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Transport of cosmic rays in the Galaxy and in the heliosphere (~ 4h30)
● What is G‏CR (Galactic ‏Cosmic Ray) physics and transport
● Relevant time scales: ≠ species have ≠ phenomenology
● Main modelling ingredients: key parameters and uncertainties
● Tools to solve the transport equation

Charged signals: electrons/positrons, antibaryons (~1h30)
● What is astroparticle physics and DM (Dark Matter) indirect detection
● What are the astrophysical backgrounds + uncertainties [nuclear]
● Phenomenology of DM signals + uncertainties [transport and dark matter]
● Pros and ‏Cons of DM indirect detection with charged G‏CRs



  

Previous episodes

Lecture II: processes, ingredients, characteristic times

Lecture III: solving the transport equations and phenomenology

● Microphysics complex (diffusion) → use of simple (effective?) models
● Stable and radioactive nuclei data → constrain source and transport parameters
● High energy e± → local sources matter (steady-state not valid)

→ Different time scales for nuclei and leptons



  

   I. Introduction: Galactic ‏Cosmic Rays
   II. Processes, ingredients, characteristic times
   III. Solving the equations: G‏CR phenomenology

   IV-A Propagation in the heliosphere
   IV-B ‏CRDB
   IV-‏C Anti-p, anti-d, and positron fraction

1. Where to look for new physics in G‏CRs
2. “Backgrounds” from secondary production
3. Uncertainties on DM signals (propagation, DM)
4. Positron fraction
5. Summary and perspectives

Charged signals: electrons/positrons, antibaryons

Lecture-IV.pdf
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Top-of-atmosphere (TOA) fluxes
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[time independent]

→ Unknown at low energy
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An unexpected journey: solar modulation

Top-of-atmosphere (TOA) fluxes
[Solar cycle time dependent]

Interstellar (IS) fluxes
[time independent]

→ Unknown at low energy

Shikaze et al., APh 28 (2007) 154

Balloon experiment

Q1: is a low G‏CR flux associated to a 
quiet or active sun?

Q2: what about the time evolution of 
secondary particles in ground detectors?
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Some useful references

Living Reviews in Solar Physics

● G. Usoskin: A History of Solar Activity over Millennia (LRSP 10, 2013-1)

●  Cycle (LRSP 7, 2010- 3)‏ Charbonneau: Dynamo Models of the Solar‏

● Bruno and ‏Carbone: The Solar Wind as a Turbulence Laboratory (LRSP 10, 2013-2)

● Owens & Forsyth: The Heliospheric Magnetic Field (LRSP 10, 2013-5)

● M. Potgieter: Solar Modulation of ‏Cosmic Rays (LRSP 10, 2013-3)

Caballero-Lopez & Moraal, JGR 109 (2004) A01101‏ +
Limitations of the force field equation to describe cosmic ray modulation

N.B.: whenever the plot reference is not specified 
below, it is taken from one of these reviews



  

Solar activity: early observations

IV-A Solar modulation

Maunder “butterfly” diagram
(naked eye observation)

→ 11-yr (average) periodicity
1st solar cycle: 1755-1766



  

Solar activity: early observations

IV-A Solar modulation

→ 22-yr (average) periodicity 
for polarity reversal

Babcock, ApJ 133 (1961) 572
The Topology of the Sun's Magnetic

Field and the 22-yr cycle

Magnetogram: trace 
proportional to B (5-40 G)

Maunder “butterfly” diagram
(naked eye observation)

→ 11-yr (average) periodicity
1st solar cycle: 1755-1766



  

Solar activity: early observations

IV-A Solar modulation

→ 22-yr (average) periodicity 
for polarity reversal

Babcock, ApJ 133 (1961) 572
The Topology of the Sun's Magnetic

Field and the 22-yr cycle

Magnetogram: trace 
proportional to B (5-40 G)

Maunder “butterfly” diagram
(naked eye observation)

→ 11-yr (average) periodicity
1st solar cycle: 1755-1766



  

Solar activity: polarity reversal

IV-A Solar modulation

→ 22-yr (average) periodicity 
for polarity reversal

(Cycle 24 : 1997-2013)

Babcock, ApJ 133 (1961) 572
The Topology of the Sun's Magnetic

Field and the 22-yr cycle

Magnetogram: trace 
proportional to B (5-40 G)

