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Transport of cosmic rays in the Galaxy and in the heliosphere (~ 4h30)
● What is G‏CR (Galactic ‏Cosmic Ray) physics and transport
● Relevant time scales: ≠ species have ≠ phenomenology
● Main modelling ingredients: key parameters and uncertainties
● Tools to solve the transport equation

Charged signals: electrons/positrons, antibaryons (~1h30)
● What is astroparticle physics and DM (Dark Matter) indirect detection
● What are the astrophysical backgrounds + uncertainties [nuclear]
● Phenomenology of DM signals + uncertainties [transport and dark matter]
● Pros and ‏Cons of DM indirect detection with charged G‏CRs



  

   I. Introduction; Galactic ‏Cosmic Rays
1. Early history of ‏CRs: discovery and disputes
2. G‏CR journey (from source to detector)
3. Timeline
4. Observables and questions

   II. Processes, ingredients, characteristic times
1. Definitions
2. Diffusion (space and momentum)
Convection and adiabatic losses‏ .3
4. Energy losses (continuous)
Catastrophic losses‏ .5
6. All together

   III. Solving the equations: G‏CR phenomenology
1. From microphysics to effective models
2. Full set of equations (with source terms)
3 (Semi-)Analytical, numerical, & M‏C solutions
4. Stable species: degeneracy D0 /L
5. Radioactive species and local ISM
6. Leptons and local sources

Transport of cosmic rays (‏CR) in the Galaxy

G‏CRs-II.pdf
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Time scales: all together
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1. Dominant effects
● Nuclei escape from the Galaxy
● Leptons loose their energy

2. Local origin
● Low energy radioactive nuclei
● High energy electrons and positrons

→ Numbers depend on MW model parameters (halo size, diffusion coefficient...)
→ Time scale for effects in the disc overestimated: ‏CRs see density  n

ISM
 <n>  (h/H) n

ISM

II.6 Time scales
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~ 8 kpc

(nuclear physics)(MHD)

2. Transport in the Galaxy1. Source injection
● spectrum ~ R-2

● abundances
● energy gains/losses
● fragmentation/decay

● diffusion: R-

● convection

Charged cosmic rays in the Galaxy: reminder‏

Galactic
wind
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Do we understand the “standard” fluxes (everywhere and anytime)?
● Sources (SN, pulsars, ...)
● Nucleosynthesis (r and s-process for heavy nuclei)
● Acceleration mechanisms (injection, B amplification, Emax)
● Propagation mechanisms (turbulence, spatial dependence, isotropy)
● Magneto-cosmico-gaseo properties of the Galaxy (MHD description)
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(nuclear physics)(MHD)

2. Transport in the Galaxy1. Source injection
● spectrum ~ R-2

● abundances
● energy gains/losses
● fragmentation/decay

● diffusion: R-

● convection

Charged cosmic rays in the Galaxy: reminder‏

In this lecture (simpler task):

● Transport equations (all 
terms, all species)
● Set geometry/ingredients
● Solve the equations

→ Which GCR data 
constrain which parameters 

of the model?

Galactic
wind

Do we understand the “standard” fluxes (everywhere and anytime)?
● Sources (SN, pulsars, ...)
● Nucleosynthesis (r and s-process for heavy nuclei)
● Acceleration mechanisms (injection, B amplification, Emax)
● Propagation mechanisms (turbulence, spatial dependence, isotropy)
● Magneto-cosmico-gaseo properties of the Galaxy (MHD description)



  

Transport of cosmic rays (‏CR) in the Galaxy

1. Diffusion: from microphysics to effective models  
2. Full set of equations (with source terms)
3 (Semi-)Analytical, numerical, & M‏C solutions
4. Stable species: degeneracy K0 /L
5. Radioactive species and local ISM
6. Leptons and local sources

III. Solving the transport equations: G‏CR phenomenology



  

Diffusion coefficients from microphysics

[Adapted from R. Tautz (‏CRISM 2014)]

● Physics problem: motion in a turbulent field

III.1Microphysics

https://indico.in2p3.fr/contributionDisplay.py?contribId=31&sessionId=9&confId=9027
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Diffusion coefficients from microphysics

