

Hadrontherapy in 4D

- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano
- Unità di Bioingegneria Clinica, Area Clinica, Fondazione CNAO

Challenge of 4D therapy (respiratory correlated irradiation)

- X-ray radiotherapy inheritage
- Status and perspectives in particle therapy

4D treatment planning

4D imaging and motion modelling

4D dose delivery in particle therapy

- Experimental studies (local models)
- Prediction of daily anatomical changes (global models)

4D treatment verification

- Motion compensated in-vivo PET-based dosimetry
- ✓ 4D transmission imaging

OLITECNICO

Challenge: actively targeting a movable and deformable volume featuring variable kinematics and deformation patterns

- Combination of inter- and intra-fractional deviations
- Tasks (on-the-fly):
 - 1. Target localization
 - 2. Treatment geometry adaptation (beam direction, conformation)

Motion detection strategies The X-ray radiotherapy heritage

- Direct tumor imaging
 - Marker-based methods
 - ✓ X-ray [Shirato et al. Cancer Sci 2012;103:1–6]
 - ✓ EM (Calypso[™]) [Balter et al. *IJROBP* 2005;61:933–37]
 - Markerless
 - ✓ Ultrasound [Schlosser et al Med Phys 2010;37:6357–67]
 - Real-time X-ray image registration [Gendrin et al Radiother Oncol 2012; 102:274–80]
 - ✓ MRI [Fallone et al *Med Phys 2009;*36:2084–88]

Indirect tumor localization

- Correlation with surrogates
 - Spirometric measurements [Hughes et al Radiother Oncol 2009; 91: 336–41]
 - ✓ Surface fiducials [Baroni et al., Radiother Oncol 2000;54:21–27]

Guido Baroni, PhD

POLITECNICO DI MILANO

Respiratory correlated / compensated treatment planning and delivery: X-ray radiotherapy

(External) surrogates optical tracking and position correlation with inner anatomy is state of the art in photon therapy for:

- time resolved imaging for treatment planning
- breath-hold irradiation (motion suppression)
- respiratory gating (motion correlation, intermittent irradiation)
- <u>tumor tracking (motion correlation, continous irradiation)</u>

Lightweight reflective marker, distancecalibrated

Tumor tracking based on correlation models: the Cyberknife-Synchrony case

- Tumour tracking accuracy better than 1.5 mm [Kilby 2010] - Correlation errors > 5 mm with breathing irregularities

[Torshabi 2010]

Clinical effectiveness of tumor tracking (Cyberknife -Synchrony treatments)

(Riboldi et al, Lancet Oncol 2012)

Review

Real-time tumour tracking in particle therapy: technological developments and future perspectives

Marco Riboldi, Roberto Orecchia, Guido Baroni

From 4D X-ray to 4D hadrontherapy

Current status

- Respiratory gating applied clinically with passive scattering (ext-int correlation)
- First cases with ion-beam active scanning reported for HCC patients (HIT) (ext-int correlation)
- No tumor tracking attempted clinically

Greatest caution motivated by

- ✓ 4D CT artefacts (uncertainties)
- Interplay effects (active scanning)
- ✓ Range uncertainties

What is needed

- Robust artefacts-free treatment planning
- Accurate tumor localization (local models)
- Estimation of daily global anatomical changes

POLITECNICO DI MILANO

POLITECNICO DI MILANO

Motion monitoring in 4D CT based on **mono-dimensional signal**:

uncertainties in breathing phase detection

Additional contribution to motion artifacts (besides irregularities)

4D CT – multiple markers and data mining techniques

RPM phase

RPM amplitude

Multiple markers

(Gianoli et al, Med Phys 2011)

4D CT based on surface optical tracking: enrich information on rib cage kinematics

- Extract the 3D trajectory of non-correspondent surface points acquired with optical systems (deformable mesh registration) (*Amberg 2007*; *Schaerer 2012*)
- Synthesis of a multi-regional respiratory motion model for robust image sorting and/or for respiratory correlated delivery

Correlation with diaphragm motion (US) (median ± quartile)(5 subjects)