Maunder “butterfly” diagram
(naked eye observation)

→ 11-yr (average) periodicity
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Solar activity: polarity reversal in cycle 24

IV-A Solar modulation

→ 22-yr (average) periodicity 
for polarity reversal

(Cycle 24 : 1997-2013)

Babcock, ApJ 133 (1961) 572
The Topology of the Sun's Magnetic

Field and the 22-yr cycle

Magnetogram: trace 
proportional to B (5-40 G)

Maunder “butterfly” diagram
(naked eye observation)

→ 11-yr (average) periodicity
1st solar cycle: 1755-1766

1997 2013



  

Solar activity: solar wind

→ Solar wind is spherically symmetric (at first order)
IV-A Solar modulation

→ A continuous flow of charged particles with velocities ~ 400 km/s
● Mostly electrons and protons (1012 particles m-2 s-1)

● First continuous observations by Mariner 2 (1962) + 3 orbits by Ulysses



  

Solar activity: solar wind turbulence

→ Turbulence in the solar wind (Kolmogorov = 3/2)
IV-A Solar modulation



  

Solar activity

IV-A Solar modulation

How can we describe G‏CRs in the Solar cavity?



  

Advection/diffusion transport in the Solar cavity!

IV-A Solar modulation

Caballero-Lopez & Moraal, JGR 109 (2004) A01101‏



  

Force-field solution

IV-A Solar modulation

Caballero-Lopez & Moraal, JGR 109 (2004) A01101‏

Force-field approximation:
● No source
● Steady state
● No adiabatic losses 

GV/m (E field)



  

IV-A Solar modulation

Force-field approximation:
● No source
● Steady state
● No adiabatic losses 

→ Solution
GV/m (E field)

Force-field solution

Caballero-Lopez & Moraal, JGR 109 (2004) A01101‏



  

IV-A Solar modulation

Force-field approximation:
● No source
● Steady state
● No adiabatic losses 

→ Solution
GV/m (E field)

Force-field solution

Caballero-Lopez & Moraal, JGR 109 (2004) A01101‏

Usoskin et al. JGRA 116 (2011) 2104
What is the minimal IS kinetic 

energy we can measure on “Earth”?



  

IV-A Solar modulation

Force-field approximation:
● No source
● Steady state
● No adiabatic losses 

→ Solution
GV/m (E field)

Force-field solution

Caballero-Lopez & Moraal, JGR 109 (2004) A01101‏

Usoskin et al. JGRA 116 (2011) 2104

2 GeV
400 GeV



  

IV-A Solar modulation

Force-field approximation:
● No source
● Steady state
● No adiabatic losses 

→ Solution
GV/m (E field)

N.B.: Force-Field works because the FF energy 
loss is an upper limit of the true adiabatic loss

Force-field solution

Caballero-Lopez & Moraal, JGR 109 (2004) A01101‏

Usoskin et al. JGRA 116 (2011) 2104



  

Force-field vs 1D spherically symmetric solution

IV-A Solar modulation

Courtesy of F. Barao‏Courtesy of F. Barao‏

N.B.: 1D solution uses the full equation below

Modulation at different r positionsFit to GCR data to determine 



  

Force-field vs 1D spherically symmetric solution

IV-A Solar modulation

Courtesy of F. Barao‏

N.B.: 1D solution uses the full equation below

DM et al., AdSR (2014)

At similar minimum, same modulation level Modulation at different r positions

Modulation level reconstructed with NMs vs AMS-02 data 
→ Alexandre Ghelfi's poster



  

Force-field vs 1D spherically symmetric solution

→ Force field OK @ Earth + not too low energy

IV-A Solar modulation

Courtesy of F. Barao‏

N.B.: 1D solution uses the full equation below

DM et al., AdSR (2014)

At similar minimum, same modulation level Modulation at different r positions



  

More realistic model: archimedean structure

IV-A Solar modulation

Magnetic field is assumed to be frozen in solar wind plasma
→ Archimedean spiral in the solar equatorial plane

Parker, AJ 128 (1958), 664

Ideal Parker spiral magnetic field lines between 0 
and 25 AU for a solar wind speed of 450 km s–1. 

