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Transport of cosmic rays in the Galaxy and in the heliosphere (~ 4h30)
● What is G‏CR (Galactic ‏Cosmic Ray) physics and transport
● Relevant time scales: ≠ species have ≠ phenomenology
● Main modelling ingredients: key parameters and uncertainties
● Tools to solve the transport equation

Charged signals: electrons/positrons, antibaryons (~1h30)
● What is astroparticle physics and DM (Dark Matter) indirect detection
● What are the astrophysical backgrounds + uncertainties [nuclear]
● Phenomenology of DM signals + uncertainties [transport and dark matter]
● Pros and ‏Cons of DM indirect detection with charged G‏CRs



  

Transport of cosmic rays (‏CR) in the Galaxy

G‏CRs-II.pdf

   I. Introduction; Galactic ‏Cosmic Rays
1. Early history of ‏CRs: discovery and disputes
2. G‏CR journey (from source to detector)
3. Timeline
4. Observables and questions

   II. Processes, ingredients, characteristic times
1. Definitions
2. Diffusion (space and momentum)
Convection and adiabatic losses‏ .3
4. Energy losses
Catastrophic losses‏ .5
6. All together

   III. Solving the equations: G‏CR phenomenology
1. The full transport equation
2. Source terms: primary and secondary contributions
3. A matrix of transport equations
4 (Semi-)Analytical, numerical, & M‏C solutions
5. Stable species: degeneracy K0 /L
6. Radioactive species and local ISM
7. Leptons and local sources



  

Transport of cosmic rays (‏CR) in the Galaxy

1. Definitions
2. Diffusion (space and momentum)
Convection and adiabatic losses‏ .3
4. Energy losses
Catastrophic losses‏ .5
6. All together

II. Processes, ingredients, characteristic times



  

Useful units/definitions

● “Energy” units

II.1 Definitions
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1. Suppose IS flux is dI/dR = I
0
 R- : express dI/dR in terms of dI/dE
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2. If R
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Useful units/definitions

                                       Expression                 Unit         Natural for

Rigidity                                                            [GV]        Acceleration, diffusion

Total Energy                                                    [GeV]       Calorimeter

Energy per nucleon                                          [GeV/n]    Production in CR showers

Kinetic E per nucleon                                      [GeV/n]    CR fragmentation on ISM

1. Suppose IS flux is dI/dR = I
0
 R- , express it in terms of dI/dE

k/n
?

2. If R
max

maximum rigidity of a ‏CR source, at which E is there a cut-off in EAS? 

● Warm up...

● “Energy” units

● CR intensity

Intensity:

Differential intensity:

Differential density:
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2. Diffusion (space and momentum)
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Diffusion equation: reminder

● Diffusion (or Heat) equation

[continuity]

[Fick's law]

II.2 Diffusion
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Diffusion equation: reminder

● Mean distance 

● Diffusion (or Heat) equation

1. Write equation in 1D

Check that the solution is‏ .2

    N.B.: boundary conditions are

1. Fourier Transform

2. Solve for

3. Integration complex plan (residue)

● 1D geometry, constant D

Calculate <z(t)> and <z2(t)>, using‏

N.B.: broadening of the distribution 
to decrease density gradients
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● Diffusion in momentum space (reacceleration)

● Diffusion (or Heat) equation

1. Write equation in 1D

Check that the solution is‏ .2

    N.B.: boundary conditions are

1. Fourier Transform

2. Solve for

3. Integration complex plan (residue)

● 1D geometry, constant D

Comments

[continuity]

[Fick's law]

N.B.: solution (behaviour) depends on
● Dimensionality
● Geometry
● D(r) spatial dependence
● Boundary conditions

II.2 Diffusion



  

Diffusion equation: spatial and momentum space

● Diffusion in momentum space (reacceleration)

● Diffusion (or Heat) equation

1. Write equation in 1D

Check that the solution is‏ .2

    N.B.: boundary conditions are

1. Fourier Transform

2. Solve for

3. Integration complex plan (residue)

● 1D geometry, constant D

- Analog to spatial diffusion (+ drift): 

Comments

[continuity]

[Fick's law]

N.B.: solution (behaviour) depends on
● Dimensionality
● Geometry
● D(r) spatial dependence
● Boundary conditions

II.2 Diffusion



  

Diffusion equation: spatial and momentum space

● Diffusion in momentum space (reacceleration)

● Diffusion (or Heat) equation

1. Write equation in 1D

Check that the solution is‏ .2

    N.B.: boundary conditions are

1. Fourier Transform

2. Solve for

3. Integration complex plan (residue)

● 1D geometry, constant D

- Analog to spatial diffusion (+ drift): 

Comments

[continuity]

[Fick's law]

N.B.: solution (behaviour) depends on
● Dimensionality
● Geometry
● D(r) spatial dependence
● Boundary conditions