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Pitch angle =cos(v,B0)

Analytical calculation

- Mean free path
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Diffusion coefficients from microphysics

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Unknown vx,y, unknown
position in Bx,y

Pitch angle =cos(v,B0)

Taylor-Green-Kubo formula

Analytical calculation

- Mean free path
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- Equation of motion (Lorentz)
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● Ansatz: diffusion equation
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position in Bx,y

Pitch angle =cos(v,B0)

Taylor-Green-Kubo formula

Can only be solved in ideal situations‏ →
● Quasi-Linear Theory (B ≪B): QLT
● 2nd order QLT: SOQLT
● Non-linear guiding centre: NLG‏C
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Diffusion coefficients from microphysics

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Unknown vx,y, unknown
position in Bx,y

Pitch angle =cos(v,B0)

Taylor-Green-Kubo formula

Can only be solved in ideal situations‏ →
● Quasi-Linear Theory (B ≪B): QLT
● 2nd order QLT: SOQLT
● Non-linear guiding centre: NLG‏C

Numerical simulationsAnalytical calculation

- Mean free path

- Fokker-Planck coefficient

- Equation of motion (Lorentz)

Reality: resonant wave-particle interaction with 
stochastic motion
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Diffusion coefficients from microphysics

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Unknown vx,y, unknown
position in Bx,y

Pitch angle =cos(v,B0)

Reality: resonant wave-particle interaction with 
stochastic motion... turbulence model requires:

● Energy spectrum (diff.eq. for wave!): W k-s

- Kolmogorov: s=5/3                    =1/3
- Kraichnan: s=3/2                        =1/2

Taylor-Green-Kubo formula

Can only be solved in ideal situations‏ →
● Quasi-Linear Theory (B ≪B): QLT
● 2nd order QLT: SOQLT
● Non-linear guiding centre: NLG‏C

Numerical simulationsAnalytical calculation

- Mean free path

- Fokker-Planck coefficient

- Equation of motion (Lorentz)

D   R

 = 2-s
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Diffusion coefficients from microphysics

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Unknown vx,y, unknown
position in Bx,y

Pitch angle =cos(v,B0)

Reality: resonant wave-particle interaction with 
stochastic motion... turbulence model requires:

● Energy spectrum (diff.eq. for wave!): W k-s

- Kolmogorov: s=5/3                    =1/3
- Kraichnan: s=3/2                        =1/2

Taylor-Green-Kubo formula

Can only be solved in ideal situations‏ →
● Quasi-Linear Theory (B ≪B): QLT
● 2nd order QLT: SOQLT
● Non-linear guiding centre: NLG‏C

Numerical simulationsAnalytical calculation

- Mean free path

- Fokker-Planck coefficient

- Equation of motion (Lorentz) OR

→ Turbulence is 
Kolmogorov for the 

Sun

Direct measurement

III.1Microphysics

[Adapted from R. Tautz (‏CRISM 2014)]
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 = 2-s
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Diffusion coefficients from microphysics

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Unknown vx,y, unknown
position in Bx,y

Pitch angle =cos(v,B0)

Taylor-Green-Kubo formula

Can only be solved in ideal situations‏ →
● Quasi-Linear Theory (B ≪B): QLT
● 2nd order QLT: SOQLT
● Non-linear guiding centre: NLG‏C

Numerical simulationsAnalytical calculation

- Mean free path

- Fokker-Planck coefficient

- Equation of motion (Lorentz)

- Slab

- 2D

- Isotropic

- Others (e.g. Goldreich-Sridahr)

Composite‏

Reality: resonant wave-particle interaction with 
stochastic motion... turbulence model requires:

● Energy spectrum (diff.eq. for wave!): W k-s

● Geometry

III.1Microphysics
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Diffusion coefficients from microphysics

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Unknown vx,y, unknown
position in Bx,y

Pitch angle =cos(v,B0)

Taylor-Green-Kubo formula

Can only be solved in ideal situations‏ →
● Quasi-Linear Theory (B ≪B): QLT
● 2nd order QLT: SOQLT
● Non-linear guiding centre: NLG‏C