Black, blue, and red lines show heliographic 
latitudes of 0, 30, and 60 degrees, respectively
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More realistic model: 3D diffusion equation to solve

IV-A Solar modulation



  

More realistic model: drift effect

IV-A Solar modulation

Magnetic field is assumed to be frozen in solar wind plasma
→ Archimedean spiral in the solar equatorial plane

● Sun rotates with a period of  ≃ 27.27 days 
(Carrington rotation - started on Nov 9, 1853‏)

● The magnetic field at the solar magnetic poles 
approximates that of a dipole

● Offset between the sun magnetic and rotation 
axis → tilt angle increases with Sun activity

→ Drift velocity depend on particle charge (Z) 
and solar magnetic field polarity (A)



  

Crucial parameters: polarity and tilt angle‏

IV-A Solar modulation

Magnetic field is assumed to be frozen in solar wind plasma
→ Archimedean spiral in the solar equatorial plane

Courtesy from F. Barao

→ Different modulation of positive and negative particles (if small tilt angle)



  

More realistic model: drift effect

IV-A Solar modulation

Magnetic field is assumed to be frozen in solar wind plasma
→ Archimedean spiral in the solar equatorial plane

Clem & Evenson, ApJ 568, 216 (2002)‏

● Sun rotates with a period of  ≃ 27.27 days 
(Carrington rotation - started on Nov 9, 1853‏)

● The magnetic field at the solar magnetic poles 
approximates that of a dipole

● Offset between the sun magnetic and rotation 
axis → tilt angle increases with Sun activity

→ Drift velocity depend on particle charge (Z) 
and solar magnetic field polarity (A)

→ Too much gaps in the data time coverage to 
draw firm conclusions



  

Conclusions on Solar modulation‏

IV-A Solar modulation

Solar modulation changes low energy fluxes

→ Force-Field is simple (algebraic expressions) and still used
● Single effective parameter (between 400 and 2000 MV)
● Determined from G‏CR data or NM data
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Conclusions on Solar modulation‏

IV-A Solar modulation

Solar modulation changes low energy fluxes

→ Force-Field is simple (algebraic expressions) and still used
● Single effective parameter (between 400 and 2000 MV)
● Determined from G‏CR data or NM data

 → More realistic: 3D diffusion equation
● Drift (≠ modulation for different charge sign)
● Lots of parameters, some still uncertain

AMS-02 data will provide a crucial test for the theory
● High accuracy measurements (for p, statistics < 1%)
● Dayly or weakly fluxes over several years (tilt angle/polarity)
● Simultaneous data on p(bar), e± 

AMS-02
(Courtesy L. Derome‏)



  

Charged signals: electrons/positrons, antibaryons‏

IV - Transport in the heliosphere
Charged signals: electrons/positrons, antibaryons

IV-A Propagation in the heliosphere
IV-B ‏CRDB
IV-‏C Anti-p, anti-d, and positron fraction

1. Where to look for new physics in G‏CRs
2. “Backgrounds” from secondary production
3. Uncertainties on DM signals (propagation, DM)
4. Positron fraction
5. Summary and perspectives



  

?CRDB: why‏

http://lpsc.in2p3.fr/crdb

IV-B ‏CRDB

Usefulness for
 
●G‏CR phenomenology: astrophysics or DM searches

● G‏CR experiments: comparison to previous data

● Solar physics: comparison to past measurements

http://lpsc.in2p3.fr/crdb


  

?CRDB: why‏

http://lpsc.in2p3.fr/crdb

IV-B ‏CRDB

Because it is a waste of resource when every researcher 
has to find and gather again and again the same data sets!

Usefulness for
 
●G‏CR phenomenology: astrophysics or DM searches

● G‏CR experiments: comparison to previous data

● Solar physics: comparison to past measurements

http://lpsc.in2p3.fr/crdb


  

CRDB snapshots: main page‏

http://lpsc.in2p3.fr/crdb

IV-B ‏CRDB

http://lpsc.in2p3.fr/crdb


  

CRDB snapshots: 'Experiment/Data' tab (1)‏

IV-B ‏CRDB



  

CRDB snapshots: 'Experiment/Data' tab (2)‏

IV-B ‏CRDB



  

CRDB snapshots: 'Experiment/Data' tab (3)‏

All data/info for this
sub-experiment

Data & units

IV-B ‏CRDB



  

CRDB snapshots: 'Experiment/Data' tab (4)‏
H

yp
ot

h
e s

es ~ similar for this sub-experiment
(more an exception than the rule)

2 sets of values

IV-B ‏CRDB



  

CRDB snapshots: 'Data extraction' tab (1)‏

IV-B ‏CRDB



  

CRDB snapshots: 'Data extraction' tab (2)‏

Export imageExport data (ASCII, etc.)