II.2 Diffusion



  

Diffusion equation: spatial and momentum space

● Diffusion in momentum space (reacceleration)

● Diffusion (or Heat) equation

1. Write equation in 1D

Check that the solution is‏ .2

    N.B.: boundary conditions are

1. Fourier Transform

2. Solve for

3. Integration complex plan (residue)

● 1D geometry, constant D

- Analog to spatial diffusion (+ drift): 

- Natural mechanisms for reacceleration: Fermi 2nd order

● :CR (v) collides with magnetic scatterer (V)‏

Comments

[continuity]

[Fick's law]

N.B.: solution (behaviour) depends on
● Dimensionality
● Geometry
● D(r) spatial dependence
● Boundary conditions

II.2 Diffusion



  

Diffusion equation: spatial and momentum space

● Diffusion in momentum space (reacceleration)

● Diffusion (or Heat) equation

1. Write equation in 1D

Check that the solution is‏ .2

    N.B.: boundary conditions are
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2. Solve for

3. Integration complex plan (residue)

● 1D geometry, constant D

- Analog to spatial diffusion (+ drift): 

- Natural mechanisms for reacceleration: Fermi 2nd order

● :CR (v) collides with magnetic scatterer (V)‏

● More head-on (1+V) than tail-in (1-V) collisions (take limit v→c)
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Diffusion equation: spatial and momentum space
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    N.B.: boundary conditions are
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[Thornbury & Drury, MNRAS 442 (2014) 3010]
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II.2 Diffusion

<E>~1 GeV
T

esc
~ 50 Myr → VA~10 km/s
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→ Energy gain @ GeV/n
→ Strength mediated by VA

II.2 Diffusion
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- Order of magnitude for VA
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Diffusion + convection equation: adiabatic losses

● Advection/diffusion or drift/diffusion (or Smoluchowski equation)

[continuity]

[Fick's law]

[drift]

II.3 ‏Convection



  

Diffusion + convection equation: adiabatic losses
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Diffusion + convection equation: adiabatic losses
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II.3 ‏Convection

Competition D vs V‏ -
→ t
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 and t
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?  

- N.B.: D(R) =  D
0
 R  
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Diffusion + convection equation: adiabatic losses
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Transport of cosmic rays (‏CR) in the Galaxy

1. Definitions
2. Diffusion (space and momentum)
Convection and adiabatic losses‏ .3
4. Energy losses
Catastrophic losses‏ .5
6. All together

II. Processes, ingredients, characteristic times
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II.4 E losses

 Crucial for‏ →
-ray emissions



  

Other energy losses: nuclei

Synchrotron [disc + halo]

Inverse Compton [disc + CMB halo]   
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Ionisation and Coulomb [disc]

electron
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Atomic matter (ionisation)

e-

II.4 E losses

Are the formulae the same
for electrons and nuclei?



  

Other energy losses: nuclei

Synchrotron [disc + halo]

Inverse Compton [disc + CMB halo]   

Bremsstrahlung [disc]

Ionisation and Coulomb [disc]

electron

radio
waves

B

e-

X-ray

e-

Plasma (‏Coulomb)
Atomic matter (ionisation)

e-

● Changes in formulae

  - Lepton X-section → nucleus X-section

II.4 E losses

Relate 
N
 to 

T
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Other energy losses: nuclei
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Inverse Compton [disc + CMB halo]   

Bremsstrahlung [disc]
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● Changes in formulae

  - Lepton X-section → nucleus X-section

- At 1 GeV,  
e
 ≠ 

p

II.4 E losses



  

Other energy losses: nuclei

Synchrotron [disc + halo]

Inverse Compton [disc + CMB halo]   
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Ionisation and Coulomb [disc]

electron
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waves

B
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Plasma (‏Coulomb)
Atomic matter (ionisation)

e-

● Changes in formulae

  - Lepton X-section → nucleus X-section

- At 1 GeV,  
e
 ≠ 

p

● Suppression factors in dE/dt
      - all effects: Z2 10 -7

          - each time a  is in dE/dt: 5 10-4

II.4 E losses

Which losses can be neglected?



  

Other energy losses: nuclei
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Other energy losses: nuclei

Synchrotron [disc + halo]

Inverse Compton [disc + CMB halo]   

Bremsstrahlung [disc]

Ionisation and Coulomb [disc]

electron

radio
waves

B

e-

X-ray

e-

Plasma (‏Coulomb)
Atomic matter (ionisation)

e-

● Changes in formulae

  - Lepton X-section → nucleus X-section

- At 1 GeV,  
e
 ≠ 

p

● Suppression factors in dE/dt
      - all effects: Z2 10 -7

          - each time a  is in dE/dt: 5 10-4

II.4 E losses

Why do we keep ionisation and ‏Coulomb?



