightarrow X + ... (X \neq N)$

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$ •
- Inelastic: N + ISM \rightarrow X + ... (X \neq N) •

Comments/accuracy

- Destruction \rightarrow "source" for fragments

- Semi-empirical models fit on data $\rightarrow \sigma_{inel} \propto A^{2/3}$
 - Bradt & Peters (1950) •
 - Letaw et al. (1970-2000)
 - $\Delta\sigma/\sigma \sim 2-5\%$ Tripathi et al. (1998-2003)

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$
- Inelastic: $N + ISM \rightarrow X + ... (X \neq N)$
- \rightarrow Interaction rate $\Gamma_{inel} = n v \sigma$

Comments/accuracy

- Destruction \rightarrow "source" for fragments
- Semi-empirical models fit on data
 - Bradt & Peters (1950)
 Letaw *et al.* (1970-2000)
- $\rightarrow \sigma_{inel} \propto A^{2/3}$
- Tripathi *et al.* (1998-2003) $\Delta \sigma / \sigma \sim 2-5\%$

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$
- Inelastic: $N + ISM \rightarrow X + ... (X \neq N)$
- \rightarrow Interaction rate $\Gamma_{inel} = n v \sigma$

Destruction time for p and Fe (in Myr)?

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$
- Inelastic: $N + ISM \rightarrow X + ... (X \neq N)$
- \rightarrow Interaction rate $\Gamma_{inel} = n v \sigma$

$$t_{\text{inel}} \simeq 10^3 \left(\frac{n_{\text{ISM}}}{1 \text{ cm}^{-3}}\right)^{-1} \left(\frac{\sigma_{\text{inel}}}{1 \text{ mb}}\right)^{-1} \text{Myr}$$

Comments/accuracy - Destruction \rightarrow "source" for fragments - Semi-empirical models fit on data - Bradt & Peters (1950) $\rightarrow \sigma_{inel} \propto A^{2/3}$ - Letaw *et al.* (1970-2000) $\rightarrow \sigma_{inel} \propto A^{2/3}$ - Tripathi *et al.* (1998-2003) $\Delta \sigma / \sigma \sim 2-5\%$ $\sigma_{inel}(\mathbf{p}, \mathbf{C}, \mathbf{Fe}) \sim 40, 250, 750 \text{ mb}$ $n_{ISM} = 1 \text{ cm}^{-3}$ Disc density $c \simeq 3 \cdot 10^{10} \text{ cm s}^{-1}$ Speed of light 1 mb = 10^{-27} cm^2 1 s $\simeq 3 \cdot 10^{-14}$ Myr

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$
- Inelastic: $N + ISM \rightarrow X + ... (X \neq N)$

$$t_{\text{inel}} \simeq 10^3 \left(\frac{n_{\text{ISM}}}{1 \text{ cm}^{-3}}\right)^{-1} \left(\frac{\sigma_{\text{inel}}}{1 \text{ mb}}\right)^{-1} \text{Myr}$$

Comments/accuracy

Destruction \rightarrow "sou	rce" for fragments
Semi-empirical mod	lels fit on data
• Bradt & Peters (1950	$\rightarrow \sigma_{\rm c} \propto A^{2/3}$
• Letaw <i>et al.</i> (1970-20	$\frac{1000}{1000} \qquad \frac{1000}{1000} \qquad \frac{1000}{1000$
• Tripathi <i>et al.</i> (1998-2	2003) Δ0/0 ~ 2-3 %
$\sigma_{inel}(p, C, Fe) \sim 40$	0, 250, 750 mb
$n_{ISM} = 1 \text{ cm}^{-3}$	Disc density
$c \simeq 3 \cdot 10^{10} \mathrm{~cm~s^{-1}}$	Speed of light
$1 \text{ mb} = 10^{-27} \text{ cm}^2$	$1 \mathrm{s} \simeq 3 \cdot 10^{-14} \mathrm{Myr}$

Spontaneous β decay

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$
- Inelastic: $N + ISM \rightarrow X + ... (X \neq N)$

$$t_{\text{inel}} \simeq 10^3 \left(\frac{n_{\text{ISM}}}{1 \text{ cm}^{-3}}\right)^{-1} \left(\frac{\sigma_{\text{inel}}}{1 \text{ mb}}\right)^{-1} \text{Myr}$$