Numerical simulationsAnalytical calculation

- Mean free path

- Fokker-Planck coefficient

- Equation of motion (Lorentz)

Reality: resonant wave-particle interaction with 
stochastic motion... turbulence model requires:

● Energy spectrum (diff.eq. for wave!): W k-s

● Geometry
● Dynamical behaviour

- Instabilities
- Damped waved
- Intermittency 

Diffusion 
in MHD 

turbulence

III.1Microphysics
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Diffusion coefficients from microphysics

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Unknown vx,y, unknown
position in Bx,y

Pitch angle =cos(v,B0)

Taylor-Green-Kubo formula

→ Low resolution only 
(time-consuming)

→ Near future(?): full MHD 
treatment (‏CRs + gas + B)

Numerical simulationsAnalytical calculation

- Mean free path

- Fokker-Planck coefficient

- Equation of motion (Lorentz)

Reality: resonant wave-particle interaction with 
stochastic motion... turbulence model requires:

● Energy spectrum (diff.eq. for wave!): W k-s

● Geometry
● Dynamical behaviour

- Instabilities
- Damped waved
- Intermittency 

Can only be solved in ideal situations‏ →
● Quasi-Linear Theory (B ≪B): QLT
● 2nd order QLT: SOQLT
● Non-linear guiding centre: NLG‏C
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Effective models: fit of careful with the interpretation!)
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Effective models: fit of careful with the interpretation!)

● Everywhere: planetary → galaxy clusters
● Typical amplitudes: ~ G – nT
● Two components (comparable strength):

✔ Regular B0 (large scale)
✔ Turbulent B (small scale), i.e. <B>=0

Magnetic fields

III.1Microphysics
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Effective models: fit of careful with the interpretation!)

● Everywhere: planetary → galaxy clusters
● Typical amplitudes: ~ G – nT
● Two components (comparable strength):

✔ Regular B0 (large scale)
✔ Turbulent B (small scale), i.e. <B>=0

Milky Way (408 MHz)
http://apod.nasa.pod/ap011020.html

Diffusion+ 
confinement 
= geometry

Ekers & Sancisi, A&A 54, 973 (1977)

NG‏C 4631 (610 MHz)

Usual simplifying assumptions
● Isotropic (no preferred diffusion direction)
● Standard (no sub-diffusion, Levy flights...)
● Spatial-independent diffusion coefficient
● Wind: ⊥ to galactic plane (cst or linear)
● “Minimal” reacceleration (VA mediated)

Diffusion
coefficients

Geometry = camembert box 
→ Diffusive halo half-height ~ L

Magnetic fields

with =0
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Effective models: fit of careful with the interpretation!)

● Everywhere: planetary → galaxy clusters
● Typical amplitudes: ~ G – nT
● Two components (comparable strength):

✔ Regular B0 (large scale)
✔ Turbulent B (small scale), i.e. <B>=0
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NG‏C 4631 (610 MHz)

→ D = D0 R

→ DEE   (pVA)2/D

Usual simplifying assumptions
● Isotropic (no preferred diffusion direction)
● Standard (no sub-diffusion, Levy flights...)
● Spatial-independent diffusion coefficient
● Wind: ⊥ to galactic plane (cst or linear)
● “Minimal” reacceleration (VA mediated)

Diffusion
coefficients

Geometry = camembert box 
→ Diffusive halo half-height ~ L

Magnetic fields

“Minimal” model
5 free parameters

D0, , VA, L, Vc

with =0
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Transport of cosmic rays (‏CR) in the Galaxy

III. Solving the transport equations: G‏CR phenomenology

1. Diffusion: from microphysics to effective models  
2. Full set of equations (with source terms)
3 (Semi-)Analytical, numerical, & M‏C solutions
4. Stable species: degeneracy K0 /L
5. Radioactive species and local ISM
6. Leptons and local sources



  

The full transport equation(s)

III.2 All terms
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The full transport equation(s)

Milky Way (408 MHz)
http://apod.nasa.pod/ap011020.html

Primary source term: space-time granularity

● Spatial distribution (positions)
● Age source / duration
● Spectrum (for all species)