  

Other energy losses: nuclei

Synchrotron [disc + halo]

Inverse Compton [disc + CMB halo]   

Bremsstrahlung [disc]

Ionisation and Coulomb [disc]

electron

radio
waves

B

e-

X-ray

e-

Plasma (‏Coulomb)
Atomic matter (ionisation)

e-

● Changes in formulae

  - Lepton X-section → nucleus X-section

- At 1 GeV,  
e
 ≠ 

p

● Suppression factors in dE/dt
      - all effects: Z2 10 -7

          - each time a  is in dE/dt: 5 10-4

→ Coulomb/ion amplitude redeemed
[non-relativistic nucleus vs relativisic 

leptons for same kinetic energy]

II.4 E losses

N.B.: ionisation and heating of the ISM!



  

Transport of cosmic rays (‏CR) in the Galaxy

1. Definitions
2. Diffusion (space and momentum)
Convection and adiabatic losses‏ .3
4. Energy losses
Catastrophic losses‏ .5
6. All together

II. Processes, ingredients, characteristic times



  

Other losses: catastrophic losses [nuclei]

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

 

 

II.5 Other losses



  

Other losses: catastrophic losses [nuclei]
Comments/accuracy

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

 

 

- Destruction → “source” for fragments
- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)

II.5 Other losses

→ 
inel

  A2/3

 ~ 2-5%



  

Other losses: catastrophic losses [nuclei]
Comments/accuracy

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate
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- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)
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Other losses: catastrophic losses [nuclei]
Comments/accuracy

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate

 

- Destruction → “source” for fragments
- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)


inel

(p, C, Fe) ~ 40, 250, 750 mb

II.5 Other losses

Destruction time for p and Fe (in Myr) ?

→ 
inel

  A2/3

 ~ 2-5%



  

Other losses: catastrophic losses [nuclei]
Comments/accuracy

Nuclear interactions
● Elastic: N + ISM →N + ISM
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● Bradt & Peters (1950)
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→ 
inel

  A2/3

 ~ 2-5%



  

Other losses: catastrophic losses [nuclei]
Comments/accuracy

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate
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Other losses: catastrophic losses [nuclei]
Comments/accuracy

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate

Spontaneous  decay 
● Mean lifetime t
● Half-life t

1/2
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● Bradt & Peters (1950)
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Other losses: catastrophic losses [nuclei]
Comments/accuracy

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate

Spontaneous  decay 
● Mean lifetime t
● Half-life t

1/2

- Destruction → “source” for fragments
- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)


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(p, C, Fe) ~ 40, 250, 750 mb

→ Decay rate

II.5 Other losses
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inel

  A2/3

 ~ 2-5%



  

Other losses: catastrophic losses [nuclei]
Comments/accuracy

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate

Spontaneous  decay 
● Mean lifetime t
● Half-life t

1/2

- Destruction → “source” for fragments
- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)


inel

(p, C, Fe) ~ 40, 250, 750 mb

→ Decay rate - Measurements

II.5 Other losses
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  A2/3

 ~ 2-5%



  

Other losses: catastrophic losses [nuclei]
Comments/accuracy

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate

Spontaneous  decay 
● Mean lifetime t
● Half-life t

1/2

Electronic capture with a K-shell electron

- Destruction → “source” for fragments
- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)


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(p, C, Fe) ~ 40, 250, 750 mb

→ Decay rate - Measurements

II.5 Other losses
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 ~ 2-5%



  

Other losses: catastrophic losses [nuclei]
Comments/accuracy

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate

Spontaneous  decay 
● Mean lifetime t
● Half-life t

1/2

Electronic capture with a K-shell electron
● Attachment
● Stripping

- Destruction → “source” for fragments
- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)
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(p, C, Fe) ~ 40, 250, 750 mb

→ Decay rate

Stripping

Attachment

- Measurements

II.5 Other losses
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Other losses: catastrophic losses [nuclei]
Comments/accuracy

→ GCRs are ions!

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate

Spontaneous  decay 
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● Half-life t

1/2

Electronic capture with a K-shell electron
● Attachment
● Stripping

- Destruction → “source” for fragments
- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)
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(p, C, Fe) ~ 40, 250, 750 mb

→ Decay rate

Stripping

Attachment

- Measurements

t
strip
≪  t

attach

II.5 Other losses
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 ~ 2-5%



  

Other losses: catastrophic losses [nuclei]
Comments/accuracy

→ GCRs are ions!

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate

Spontaneous  decay 
● Mean lifetime t
● Half-life t

1/2

Electronic capture with a K-shell electron
● Attachment
● Stripping

→ EC decay rate only if t
EC

  ≪ t
strip

- Destruction → “source” for fragments
- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)


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(p, C, Fe) ~ 40, 250, 750 mb

→ Decay rate
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- Measurements

t
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≪  t

attach
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Other losses: catastrophic losses [nuclei]
Comments/accuracy

→ GCRs are ions!