Comments/accuracy

- Destruction \rightarrow "source" for fragments - Semi-empirical models fit on data • Bradt & Peters (1950) $\rightarrow \sigma_{inel} \propto A^{2/3}$ • Letaw *et al.* (1970-2000) • Tripathi *et al.* (1998-2003) $\Delta\sigma/\sigma \sim 2-5\%$ $\sigma_{inel}(\mathbf{p}, \mathbf{C}, \mathbf{Fe}) \sim 40, 250, 750 \text{ mb}$ $n_{ISM} = 1 \text{ cm}^{-3}$ Disc density $c \simeq 3 \cdot 10^{10} \text{ cm s}^{-1}$ Speed of light $1 \text{ mb} = 10^{-27} \text{ cm}^2$ $1 \text{ s} \simeq 3 \cdot 10^{-14} \text{ Myr}$

Spontaneous β decay

• Mean lifetime t

• Half-life
$$t_{1/2} = \tau \ln(2)$$

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$ •
- Inelastic: N + ISM \rightarrow X + ... (X \neq N) \bullet

$$t_{\text{inel}} \simeq 10^3 \left(\frac{n_{\text{ISM}}}{1 \text{ cm}^{-3}}\right)^{-1} \left(\frac{\sigma_{\text{inel}}}{1 \text{ mb}}\right)^{-1} \text{Myr}$$

Spontaneous β decay

- Mean lifetime t
- $t_{1/2} = \tau \ln(2)$ Half-life $t_{1/2}$ •

$$\rightarrow \mathbf{Decay \ rate} \quad \Gamma_{rad} = \frac{\ln(2)}{\gamma t_{1/2}}$$
$$t_{\beta} \simeq E_{k/n} \left(\frac{t_{1/2}}{1.51 \text{ Myr}} \right) \text{ Myr}$$

Comments/accuracy - Destruction \rightarrow "source" for fragments - Semi-empirical models fit on data Bradt & Peters (1950) $\rightarrow \sigma_{inel} \propto A^{2/3}$ Letaw et al. (1970-2000) $\Delta\sigma/\sigma \sim 2-5\%$ Tripathi *et al.* (1998-2003) $\sigma_{inel}(p, C, Fe) \sim 40, 250, 750 \text{ mb}$ $n_{ISM} = 1 \text{ cm}^{-3}$ Disc density $c \simeq 3 \cdot 10^{10} \text{ cm s}^{-1}$ Speed of light $1 \text{ mb} = 10^{-27} \text{ cm}^2$ $1 \text{ s} \simeq 3 \cdot 10^{-14} \text{ Myr}$

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$ •
- Inelastic: N + ISM \rightarrow X + ... (X \neq N) •

$$t_{\text{inel}} \simeq 10^3 \left(\frac{n_{\text{ISM}}}{1 \text{ cm}^{-3}}\right)^{-1} \left(\frac{\sigma_{\text{inel}}}{1 \text{ mb}}\right)^{-1} \text{Myr}$$

Spontaneous **B** decay

- Mean lifetime t •
- $t_{1/2} = \tau \ln(2)$ Half-life t_{1/2} •

$$\rightarrow \mathbf{Decay \ rate} \quad \Gamma_{rad} = \frac{\ln(2)}{\gamma t_{1/2}}$$
$$t_{\beta} \simeq E_{k/n} \left(\frac{t_{1/2}}{1.51 \text{ Myr}} \right) \text{ Myr}$$

Comments/accuracy

Dest Sem	ruction \rightarrow "sour i-empirical mod	rce" f lels fit	or fragme t on data	ents
•]	Bradt & Peters (1950) tetaw et al. (1970-20)) 00)	$\rightarrow \sigma_{_{inel}} \propto$	$A^{2/3}$
•	Tripathi <i>et al.</i> (1970-20	2003)	$\Delta\sigma/\sigma\sim 2$	-5%
	$\sigma_{inel}(p, C, Fe) \sim 40$, 250,	750 mb	
n_I	$v_{SM} = 1 \text{ cm}^{-3}$	Disc	density	
c :	$\simeq 3 \cdot 10^{10} \mathrm{~cm~s^{-1}}$	Spee	d of light	
	1			