III.2 All terms

primary species
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accelerated in sources
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→ 1st approximation:
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The full transport equation(s)

Milky Way (408 MHz)
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The full transport equation(s)

Milky Way (408 MHz)
http://apod.nasa.pod/ap011020.html

[                           ]

Secondary source term: production

● ISM ~ 90% H, 10% He
● CRs: Mostly p and He (for e+, pbar, dbar)‏
● Cross-sections: data + models‏

III.2 All terms

Secondary species
=

created in nuclear interaction of primary CR on ISM

http://apod.nasa.pod/ap011020.html


  

The full transport equation(s)
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Secondary source term: production

● ISM ~ 90% H, 10% He
● CRs: Mostly p and He (for e+, pbar, dbar)‏
● Cross-sections: data + models‏

For nuclei:

  → models:
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● Semi-empirical (Silberberg & Tsao)
● Empirical (Webber et al.)
● Microscopic (Zeitlin et al.)




III.2 All terms
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=

created in nuclear interaction of primary CR on ISM
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The full transport equation(s)
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Remarks
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The full transport equation(s)

[                           ]

Remarks

→ 2nd order differential equation (space and 
energy) + time-derivative

→ Linear equations: local sources or “DM” 
source term can be dealt with separately

→ Set of N coupled equations

→ Solve iteratively (or diagonalise) for nuclei
Calculate p, e±, from p, He afterwards‏ →

III.2 All terms
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III. Solving the transport equations: G‏CR phenomenology

1. Diffusion: from microphysics to effective models  
2. Full set of equations (with source terms)
3 (Semi-)Analytical, numerical, & M‏C solutions
4. Stable species: degeneracy K0 /L
5. Radioactive species and local ISM
6. Leptons and local sources
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Solving the transport equation

III.3 Techniques

  (Semi-)analytical                             Numerical                                  Monte Carlo

Simplify the problem:
● keep dominant effects only
● simplify the geometry
    - spherical/cylindrical/1D halo
    - sources/gas in thin disc (z)

Follow each particle:
● N particles at t=0
● evolve each of them to t+1
● draw random numbers for D

Finite difference scheme:
● discretise the equation
● scheme (e.g., ‏Crank-Nicholson)
● invert tridiagonal matrix

Codes 
and/or

references

Pros and
cons

Webber (1970+)
Ptuskin (1980+)
Schlickeiser (1990+)
USINE (2000+)

GALPROP (Strong et al. 1998)
DRAGON (Evoli et al. 2008)

PI‏CARD (Kissmann et al., 2013)

● Statistical properties (along path)
● No grid (t step), (for/back)-ward

● Very slow, statistical errors
● Massively parallel problem

● Stochastic differential equations
● Markov process
● MPI

● Very simple algebra
● Any new input easily included

● Slow, huge memory for high res.
● Less insight in the physics

Webber & Rockstroh (1997)
Farahat et al. (2008)
Kopp, Büshing et al. (2012)

Approach

● Useful to understand the physics
● Fast and no instabilities 

● Only solve approximate model
● New solution for new problem

Tools ● Green functions
● Fourier/Bessel expansion
● Differential equations
 

● Numerical solvers
● Numerical recipes (Press et al.)
● NAG libraries, GSL (free) 

Semi-analytical
Analytical for spatial derivatives
Numerical for energy derivatives  
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Stable nuclei: simple 1D model

Solution for stable species

● Simplified 1D geometry (infinite plane)
● Neglect energy losses/gains
● D(E) isotropic, space-independent

● Solve in the halo
● Ensure condition N(z=L)=0 
● Integrate around 0

III.4 Stables and B/‏C

Valid above ~10 GeV/n



  

Stable nuclei: ratio of primary species
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Stable nuclei: ratio of primary species (LE)

Solution for stable species

● Simplified 1D geometry (infinite plane)
● Neglect energy losses/gains
● D(E) isotropic, space-independent

● Solve in the halo
● Ensure condition N(z=L)=0 
● Integrate around 0

III.4 Stables and B/‏C

The heavier the nucleus, the more
destroyed it is at low energy

Putze et al., A&A 526 (2011) A101










  

Stable nuclei: ratio of primary species (HE)

Solution for stable species

● Simplified 1D geometry (infinite plane)
● Neglect energy losses/gains
● D(E) isotropic, space-independent

● Solve in the halo
● Ensure condition N(z=L)=0 
● Integrate around 0

III.4 Stables and B/‏C

Hint at 
p
 ≠

He
?