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate

Spontaneous  decay 
● Mean lifetime t
● Half-life t

1/2

Electronic capture with a K-shell electron
● Attachment
● Stripping

→ EC decay rate only if t
EC

  ≪ t
strip

- Destruction → “source” for fragments
- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)


inel

(p, C, Fe) ~ 40, 250, 750 mb

→ Decay rate

Stripping

Attachment

- Attachment and stripping: fits on old 
data (10-50% uncertainties?)

- Measurements

t
strip
≪  t

attach

II.5 Other losses

→ 
inel

  A2/3

 ~ 2-5%



  

Other losses: catastrophic losses [nuclei]
Comments/accuracy

→ GCRs are ions!

Nuclear interactions
● Elastic: N + ISM →N + ISM
● Inelastic: N + ISM →X + ...  (X≠N)

   → Interaction rate

Spontaneous  decay 
● Mean lifetime t
● Half-life t

1/2

Electronic capture with a K-shell electron
● Attachment
● Stripping

→ EC decay rate only if t
EC

  ≪ t
strip

- Destruction → “source” for fragments
- Semi-empirical models fit on data

● Bradt & Peters (1950)
● Letaw et al. (1970-2000)
● Tripathi et al. (1998-2003)


inel

(p, C, Fe) ~ 40, 250, 750 mb

→ Decay rate

Stripping

Attachment

- Attachment and stripping: fits on old 
data (10-50% uncertainties?)

- E‏C decay: 
● Very few candidates for Z<30 
● Number of E‏C-unstable isotopes 

is a nightmare for UH‏CR!

- Measurements

t
strip
≪  t

attach

II.5 Other losses
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  A2/3

 ~ 2-5%



  

Transport of cosmic rays (‏CR) in the Galaxy

1. Definitions
2. Diffusion (space and momentum)
Convection and adiabatic losses‏ .3
4. Energy losses (continuous)
Catastrophic losses‏ .5
6. All together

II. Processes, ingredients, characteristic times
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Time scales: all together

II.6 Time scales

Discussion: what do you conclude?
● For nuclei?
● For leptons?



  

[galprop.stanford.edu]

Time scales: all together

0

EC

0


Escape (D)
Escape (Vc)

Escape (D)tHinel

→ Numbers depend on MW model parameters (halo size, diffusion coefficient...)
→ Time scale for effects in the disc overestimated: ‏CRs see density  n

ISM
 <n>  (h/H) n

ISM

II.6 Time scales

reacc

reacc
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Time scales: all together

0
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0


Escape (D)
Escape (Vc)

Escape (D)tHinel

1. Dominant effects
● Nuclei escape from the Galaxy
● Leptons loose their energy

→ Numbers depend on MW model parameters (halo size, diffusion coefficient...)
→ Time scale for effects in the disc overestimated: ‏CRs see density  n

ISM
 <n>  (h/H) n

ISM

II.6 Time scales

reacc

reacc



  

[galprop.stanford.edu]

Time scales: all together

0

EC

0


Escape (D)
Escape (Vc)

Escape (D)tHinel

1. Dominant effects
● Nuclei escape from the Galaxy
● Leptons loose their energy

2. Local origin
● Low energy radioactive nuclei
● High energy electrons and positrons

→ Numbers depend on MW model parameters (halo size, diffusion coefficient...)
→ Time scale for effects in the disc overestimated: ‏CRs see density  n

ISM
 <n>  (h/H) n

ISM

II.6 Time scales

reacc

reacc



  

Strong et al., ApJ 722 (2010) L58

Is the Galaxy an efficient “calorimeter”?

II.6 Time scales

→ GALPROP run (exact numbers depend on the model used)



  

Strong et al., ApJ 722 (2010) L58

Is the Galaxy an efficient “calorimeter”?

→ Very inefficient for protons (escape)
→ Very efficient for electrons (convert e- to radiation)

II.6 Time scales

→ GALPROP run (exact numbers depend on the model used)
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● W
SN

=1051 erg

● f
SN

= 50 yr ≈ 1.6 109 s (~2 per century)

● U
SN

= W
SN

 / f
SN 

≈ 1041 erg/s 

→ Requires acceleration
efficiency ~ 10-50% 

II.6 Time scales

Supernovae as source of GCRs?

- Energy density of G‏CRs

- Total energy in Milky Way

- Power to sustain this energy

Energy budget of the Galaxy
→ GALPROP run (exact numbers depend on the model used)
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Conclusions and summary‏

II. Processes, ingredients, characteristic times

→ In any (astro-)physics problem, always
● check the time scales;
● check the energetics.

→ For G‏CRs:
● nuclei: plenty of competing effects @ GeV, escape at HE;
● electrons: energy losses dominate at LE and HE.
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