- Measurements

Z	Nucleus	Daughter	$t_{1/2}^{\text{unit.}}(\text{error})$
4	$^{10}_{4}\mathrm{Be}$	${}_{5}^{10}B$	1.51^{Myr} (0.06)
6	$^{14}_{6}C$	$^{14}_{7}N$	5.73^{kyr} (0.04)
13	$^{26}_{13}Al$	$^{26}_{12}{ m Mg}$	0.91^{Myr} (0.04)
17	$^{36}_{17}Cl$	$^{36}_{18}{ m Ar}$	0.307^{Myr} (0.002)
26	$^{60}_{26}{ m Fe}$	⁶⁰ ₂₈ Ni	1.5^{Myr} (0.3)

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$ •
- Inelastic: N + ISM \rightarrow X + ... (X \neq N)

- Mean lifetime t
- $\overline{t_{1/2}} = \tau \ln(2)$ Half-life t_{1/2}

 \rightarrow **Decay rate** $\Gamma_{rad} = \frac{\ln(2)}{\gamma t_{1/2}}$ $t_{\beta} \simeq E_{k/n}$ Myr

Comments/accuracy

- Destruction \rightarrow "source" for fragments - Semi-empirical models fit on data Bradt & Peters (1950) $\rightarrow \sigma_{\rm inel} \propto A^{2/3}$ Letaw et al. (1970-2000) $\Delta\sigma/\sigma \sim 2-5\%$ Tripathi *et al.* (1998-2003) $\sigma_{inel}^{}(p, C, Fe) \sim 40, 250, 750 \text{ mb}$ $n_{ISM} = 1 \text{ cm}^{-3}$ Disc density $c \simeq 3 \cdot 10^{10} \text{ cm s}^{-1}$ Speed of light. $1 \text{ mb} = 10^{-27} \text{ cm}^2$ $1 \text{ s} \simeq 3 \cdot 10^{-14} \text{ Myr}$

- Measurements

Z	Nucleus	Daughter	$t_{1/2}^{\text{unit.}}(\text{error})$
4	$^{10}_{4}\mathrm{Be}$	¹⁰ ₅ B	1.51^{Myr} (0.06)
6	$^{14}_{6}C$	$^{14}_{7}N$	5.73^{kyr} (0.04)
13	$^{26}_{13}Al$	$^{26}_{12}{ m Mg}$	0.91^{Myr} (0.04)
17	$^{36}_{17}Cl$	$^{36}_{18}{ m Ar}$	0.307^{Myr} (0.002)
26	$^{60}_{26}{ m Fe}$	⁶⁰ ₂₈ Ni	1.5^{Myr} (0.3)

Electronic capture with a K-shell electron

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$
- Inelastic: N + ISM \rightarrow X + ... (X \neq N) •

\rightarrow Interaction rate $\Gamma_{inel} = n v \sigma$

$$t_{\text{inel}} \simeq 10^3 \left(\frac{n_{\text{ISM}}}{1 \text{ cm}^{-3}}\right)^{-1} \left(\frac{\sigma_{\text{inel}}}{1 \text{ mb}}\right)^{-1} \text{Myr}$$

- Mean lifetime t •
- $\overline{t_{1/2}} = \tau \ln(2)$ Half-life t_{1/2} •

Electronic capture with a K-shell electron

- Attachment
- Stripping

 $\sigma_{inel} = \sigma_{tot} - \sigma_{el}$

$$r_{\beta} \simeq E_{k/n} \left(\frac{t_{1/2}}{1.51 \text{ Myr}} \right) \text{ Myr}$$

Comments/accuracy

Des Sen	struction → "sour mi-empirical mod Bradt & Peters (1950) Letaw <i>et al.</i> (1970-20) Tripathi <i>et al.</i> (1998-2)	rce" f lels fi) 00) 2003)	For fragment on data $\rightarrow \sigma_{inel} \circ \Delta \sigma / \sigma \sim \sigma$	nents a < A ^{2/3} 2-5%
	$\sigma_{inel}(p, C, Fe) \sim 40$, 250,	750 mb	
1	$n_{ISM} = 1 \ \mathrm{cm}^{-3}$	Disc	density	
C	$c \simeq 3 \cdot 10^{10} \mathrm{~cm~s^{-1}}$	Spee	ed of ligh	t
1 r	$nb = 10^{-27} cm^2$	$1~{ m s}\simeq$	$3 \cdot 10^{-14}$	Myr