(collective effects, acceleration in WR winds)

Vladimiro et al., ApJ 752 (2012) 68



  

Stable nuclei: primary flux (HE)

Solution for stable species

● Simplified 1D geometry (infinite plane)
● Neglect energy losses/gains
● D(E) isotropic, space-independent

● Solve in the halo
● Ensure condition N(z=L)=0 
● Integrate around 0

→ 

III.4 Stables and B/‏C

Departure from a pure power law?
?Concavity in the spectrum‏

Adriani et al., Science 332 (2011) 69



  

Stable nuclei: secondary/primary (HE) 

Solution for stable species

● Simplified 1D geometry (infinite plane)
● Neglect energy losses/gains
● D(E) isotropic, space-independent

● Solve in the halo
● Ensure condition N(z=L)=0 
● Integrate around 0

→ 

→ 
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Stable nuclei: secondary/primary +  

Solution for stable species

● Simplified 1D geometry (infinite plane)
● Neglect energy losses/gains
● D(E) isotropic, space-independent

● Solve in the halo
● Ensure condition N(z=L)=0 
● Integrate around 0


→ 


→ 

Putze et al., A&A 516 (2010) A66
Putze et al., A&A 526 (2011) A101

III.4 Stables and B/‏C

Current data not at high energy‏ →
enough to determine 

→ 

→ 



  

Stable nuclei: secondary/primary +  

Solution for stable species

● Simplified 1D geometry (infinite plane)
● Neglect energy losses/gains
● D(E) isotropic, space-independent

● Solve in the halo
● Ensure condition N(z=L)=0 
● Integrate around 0


→ 


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Putze et al., A&A 516 (2010) A66
Putze et al., A&A 526 (2011) A101

III.4 Stables and B/‏C

Interplay between 
Vc, Va, and D(E)

low energy dependence

Current data not at high energy‏ →
enough to determine 

→ 

→ 



  

Stable nuclei: secondary/primary +   

Solution for stable species

● Simplified 1D geometry (infinite plane)
● Neglect energy losses/gains
● D(E) isotropic, space-independent

● Solve in the halo
● Ensure condition N(z=L)=0 
● Integrate around 0

→ Nuclear uncertainties > B/‏C data uncertainties

III.4 Stables and B/‏C

DM, Putze & Derome
A&A 516, 67(2010)

Current data not at high energy‏ →
enough to determine 

→ 

→ 



  

Stable nuclei: secondary/primary and D0/L degeneracy

Solution for stable species

● Simplified 1D geometry (infinite plane)
● Neglect energy losses/gains
● D(E) isotropic, space-independent

● Solve in the halo
● Ensure condition N(z=L)=0 
● Integrate around 0

III.4 Stables and B/‏C

DM et al., ApJ 555 (2001), 585

Current data not at high energy‏ →
enough to determine 

→ 

→ 

→ Strong D0/L degeneracy
≠ D0 and L (but same D0/L) gives same B/‏C



  

Stable nuclei: secondary/primary and D0/L degeneracy

Solution for stable species

● Simplified 1D geometry (infinite plane)
● Neglect energy losses/gains
● D(E) isotropic, space-independent

● Solve in the halo
● Ensure condition N(z=L)=0 
● Integrate around 0

III.4 Stables and B/‏C

Current data not at high energy‏ →
enough to determine 

→ 

→ 

→ Strong D0/L degeneracy
≠ D0 and L (but same D0/L) gives same B/‏C

Leaky-Box equation and grammage

N.B.: correct answer ~ 10 g/cm2
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Solution for radioactive species
● Only decay and diffusion
● Unbounded diffusion (not sensitive to L)

N.B.: r is the distance, and we now change to (r,z) variables

d3r=4r2dr = 2rdrdz

III.5 Radioactive nuclei

Find solution Nr(0)

Secondary radioactive nuclei (LE)