Export C++ code

→and click to get...

IV-B ‏CRDB



  

CRDB snapshots: 'Data extraction' tab (3)‏

IV-B ‏CRDB



  

CRDB: 'New data' tab‏

→ 
co
ll
ab
or
at
iv
e 
to
ol

yo
ur
 h
el
p 
is
 w
el
co
me
!

IV-B ‏CRDB



  

Charged signals: electrons/positrons, antibaryons‏
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IV-‏C Anti-p, anti-d, and positron fraction

1. Where to look for new physics in G‏CRs
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5. Summary and perspectives



  

R
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Universe (after Planck)
● 68.3 % dark energy
● 26.8 % dark matter
● 4.9 % ordinary matter

Dark
matter

Standard
matter

Indirect detection

Production (colliders) D
irect de tection

MW dark matter halo
● ~ spherical halo
● radius ~300 kpc

How to detect dark matter?

What about dark matter?

(nuclear physics)(MHD)

(astrophysics + particle physics)

2. Transport in the Galaxy1. Source injection
● spectrum ~ R-2

● abundances
● energy gains/losses
● fragmentation/decay

● diffusion: R-

● convection

Charged cosmic rays in the Galaxy‏

B

C

Galactic
wind

IV-‏C.1 Targets?

Where to look for new physics in 
G‏CRs: which species?
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Stecker, Rudaz & Walsh, Phys. Rev. Lett. 55, 2622 (1985)

Initial motivation for DM in antiprotons

Excess in the antiproton flux?

IV-‏C.1 Targets?

What are the 3 possible conclusions?



  

IV-A Propagation in the heliosphere
IV-B ‏CRDB
IV-‏C Anti-p, anti-d, and positron fraction

1. Where to look for new physics in G‏CRs
2. “Backgrounds” from secondary production
3. Uncertainties on DM signals (propagation, DM)
4. Positron fraction
5. Summary and perspectives

Charged signals: electrons/positrons, antibaryons‏

IV - Transport in the heliosphere
Charged signals: electrons/positrons, antibaryons



  

Astrophysical backgrounds: source terms to consider

[                           ]

Calculate p, e±, from p, He‏ →

0

¦
56Fe

¦
C‏12

10Be
10B

¦
4He
1H

p,d
e±



¦
56Fe

¦
C‏12

10Be
10B

¦
4He
1H

p,d
e±



=

0

0
0

IV-‏C.2 Backgrounds

e±           



  

Antiprotons and antideutons: secondary source term

IV-‏C.2 Backgrounds

m
thresh

p+p → pbar + ?
What is the threshold to create a pbar?
What is the threshold to create a dbar?



  

Antiprotons and antideutons: secondary source term

IV-‏C.2 Backgrounds

m
thresh

p+p → pbar + ?
What is the threshold to create a pbar?
What is the threshold to create a dbar?

CR framework: p+H with H at rest
CMS: all particles at rest @ threshold



  

Antiprotons and antideutons: secondary source term

IV-‏C.2 Backgrounds

m
thresh

p+p → pbar + ?
What is the threshold to create a pbar?
What is the threshold to create a dbar?

E
p
 = 7 m

p

E
p
=17m

p

CR framework: p+H with H at rest
CMS: all particles at rest @ threshold



  

Anti-protons

Duperray et al.,  PRD 71, 083013 (2005)

Antiprotons and antideutons: secondary source term

→ Dominant contributors: H and He (G‏CRs and ISM)
IV-‏C.2 Backgrounds

m
thresh



  

Anti-deutéronsAnti-protons

Duperray et al.,  PRD 71, 083013 (2005)

Antiprotons and antideutons: secondary source term

→ Dominant contributors: H and He (G‏CRs and ISM)
IV-‏C.2 Backgrounds

m
thresh



  

Anti-deutéronsAnti-protons

Duperray et al.,  PRD 71, 083013 (2005)

Antiprotons and antideutons: secondary source term

Coalescence momentum fitted on few data‏ →
(~ 20% uncertainty on p0)