- Measurements

Z	Nucleus	Daughter	$t_{1/2}^{\text{unit.}}(\text{error})$
4	$^{10}_{4}\mathrm{Be}$	${}_{5}^{10}B$	1.51^{Myr} (0.06)
6	$^{14}_{6}\mathrm{C}$	$^{14}_{7}N$	5.73^{kyr} (0.04)
13	$^{26}_{13}Al$	$^{26}_{12}{ m Mg}$	0.91^{Myr} (0.04)
17	$^{36}_{17}Cl$	$^{36}_{18}{ m Ar}$	0.307^{Myr} (0.002)
26	$^{60}_{26}{ m Fe}$	⁶⁰ ₂₈ Ni	1.5^{Myr} (0.3)

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$ •
- Inelastic: N + ISM \rightarrow X + ... (X \neq N) •

- Mean lifetime t •
- $\overline{t_{1/2}} = \tau \ln(2)$ Half-life t •

Electronic capture with a K-shell electron

t_{strip}≪ t

attach

 $\rightarrow GCRs \ are \ ions!$

- Attachment 0
- Stripping

Attachment

Stripping

Ec[GeV/n]

10

10

10

10

10

10

10 10 10 25

 $= \sigma_{tot} - \sigma_{el}$

 σ_{inel}

Comments/accuracy

Destruction \rightarrow "sou	rce" for fragments
Semi-empirical mod	lels fit on data
• Bradt & Peters (1950	$0) \rightarrow \boldsymbol{\sigma}_{\mathrm{ind}} \propto \mathrm{A}^{2/2}$
 Letaw <i>et al.</i> (1970-20 Tripathi <i>et al.</i> (1998 2) 	$\lambda_{00}^{(00)} = \lambda_{0}^{(00)} = \lambda_{$
• Inpauli et al. (1998-2	
$\sigma_{inel}(p, C, Fe) \sim 40$	0, 250, 750 mb
$n_{ISM} = 1 \text{ cm}^{-3}$	Disc density
<u> </u>	
$c \simeq 3 \cdot 10^{10} \mathrm{~cm~s^{-1}}$	Speed of light

- Measurements

Z	Nucleus	Daughter	$t_{1/2}^{\text{unit.}}(\text{error})$
4	$^{10}_{4}\mathrm{Be}$	¹⁰ ₅ B	1.51^{Myr} (0.06)
6	$^{14}_{6}C$	$^{14}_{7}N$	5.73^{kyr} (0.04)
13	$^{26}_{13}Al$	$^{26}_{12}{ m Mg}$	0.91^{Myr} (0.04)
17	$^{36}_{17}Cl$	$^{36}_{18}{ m Ar}$	0.307^{Myr} (0.002)
26	$^{60}_{26}{ m Fe}$	⁶⁰ ₂₈ Ni	1.5^{Myr} (0.3)

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$ •
- Inelastic: N + ISM \rightarrow X + ... (X \neq N)

- Mean lifetime t
- $t_{1/2} = \tau \ln(2)$ Half-life t

Electronic capture with a K-shell electron

- Attachment 0
- Stripping
- t_{strip}≪ t \rightarrow GCRs are ions!

attach

 \rightarrow EC decay rate only if $t_{EC} \ll t_{strip}$

 $t_{\rm EC} \gtrsim E_{k/n} \times 50 \,\,{\rm Myr}$

Decay rate
$$\Gamma_{rad} = \frac{4\pi (2)}{\gamma t_{1/2}}$$

 $t_{\beta} \simeq E_{k/n} \left(\frac{t_{1/2}}{1.51 \text{ Myr}} \right) \text{Myr}$

Z=5-10-15-20-2

t [Myr]

10⁵

10

10

10

10

10 10

10

10

10

$$\Rightarrow \textbf{Decay rate} \quad \Gamma_{rad} = \frac{\ln(2)}{\gamma t_{1/2}}$$
$$t_{\beta} \simeq E_{k/n} \left(\frac{t_{1/2}}{1.51 \text{ Myr}} \right) \text{ Myr}$$