  

● Only decay and diffusion
● Unbounded diffusion (not sensitive to L)

N.B.: r is the distance, and we now change to (r,z) variables

d3r=4r2dr = 2rdrdz

III.5 Radioactive nuclei

→ Direct measure of the diffusion coefficient

Solution for radioactive species

Secondary radioactive nuclei (LE)



  

But data are scarce...
● No direct measurement of 10Be
● Only ~ one energy for 10Be/Be or 10Be/9Be (also 26Al, 36‏Cl, 54Mn)

● Only decay and diffusion
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But data are scarce...
● No direct measurement of 10Be
● Only ~ one energy for 10Be/Be or 10Be/9Be (also 26Al, 36‏Cl, 54Mn)

● Only decay and diffusion
● Unbounded diffusion (not sensitive to L)

N.B.: r is the distance, and we now change to (r,z) variables

III.5 Radioactive nuclei

→ Direct measure of the diffusion coefficient
→ Indirect measure of L

Solution for radioactive species

Putze et al., A&A 516 
(2010) A66

Secondary radioactive nuclei (LE)



  

Secondary radioactive nuclei: the local ISM (LISM)

From how far away radioactive nuclei come?

III.5 Radioactive nuclei

D = 0.05 kpc2/Myr × (E/1 GeV)0.5

 (10Be) ~ 1.5 Myr

Calculate d‏
 
(1 GeV)



  

Secondary radioactive nuclei: the local ISM (LISM)

Radioactive species are sensitive to small scales (~ 300 pc)
→ the local gas is not homogeneous on this scale!

III.5 Radioactive nuclei



  

NaI absorption measurements (5890 Å): 1005 sight lines

Lallement et al., A&A 411, 447 (2003)

Dense gas along the galactic plane … in the meridian plane … in the rotation plane

→ 20 SN explosions during the past 10-20 Myr (age of the local bubble)

(local bubble linked to the formation of the Gould Belt 30-60 Myr ago?)

→ 1 more SN about 1 Myr ago
(The SN could be as close as ~ 40 pc from SS: contribution to the Pliocene-Pleistocen extinction?)

Maíz-Apellániz, ApJ 560, L83 (2001)
Berghöfer & Breitschwerdt, A&A 390, 299 (2002)

Benítez, Maíz-Apellániz & ‏Canelles, Phys. Rev. Lett. 88, 081101 (2002)

Secondary radioactive nuclei: LISM and local bubble

III.5 Radioactive nuclei



  

Secondary radioactive nuclei: toy model

Extra parameter: size of the underdense region
→ Hole in the thin disc

● Only decay and diffusion
● Unbounded diffusion (not sensitive to L)

N.B.: r is the distance, and we now change to (r,z) variables

III.5 Radioactive nuclei

Solution for radioactive species

Calculate ‏



  

Extra parameter: size of the underdense region
→ Hole in the thin disc

● Only decay and diffusion
● Unbounded diffusion (not sensitive to L)

N.B.: r is the distance, and we now change to (r,z) variables

III.5 Radioactive nuclei

Solution for radioactive species

Donato et al, A&A 381 (2002) 539

Secondary radioactive nuclei: toy model



  

Extra parameter: size of the underdense region

● Only decay and diffusion
● Unbounded diffusion (not sensitive to L)

N.B.: r is the distance, and we now change to (r,z) variables

III.5 Radioactive nuclei

Solution for radioactive species

Constraints‏
on L

with/without 
underdense

region

Putze et al., A&A 516 (2010) A66

Secondary radioactive nuclei: toy model



  

Extra parameter: size of the underdense region

● Only decay and diffusion
● Unbounded diffusion (not sensitive to L)

N.B.: r is the distance, and we now change to (r,z) variables

III.5 Radioactive nuclei

Solution for radioactive species

CR data point towards rh~ 80 pc‏ → 
 → extra parameter rh: prevent lifting D0/L degeneracy

→ D in the underdense region?
+ Bad fit Be/B data (nuclear uncertainties?)