Coalescence: pbar and nbar must be‏
produce close in momentum space

IV-‏C.2 Backgrounds

m
thresh



  

Antiprotons and antideutons: tertiary source term

What is the effect on the pbar 
low energy spectrum?

pbar(T) + p → pbar(T'<T) + X (resonances)

IV-‏C.2 Backgrounds



  

Antiprotons and antideutons: tertiary source term

IV-‏C.2 Backgrounds



  

Antiprotons and antideutons: tertiary source term

Anti-deutéronsAnti-protons

Duperray et al.,  PRD 71, 083013 (2005)

→ Inelastic non-annihilating cross section: fill low energy
IV-‏C.2 Backgrounds



  

Sources
(acceleration in shock waves)

pC
Propagation (1)

(diffusion on magnetic inhomogeneities) 

Propagation (2)

Interaction
(with interstellar medium)

+ +

(H, He) (H, He)

B p
_

Detection on Earth…
can thus

be evaluated…
The B/C ratio

characterises propagation

Pr
im

ar
y 

sp
ec

ie
s

Se
co

nd
a r

y 
sp

ec
ie

s

→ Same propagation history

Antiprotons and antideutons: propagation is fixed form B/‏C

Do we expect large or small propagation uncertainties?
IV-‏C.2 Backgrounds



  

“Background” uncertainties

Previous transport parameters (no free parameters) + nuclear X-sections

Donato et al. PRD 78 (2008) 043506Donato et al., PRL 102 (2009) 071301

1.  Good agreement between model and data (no dark matter needed)
2.  Nuclear physics uncertainties > propagation uncertainties 

→ Due to  uncertainties (including solar modulation), 
constraints on non-detection difficult to improve

IV-‏C.2 Backgrounds



  

IV-A Propagation in the heliosphere
IV-B ‏CRDB
IV-‏C Anti-p, anti-d, and positron fraction

1. Where to look for new physics in G‏CRs
2. “Backgrounds” from secondary production
3. Uncertainties on DM signals (propagation, DM)
4. Positron fraction
5. Summary and perspectives

Charged signals: electrons/positrons, antibaryons‏

IV - Transport in the heliosphere
Charged signals: electrons/positrons, antibaryons

IV-‏C.3 Signal



  

Dark matter contribution: primary source term in the halo

● Sub-dominant DM candidate

● Annihilation cross section

● Annihilation spectrum

● Dark matter density in the Galaxy

● Mass of the DM candidate

IV-‏C.3 Signal



  

D0/L degeneracy: impact on dark matter signal

Transport parameters from B/C analysis

+ isotropic diffusion
+ no galactic wind

Parameters
matching
B/‏C data

K0/L
degeneracy

IV-‏C.3 Signal



  

D0/L degeneracy: impact on dark matter signal

Dark matter signalTransport parameters from B/C analysis

Parameters
matching
B/‏C data

K0/L
degeneracy

+ isotropic diffusion
+ no galactic wind

Solve 1D (pure diffusion) equation 
with a constant distribution of DM 

→ How does the signal scale?

IV-‏C.3 Signal



  

D0/L degeneracy: impact on dark matter signal

Dark matter signalTransport parameters from B/C analysis

Parameters
matching
B/‏C data

K0/L
degeneracy

+ isotropic diffusion
+ no galactic wind

Solve 1D (pure diffusion) equation 
with a constant distribution of DM 

→ How does the signal scale?

IV-‏C.3 Signal



  

D0/L degeneracy: impact on dark matter signal

Dark matter signalTransport parameters from B/C analysis

Parameters
matching
B/‏C data

K0/L
degeneracy

→ for fixed D0/L (from B/‏C), signal scales with L,
hence the min/med/max parameters

+ isotropic diffusion
+ no galactic wind

IV-‏C.3 Signal



  

D0/L degeneracy: impact on dark matter signal

Dark matter signalTransport parameters from B/C analysis

Donato et al. (2004)

Parameters
matching
B/‏C data

K0/L
degeneracy

→ for fixed D0/L (from B/‏C), signal scales with L,
hence the min/med/max parameters

N.B.: K0/L degeneracy also broken for positrons
Delahaye et al. (2009)

+ isotropic diffusion
+ no galactic wind

IV-‏C.3 Signal



  