Decay rate
$$\Gamma_{rad} = \frac{\ln(2)}{\gamma t_{1/2}}$$

 $t_{\beta} \simeq E_{k/n} \left(\frac{t_{1/2}}{1 + (1 + 1)^{1/2}} \right) Myr$

ecay rate
$$\Gamma_{rad} = \frac{\ln(2)}{\gamma t_{1/2}}$$

 $\simeq E_{k/n} \left(\frac{t_{1/2}}{\gamma t_{1/2}} \right) Myr$

Attachment

Stripping

Ec[GeV/n]

struction
$$\rightarrow$$
 "source" for fragments

- Semi-empirical models fit on data
 - Bradt & Peters (1950)
 - $\rightarrow \sigma_{inel} \propto A^{2/3}$ Letaw et al. (1970-2000)
 - $\Delta\sigma/\sigma \sim 2-5\%$ Tripathi et al. (1998-2003)

Comments/accuracy

	$\sigma_{inel}(p, C, Fe) \sim 40$, 250, 750 mb
	$n_{ISM} = 1 \text{ cm}^{-3}$	Disc density
	$c \simeq 3 \cdot 10^{10} \mathrm{~cm~s^{-1}}$	Speed of light
1	$mb = 10^{-27} cm^2$	$1~{\rm s}\simeq 3\cdot 10^{-14}~{\rm Myr}$

- Measurements

- De

Z	Nucleus	Daughter	$t_{1/2}^{\text{unit.}}(\text{error})$
4	$^{10}_{4}\mathrm{Be}$	¹⁰ ₅ B	1.51^{Myr} (0.06)
6	$^{14}_{6}C$	$^{14}_{7}N$	5.73^{kyr} (0.04)
13	$^{26}_{13}Al$	$^{26}_{12}{ m Mg}$	0.91^{Myr} (0.04)
17	$^{36}_{17}Cl$	$^{36}_{18}{ m Ar}$	0.307^{Myr} (0.002)
26	$^{60}_{26}{ m Fe}$	⁶⁰ ₂₈ Ni	1.5^{Myr} (0.3)

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$
- Inelastic: N + ISM \rightarrow X + ... (X \neq N)

- Mean lifetime t
- $t_{1/2} = \tau \ln(2)$ • Half-life t

Electronic capture with a K-shell electron

- Attachment
- Stripping

 \rightarrow EC decay rate only if $t_{EC} \ll t_{strip}$

 $t_{\rm EC} \gtrsim E_{k/n} \times 50 \,\,{\rm Myr}$

Attachment

Stripping

Ec[GeV/n]

10

10 10

10

10

Comments/accuracy

- Destruction \rightarrow "source" for fragments - Semi-empirical models fit on data Bradt & Peters (1950) $\rightarrow \sigma_{\rm inel} \propto A^{2/3}$ Letaw et al. (1970-2000) $\Delta\sigma/\sigma \sim 2-5\%$ Tripathi *et al.* (1998-2003) $\sigma_{inst}(p, C, Fe) \sim 40, 250, 750 \text{ mb}$ $n_{ISM} = 1 \text{ cm}^{-3}$ Disc density $c \simeq 3 \cdot 10^{10} \mathrm{~cm~s^{-1}}$ Speed of light $1 \text{ mb} = 10^{-27} \text{ cm}^2$ $1 \text{ s} \simeq 3 \cdot 10^{-14} \text{ Myr}$

- Measurements

Z	Nucleus	Daughter	$t_{1/2}^{\text{unit.}}(\text{error})$
4	$^{10}_{4}\mathrm{Be}$	¹⁰ ₅ B	1.51^{Myr} (0.06)
6	$^{14}_{6}C$	$^{14}_{7}N$	5.73^{kyr} (0.04)
13	$^{26}_{13}Al$	$^{26}_{12}{ m Mg}$	0.91^{Myr} (0.04)
17	$^{36}_{17}Cl$	$^{36}_{18}{ m Ar}$	0.307 ^{Myr} (0.002)
26	$^{60}_{26}{ m Fe}$	⁶⁰ ₂₈ Ni	1.5^{Myr} (0.3)

- Attachment and stripping: fits on old data (10-50% uncertainties?)