Secondary radioactive nuclei: toy model
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III. Solving the transport equations: G‏CR phenomenology

1. Diffusion: from microphysics to effective models  
2. Full set of equations (with source terms)
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Solution for primary electrons

III.6 High energy e±

General 
time-dependent

solution

Syrovatskii, Soviet Astronomy 3 (1959) 22



  

Solution for primary electrons

III.6 High energy e±

But no data
to support

time-dependent 
behaviour

General 
time-dependent

solution

Syrovatskii, Soviet Astronomy 3 (1959) 22



  

Solution for primary electrons

III.6 High energy e±

Syrovatskii, Soviet Astronomy 3 (1959) 22

But no data
to support

time-dependent 
behaviour

General 
time-dependent

solution

Green function solution (Ansatz: Syrovatskii variable)
→ similar variable used to solve propagation of UHE‏CRs in the expanding Universe

Berezinsky & Gazizov, ApJ 643 (2006) 8
Alves Batista & Sigl (arXiv:1407.6150)

Synchrotron: B ~ 6 G
I‏C: negligible



  

High energy electrons : local origin

Origin of high energy electrons (TeV)

D = 0.05 kpc2/Myr × (E/1 GeV)0.5

III.6 High energy e±

Calculate d‏
max

(1 TeV)



  

High energy electrons : local origin

Origin of high energy electrons (TeV)

● t
I‏C

~ 0.3 Myr

● d
max

 ~ (2Dt)1/2

III.6 High energy e±

→ d
max

 ~ 1 kpc



  

High energy electrons: single source?

Shen, ApJ 162 (1970) 181

III.6 High energy e±

Origin of high energy electrons (TeV)

● t
I‏C

~ 0.3 Myr

● d
max

 ~ (2Dt)1/2 → d
max

 ~ 1 kpc

 Singe source 
and cut-off in HE 

spectrum
→ very sensitive

to D



  

High energy electrons: single source?

Shen, ApJ 162 (1970) 181

III.6 High energy e±

Origin of high energy electrons (TeV)

● t
I‏C

~ 0.3 Myr

● d
max

 ~ (2Dt)1/2 → d
max

 ~ 1 kpc

 Singe source 
and cut-off in HE 

spectrum
→ very sensitive

to D

[ = injection spectral index]

 Time-dependent
solution for 
constant D



  

High energy electrons: single source?

Shen, ApJ 162 (1970) 181

III.6 High energy e±

Procedure 
(use of 50 pulsars)

Origin of high energy electrons (TeV)

● t
I‏C

~ 0.3 Myr

● d
max

 ~ (2Dt)1/2 → d
max

 ~ 1 kpc

 Singe source 
and cut-off in HE 

spectrum
→ very sensitive

to D

→ sources @ r>1kpc: continuous space-time distribution
→ sources @ r<1kpc

[ = injection spectral index]

 Time-dependent
solution for 
constant D



  

High energy electrons: single source?

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265
Electrons and positrons in the galactic cosmic rays

III.6 High energy e±

Origin of high energy electrons (TeV)

 → Apply procedure of Shen (1970)
→ More general solutions and analysis 



  

High energy electrons: single source?

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265
Electrons and positrons in the galactic cosmic rays

III.6 High energy e±

Origin of high energy electrons (TeV)

Burst-like source Injection slope =2.2
Diffusion slope =0.6

 → Apply procedure of Shen (1970)
→ More general solutions and analysis 



  

High energy electrons: single source?

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265
Electrons and positrons in the galactic cosmic rays

III.6 High energy e±

Origin of high energy electrons (TeV)

Burst-like source Injection slope =2.2
Diffusion slope =0.6

Low energy e± have not
reached yet the observer

 → Apply procedure of Shen (1970)
→ More general solutions and analysis 



  

High energy electrons: single source?

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265
Electrons and positrons in the galactic cosmic rays

III.6 High energy e±

Origin of high energy electrons (TeV)

Burst-like source Injection slope =2.2
Diffusion slope =0.6

Low energy e± have not
reached yet the observer

Balance transport/E losses 
give slope ~3.1

 → Apply procedure of Shen (1970)
→ More general solutions and analysis 



  

High energy electrons: single source?