D0/L degeneracy: impact on dark matter signal

Dark matter signalTransport parameters from B/C analysis

Donato et al. (2004)

Parameters
matching
B/‏C data

K0/L
degeneracy

→ for fixed D0/L (from B/‏C), signal scales with L,
hence the min/med/max parameters

● ~ factor 100 uncertainty on DM pbar and dbar
● Similar (though smaller) efect for positrons

[Delahaye et al., A&A 501 (2009) 821]

+ isotropic diffusion
+ no galactic wind

IV-‏C.3 Signal



  

~300 kpc
8 kpc

Dark matter distribution

Aquarius (MW-like) simulation – Springel et al (2008)

ΔΩ

N-body simulations in brief:
● Spatial distributions: core, cuspy, Einasto [gastrophysics]
● Clumpiness [~ 10 % mass] and mass distribution [dN/dM∝M-1.9]‏
● Minimal mass of substructures [particle physics, tidal disruption]

Hierarchical formation of structures in the Universe: from micro-haloes to galaxy clusters

IV-‏C.3 Signal



  

Boost factor of the signal from substructures

Lavalle et al., A&A 479 (2008) 427

Excluded by more recent simulations

→ No boost from DM substructures
→ Mildly sensitive to DM distribution in the G‏C (too far away)

IV-‏C.3 Signal



  

IV-‏C.3 Signal

Prospects for antiprotons [slide from N. Fornengo]



  

ULDM = Ultra Long Duration Flight (100–300 days)
LDB = Long Duration Flight

→ Very good perspectives for the near future (GAPS and AMS-02 experiments)

Prospects for antideuterons (low energy)

Donato et al. PRD 78 (2008) 043506

With improved “background”First study

Enhanced production for Heavy DM
Kadastik et al. (2010), Dal & Kachelriess (2012)

IV-‏C.3 Signal



  

IV-A Propagation in the heliosphere
IV-B ‏CRDB
IV-‏C Anti-p, anti-d, and positron fraction

1. Where to look for new physics in G‏CRs
2. “Backgrounds” from secondary production
3. Uncertainties on DM signals (propagation, DM)
4. Positron fraction
5. Summary and perspectives

Charged signals: electrons/positrons, antibaryons‏

IV - Transport in the heliosphere
Charged signals: electrons/positrons, antibaryons

IV-‏C.4 Positron fraction



  
Secondary e+/e- ~ 2.5

Secondary production of e±

IV-‏C.4 Positron fraction

Strong et al. (1998)



  

Positron flux

Delahaye et al., A&A 501 (2009) 821

Positron fraction

→ Uncertainties (in addition to propagation ones)
- Production cross-sections: ~factor of 2-3 above a few 10 GeV (positron flux)
- Slope of the electron spectrum: ~ factor of 4 at 100 GeV (positron fraction)

N.B.: larger propagation uncertainties on positrons than on antinuclei
(not the same key transport parameters)

Propagation
uncertainty

IV-‏C.4 Positron fraction

Propagation uncertainties for secondary positrons



  

Donato et al., PRD 69, 063501 (2004)

Donato et al., PRD 78, 043506 (2008)
Delahaye, Lineros, Donato, Fornengo, & Salati,

PRD 77, 063527 (2008)

II. Some results...

Standard (disc) and exotic (diffusive halo) sources have different propagation histories
=>  degeneracy of propagation parameters lifted for DM sources

Propagation 
uncertainty
(on signals)

IV-‏C.4 Positron fraction

Propagation uncertainties for primary positrons



  

So, excess in the e++e- spectrum and positron fraction?

ATIC
PPB-BETS

IV-‏C.4 Positron fraction



  

Positron fraction: origin of the rise at high energy

Hum, there this guy...

→ 'Natural' astrophysical prediction (local SNRs, pulsars)

Boulares (1989)

IV-‏C.4 Positron fraction



  

… and this other guy

Aharonian et al., A&A 26 (1995) 41

IV-‏C.4 Positron fraction



  

Positron fraction: origin of the rise at high energy

… it is almost embarrassing

→ Last place to look for dark matter (local sources): no control on astro. background!