> G.M.Raisbeck & al, ICRC 15, 67 (1978) L.W.Wilson, ICRC 15, 274 (1978) J.R.Letaw & al, ApJSS 56, 369 (1984)

> > II.5 Other losses

Nuclear interactions

- Elastic: $N + ISM \rightarrow N + ISM$
- Inelastic: N + ISM \rightarrow X + ... (X \neq N)

- Mean lifetime t
- $t_{1/2} = \tau \ln(2)$ • Half-life t

Electronic capture with a K-shell electron

- Attachment
- Stripping
- 10 t_{strip}≪ t attach 10 \rightarrow GCRs are ions!

10

10

10

10

 \rightarrow EC decay rate only if $t_{EC} \ll t_{strip}$

 $t_{\rm EC} \gtrsim E_{k/n} \times 50 \,\,{\rm Myr}$

Attachment

Stripping

Ec[GeV/n]

Comments/accuracy

- Destruction \rightarrow "source" for fragments - Semi-empirical models fit on data Bradt & Peters (1950) $\rightarrow \sigma_{\rm inel} \propto A^{2/3}$ Letaw et al. (1970-2000) $\Delta\sigma/\sigma \sim 2-5\%$ Tripathi *et al.* (1998-2003) $\sigma_{inst}(p, C, Fe) \sim 40, 250, 750 \text{ mb}$ $n_{ISM} = 1 \text{ cm}^{-3}$ Disc density $c \simeq 3 \cdot 10^{10} \mathrm{~cm~s^{-1}}$ Speed of light $1 \text{ mb} = 10^{-27} \text{ cm}^2$ $1 \text{ s} \simeq 3 \cdot 10^{-14} \text{ Myr}$

- Measurements

Z	Nucleus	Daughter	$t_{1/2}^{\text{unit.}}(\text{error})$
4	$^{10}_{4}\mathrm{Be}$	¹⁰ ₅ B	1.51^{Myr} (0.06)
6	$^{14}_{6}C$	$^{14}_{7}N$	5.73^{kyr} (0.04)
13	$^{26}_{13}Al$	$^{26}_{12}{ m Mg}$	0.91^{Myr} (0.04)
17	$^{36}_{17}Cl$	$^{36}_{18}{ m Ar}$	0.307 ^{Myr} (0.002)
26	$^{60}_{26}{ m Fe}$	⁶⁰ ₂₈ Ni	1.5^{Myr} (0.3)

- Attachment and stripping: fits on old data (10-50% uncertainties?)

> G.M.Raisbeck & al, ICRC 15, 67 (1978) L.W.Wilson, ICRC 15, 274 (1978) J.R.Letaw & al, ApJSS 56, 369 (1984)

- EC decay:
 - Very few candidates for Z<30
 - Number of EC-unstable isotopes is a nightmare for UHCR!

II.5 Other losses

Transport of cosmic rays (CR) in the Galaxy

II. Processes, ingredients, characteristic times

- 1. Definitions
- 2. Diffusion (space and momentum)
- 3. Convection and adiabatic losses
- 4. Energy losses (continuous)
- 5. Catastrophic losses
- 6. All together

Discussion: what do you conclude?

- For nuclei?
- For leptons?

 \rightarrow Numbers depend on MW model parameters (halo size, diffusion coefficient...)

 \rightarrow Time scale for effects in the disc overestimated: CRs see density $n_{ISM} \ge \langle n \rangle \ge (h/H) n_{ISM}$

 $t_{\rm reac} \propto \beta^{-2} D$

 \rightarrow Numbers depend on MW model parameters (halo size, diffusion coefficient...)

 \rightarrow Time scale for effects in the disc overestimated: CRs see density $n_{ISM} \ge \langle n \rangle \ge (h/H) n_{ISM}$

1. Dominant effects

- Nuclei escape from the Galaxy
- Leptons loose their energy

 \rightarrow Numbers depend on MW model parameters (halo size, diffusion coefficient...)