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265
Electrons and positrons in the galactic cosmic rays

III.6 High energy e±

Origin of high energy electrons (TeV)

Burst-like source

Cut-off from energy losses‏

Injection slope =2.2
Diffusion slope =0.6

Low energy e± have not
reached yet the observer

Balance transport/E losses 
give slope ~3.1

 → Apply procedure of Shen (1970)
→ More general solutions and analysis 



  

High energy electrons: single source?

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265
Electrons and positrons in the galactic cosmic rays

III.6 High energy e±

Origin of high energy electrons (TeV)

Burst-like source Continuous sources‏

Cut-off from energy losses‏

Injection slope =2.2
Diffusion slope =0.6

Low energy e± have not
reached yet the observer

Balance transport/E losses 
give slope ~3.1

 → Apply procedure of Shen (1970)
→ More general solutions and analysis 



  

High energy electrons: single source?

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265
Electrons and positrons in the galactic cosmic rays

III.6 High energy e±

Origin of high energy electrons (TeV)

slope ~  ~ 2.2

Burst-like source Continuous sources‏

Cut-off from energy losses‏

Injection slope =2.2
Diffusion slope =0.6

slope ~~ 2.8
Low energy e± have not
reached yet the observer

Balance transport/E losses 
give slope ~3.1

 → Apply procedure of Shen (1970)
→ More general solutions and analysis 



  

High energy electrons: single source?

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265
Electrons and positrons in the galactic cosmic rays

III.6 High energy e±

Origin of high energy electrons (TeV)

slope ~  ~ 2.2

Burst-like source Continuous sources‏

Cut-off from energy losses‏

Injection slope =2.2
Diffusion slope =0.6

slope ~~ 2.8
Low energy e± have not
reached yet the observer

Balance transport/E losses 
give slope ~3.1  → Main difficulty is to get the

numbers (sources, diffusion) correct

 → Apply procedure of Shen (1970)
→ More general solutions and analysis 



  

HE e± spectrum from a single local source

III.6 High energy e±

Age

Propagation parameters

Distance

Source index

Delahaye et al., 
A&A 524 

(2010) A51



  

Catalog of known nearby SNRs (and pulsars)‏

III.6 High energy e±

Delahaye et al., A&A 524 (2010) A51



  

Electron flux from SNRs (<2 kpc)

III.6 High energy e±

Delahaye et al., A&A 524 (2010) A51



  

III.6 High energy e±

Delahaye et al., A&A 524 (2010) A51

Electron flux from SNRs (<2 kpc)



  

III.6 High energy e±

Delahaye et al., A&A 524 (2010) A51

Electron flux from SNRs (<2 kpc)



  

III.6 High energy e±

Delahaye et al., A&A 524 (2010) A51

Full calculation for e±: distant+local contributions

Exact flux difficult to predict because of uncertainties on
● Source position/age/spectrum
● Transport parameters (D value)
● Energy losses (B value/geometry)



  

« Standard » G‏CRs : summary and perspectives

Lecture II: processes, ingredients, characteristic times

→ Diffusion coefficient (microphysics) to effective models, GCR phenomenology
● secondary stable nuclei: slope  of the diffusion coefficient
● secondary radioactive nuclei: local value of D0 (but sensitive to LISM)
● high energy electrons and positrons: sensitive to local source(s)

Leptons

Nuclei

→ Homogeneous 2-zone diffusion models successfully 
explain most of the existing data up to the knee (~PeV)

Ongoing/future developments/improvements in the modelling
● Phenomenology: space-time granularity, spatial-dependence (D and V)
● Improvement on source description (radio/X/-ray observations)

● Spectra (not power-law): time-dependent, source dependent
● In the source: secondary production, reacceleration

● Diffusion: use of D
//
, D

┴
, anisotropic diffusion with more realistic B 

→ self-consistent description (MHD) of B, ‏CRs, and gas        

Lecture III: solving the transport equations and phenomenology

→ Different time scales for nuclei and leptons
● Diffusive escape at high energy (>10 GeV/n)
● All effects compete @ GeV/n (convection, losses, reacceleration)
● E losses dominate at high energy (>10 GeV)
● E losses dominate below 100 MeV (ion and coulomb) 
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