'Natural' astrophysical prediction
vs

leptophilic boosted dark matter post-diction

IV-‏C.4 Positron fraction



  → high-energy e+ and e- spectra 'background' are hardly under control! 

e+:200 pulsars within 2 kpce-: 27 SNRs within 2 kpc

IV-‏C.4 Positron fraction

Remember: local sources

 → Primary astrophysical contributions enable to reproduce PAMELA data
(Large uncertainties on age, distance, efficiency, number of sources...)

Delahaye et al., A&A 524 (2010) A51



  
IV-‏C.4 Positron fraction

Delahaye et al., A&A 524 (2010) A51

DM or astrophysics?

→ it is useful to check where DM models lie, but always keep astro in mind!



  

IV-A Propagation in the heliosphere
IV-B ‏CRDB
IV-‏C Anti-p, anti-d, and positron fraction

1. Where to look for new physics in G‏CRs
2. Antiproton and antideuteron “backgrounds”
3. Electrons/positrons backgrounds
4. Propagation uncertainties on DM signals
5. DM spatial distribution: impact on DM signals
6. Summary and perspectives

Charged signals: electrons/positrons, antibaryons

IV - Transport in the heliosphere
Charged signals: electrons/positrons, antibaryons



  

Indirect dark matter searches with G‏CRs: summary 

Antinuclei (low or high energy)
● Background

→ under control (dominated by nuclear uncertainties)
● DM signal

→ “DM distribution” uncertainties small: no boost, not sensitive to G‏C
→ “Propagation” uncertainties large (x10): better when B/‏C data from AMS-02
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● DM signal
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Electrons and positrons (high energy)
● Background

→ completely not under control (dominated by local sources, etc.)!
● DM signal

→ “DM distribution” uncertainties small: no boost, not sensitive to G‏C
→ “Propagation” uncertainties large (x5): better when B/‏C data from AMS-02
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N.B.: no standard propagation model yet, barely 
parameter values from various 'effective' models 
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Indirect dark matter searches with G‏CRs: summary 

Antinuclei (low or high energy)
● Background

→ under control (dominated by nuclear uncertainties)
● DM signal

→ “DM distribution” uncertainties small: no boost, not sensitive to G‏C
→ “Propagation” uncertainties large (x10): better when B/‏C data from AMS-02

Electrons and positrons (high energy)
● Background

→ completely not under control (dominated by local sources, etc.)!
● DM signal

→ “DM distribution” uncertainties small: no boost, not sensitive to G‏C
→ “Propagation” uncertainties large (x5): better when B/‏C data from AMS-02

→ Antideuterons best target for DM discovery/constraints
→ Positrons fraction (and e++e-) worst target for discovery/constraints

N.B.: no standard propagation model yet, barely 
parameter values from various 'effective' models 

 ,Credible signature requires: multi-messenger‏ →
multi-wavelength, cross-correlations...



  

Indirect dark matter searches: why so many claims?

Scarce data, data in extreme range of instrument capabilities, detector issue
● 1 GV & 10 GeV antiproton excess (in the 80's and 90's)
● 10 GeV EGRET excess (in the 00')
● 500 GeV ATI‏C excess (in 2008)  
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Indirect dark matter searches: why so many claims?

Correct, but too much data for the physicist own good (Fermi-LAT era) 
● 10 GeV annihilation line in the galactic centre
● 130 GeV line in the Galactic center
● 110 and 130 GeV line in galaxy cluster
● XXX GeV line somewhere

Scarce data, data in extreme range of instrument capabilities, detector issue
● 1 GV & 10 GeV antiproton excess (in the 80's and 90's)
● 10 GeV EGRET excess (in the 00')
● 500 GeV ATI‏C excess (in 2008)  

Correct data, but do not want to see the astrophysics
● 511 keV annihilation line (INTEGRAL/SPI) [still unclear]
● 10 GeV HEAT positron fraction bump (in the 90')
● Rise of the positron fraction (PAMELA/AMS-02)

Inflation...

Speculation bubble?

Impact on real science?



  

Physics landscape: http://paperscape.org/

http://paperscape.org/


  

Physics landscape: http://paperscape.org/

→ Phylomemetic Patterns in Science Evolution—The Rise and 
Fall of Scientific Fields, ‏Chavalarias & ‏Cointet, Plos One (2013) 

http://paperscape.org/


  

Physics landscape: http://paperscape.org/

→ Research 3.0: future tool to optimise 'research' efficiency?

http://paperscape.org/
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