 \rightarrow Time scale for effects in the disc overestimated: CRs see density $n_{ISM} \ge \langle n \rangle \ge (h/H) n_{ISM}$

- 1. Dominant effects
 - Nuclei escape from the Galaxy
 - Leptons loose their energy
- 2. Local origin
 - Low energy radioactive nuclei
 - High energy electrons and positrons

Is the Galaxy an efficient "calorimeter"?

 \rightarrow GALPROP run (exact numbers depend on the model used)

Is the Galaxy an efficient "calorimeter"?

 \rightarrow GALPROP run (exact numbers depend on the model used)

→ Very inefficient for protons (escape)
 → Very efficient for electrons (convert e⁻ to radiation)

 \rightarrow GALPROP run (exact numbers depend on the model used)

 \rightarrow Very inefficient for protons (escape)

 \rightarrow Very efficient for electrons (convert e⁻ to radiation)

 \rightarrow GALPROP run (exact numbers depend on the model used)

 \rightarrow Very inefficient for protons (escape)

 \rightarrow Very efficient for electrons (convert e to radiation)

Energy budget of the Galaxy

- Energy density of GCRs $w_{CR} = \int E_k N(E) dE = \int \frac{4\pi}{v} E_k I(E) dE$ $w_{CR} \simeq 0.9 \text{ eV cm}^3 \simeq 4 \cdot 10^{52} \text{ erg kpc}^{-3}$

 \rightarrow GALPROP run (exact numbers depend on the model used)

 \rightarrow Very inefficient for protons (escape)

 \rightarrow Very efficient for electrons (convert e⁻ to radiation)

- Energy density of GCRs $w_{\rm CR} = \int E_k N(E) dE = \int \frac{4\pi}{v} E_k I(E) dE$ $w_{\rm CR} \simeq 0.9 \text{ eV cm}^3 \simeq 4 \cdot 10^{52} \text{ erg kpc}^{-3}$
- Total energy in Milky Way $V_{\rm MW} = 4\pi R^2 \times 2L \simeq 10^5 \ \rm kpc^3$ $W_{\rm CR} \simeq 4 \cdot 10^{57} {\rm ~erg}$

 \rightarrow GALPROP run (exact numbers depend on the model used)

→ Very inefficient for protons (escape)
 → Very efficient for electrons (convert e⁻ to radiation)

- Energy density of GCRs $w_{CR} = \int E_k N(E) dE = \int \frac{4\pi}{v} E_k I(E) dE$ $w_{CR} \simeq 0.9 \text{ eV cm}^3 \simeq 4 \cdot 10^{52} \text{ erg kpc}^{-3}$
- Total energy in Milky Way $V_{\rm MW} = 4\pi R^2 \times 2L \simeq 10^5 \text{ kpc}^3$ $W_{\rm CR} \simeq 4 \cdot 10^{57} \text{ erg}$
- Power to sustain this energy $U_{\text{CR}} \simeq \frac{W_{\text{CR}}}{T_{\text{esc}}} \qquad T_{\text{esc}} = 20 \text{ Myr} \simeq 5 \cdot 10^{17} \text{ s}$

 \rightarrow GALPROP run (exact numbers depend on the model used)

→ Very inefficient for protons (escape)
 → Very efficient for electrons (convert e⁻ to radiation)

- Energy density of GCRs $w_{CR} = \int E_k N(E) dE = \int \frac{4\pi}{v} E_k I(E) dE$ $w_{CR} \simeq 0.9 \text{ eV cm}^3 \simeq 4 \cdot 10^{52} \text{ erg kpc}^{-3}$
- Total energy in Milky Way $V_{\rm MW} = 4\pi R^2 \times 2L \simeq 10^5 \text{ kpc}^3$ $W_{\rm CR} \simeq 4 \cdot 10^{57} \text{ erg}$
- Power to sustain this energy $U_{CR} \simeq \frac{W_{CR}}{T_{esc}}$ $T_{esc} = 20 \text{ Myr} \simeq 5 \cdot 10^{17} \text{ s}$ $-U_{CR} \simeq 10^{40} \text{ erg/s}$

 \rightarrow GALPROP run (exact numbers depend on the model used)

 \rightarrow Very inefficient for protons (escape) \rightarrow Very efficient for electrons (convert e to radi

 \rightarrow Very efficient for electrons (convert e⁻ to radiation)

Energy budget of the Galaxy

- Energy density of GCRs $w_{CR} = \int E_k N(E) dE = \int \frac{4\pi}{v} E_k I(E) dE$ $w_{CR} \simeq 0.9 \text{ eV cm}^3 \simeq 4 \cdot 10^{52} \text{ erg kpc}^{-3}$
- Total energy in Milky Way $V_{\rm MW} = 4\pi R^2 \times 2L \simeq 10^5 \text{ kpc}^3$ $W_{\rm CR} \simeq 4 \cdot 10^{57} \text{ erg}$

- Power to sustain this energy $U_{\text{CR}} \simeq \frac{W_{\text{CR}}}{T_{\text{esc}}} \qquad T_{\text{esc}} = 20 \text{ Myr} \simeq 5 \cdot 10^{17} \text{ s}$ $U_{\text{CR}} \simeq 10^{40} \text{ erg/s}$

Supernovae as source of GCRs?

 \rightarrow GALPROP run (exact numbers depend on the model used)

→ Very inefficient for protons (escape)
 → Very efficient for electrons (convert e⁻ to radiation)

Energy budget of the Galaxy

- Energy density of GCRs $w_{CR} = \int E_k N(E) dE = \int \frac{4\pi}{v} E_k I(E) dE$ $w_{CR} \simeq 0.9 \text{ eV cm}^3 \simeq 4 \cdot 10^{52} \text{ erg kpc}^{-3}$
- Total energy in Milky Way $V_{\rm MW} = 4\pi R^2 \times 2L \simeq 10^5 \text{ kpc}^3$ $W_{\rm CR} \simeq 4 \cdot 10^{57} \text{ erg}$

- Power to sustain this energy $U_{\text{CR}} \simeq \frac{W_{\text{CR}}}{T_{\text{esc}}} \qquad T_{\text{esc}} = 20 \text{ Myr} \simeq 5 \cdot 10^{17} \text{ s}$ $-U_{\text{CR}} \simeq 10^{40} \text{ erg/s}$

Supernovae as source of GCRs?

- $W_{SN} = 10^{51} \text{ erg}$
- $f_{SN} = 50 \text{ yr} \approx 1.6 \ 10^9 \text{ s} (\sim 2 \text{ per century})$
- $U_{_{SN}} = W_{_{SN}} / f_{_{SN}} \approx 10^{41} \text{ erg/s}$

 \rightarrow GALPROP run (exact numbers depend on the model used)

→ Very inefficient for protons (escape)
 → Very efficient for electrons (convert e⁻ to radiation)

Energy budget of the Galaxy

- Energy density of GCRs $w_{CR} = \int E_k N(E) dE = \int \frac{4\pi}{v} E_k I(E) dE$ $w_{CR} \simeq 0.9 \text{ eV cm}^3 \simeq 4 \cdot 10^{52} \text{ erg kpc}^{-3}$
- Total energy in Milky Way $V_{\rm MW} = 4\pi R^2 \times 2L \simeq 10^5 \text{ kpc}^3$ $W_{\rm CR} \simeq 4 \cdot 10^{57} \text{ erg}$

- Power to sustain this energy $U_{\text{CR}} \simeq \frac{W_{\text{CR}}}{T_{\text{esc}}} \qquad T_{\text{esc}} = 20 \text{ Myr} \simeq 5 \cdot 10^{17} \text{ s}$ $-U_{\text{CR}} \simeq 10^{40} \text{ erg/s}$

Supernovae as source of GCRs?

- $W_{SN} = 10^{51} \text{ erg}$
- $f_{sn} = 50 \text{ yr} \approx 1.6 \ 10^9 \text{ s} (\sim 2 \text{ per century})$
- $U_{_{SN}} = W_{_{SN}} / f_{_{SN}} \approx 10^{41} \text{ erg/s}$

→ Requires acceleration efficiency ~ 10-50%

II.6 Time scales

Conclusions and summary

II. Processes, ingredients, characteristic times

- \rightarrow In any (astro-)physics problem, always
 - check the time scales;
 - check the energetics.
- \rightarrow For GCRs:
 - nuclei: plenty of competing effects @ GeV, escape at HE;
 - electrons: energy losses dominate at LE and HE.