K-means PCA SOM - Principal Component Analysis (PCA) Pearson correlation - K-means clustering 0.90 ± 0.17 0.93 ± 0.06 0.91 ± 0.38 coefficient* - Self-Organizing Maps (SOM) Root-mean-square 0.15 ± 0.10 0.11 ± 0.06 0.20 ± 0.12 error*

4D CT based on optical measurements: combining points and surface detection

- Novel system under development/testing combining real-time point-based with surface based acquisitions with high spatial and temporal resolution for redundant external surrogates acquisition. Applications in:
- robust 4D CT (@CNAO early 2014)
- combined/selectable point/surface patient set-up verification /respiratory gating / tumor tracking

Internal surrogate: MI

Application of correlation models for **real-time tumor tracking** in particle therapy:

- **1. Experimental validation** with scanned beams in clinical like scenarios:
 - → <u>local correlation models</u>: acccurate target positioning and beam tracking against interplay effects
- 2. Development of **global 4D models**
 - \rightarrow <u>daily 4D CT</u> estimation to reduce beam range uncertainties

Correlation models in particle therapy

Commissioning of OTS / TCS integration:

- Lateral compensation (magnet steering in BEV)
- **Depth** compensation (dynamic wedge for energy adaptation)

(Fattori et al, TCRT, in press)

Accuracy of correlation models

Dose different wrt static irradiation

- Static irradiation = beam fixed, static target
 - \rightarrow Measurement of nominal delivered dose
- *'Interplay'* = beam fixed, taget moving
 - ightarrow Measurement of «motion blurred» dose

(Seregni et al, PMB, 2013)

Experimental set-up (CNAO, December 2012)

Robotic phantom

Custom moving phantom featuring correlated external and internal motion along an

✓ Films scanned with proton pencil beam (single square film, 60 mm side)

Dosimetric results (films)

* Field size: 6.3 and 6.9 mm (principal directions) respectively

POLITECNICO DI MILANO

- Local correlation models (target) experimentally assessed
- Need to evaluate WEL variations (dosimetric changes) outside the target

Global 4D model

adapt treatment planning 4D CT to the time of irradiation

Global 4D model: general framework

(Vandemeulebroucke et al. 2009; Fassi et al. 2013)

CBCT studies

(Fassi et al, IJROBP, in press)

CBCT study: sample traces

POLITECNICO DI MILANO

Total tracking error:

\rightarrow RMS error of tumor tracking in the CBCT projection plane

Global 4D model: can we predict a daily 4D CT?

Modeling test → intrinsic model errors DIR

Tracking test ______ _____ DIR "Testing 4D CT" "Training 4D CT (between MidP) DVF baseline Motion Phase Surface surrogate model extraction Amplitude ____¥____ Volume difference Geometric errors Estimated 4D CT Comparison WEL variations

Rigid alignment test

Tracking test

 \rightarrow tracking accuracy evaluation

Rigid alignment Test

 \rightarrow for comparison

Global 4D model: geometric results

Measurement		COM distance [mm]				Hausdorff distance [mm]				Dice Coefficient			
	Structure	GTV	Lungs	Trachea	Esophagus	GTV	Lungs	Trachea	Esophagus	GTV	Lungs	Trachea	Esophagus
Patient	Experiment												
P1	Modeling	0.40	0.42	0.36	0.50	0.31	0.49	0.31	0.21	0.90	0.99	0.94	0.97
	Rigid	4.70	3.66	3.36	4.39	1.61	2.56	1.55	1.89	0.57	0.89	0.67	0.57
	Tracking	1.58	0.78	1.01	0.84	0.63	0.64	0.51	0.34	0.80	0.97	0.88	0.91
P2	Modeling	0.51	0.15	0.46	0.21	0.27	0.28	0.24	0.15	0.92	0.99	0.97	0.98
	Rigid	2.30	2.49	1.28	1.07	0.84	0.90	0.48	0.41	0.78	0.97	0.94	0.92
	Tracking	1.82	1.05	1.98	0.96	0.64	0.62	0.58	0.40	0.82	0.98	0.90	0.93
P3	Modeling	0.13	0.14	0.34	1.19	0.12	0.22	0.23	0.24	0.99	0.99	0.96	0.96
	Rigid	1.28	1.68	3.73	2.63	0.51	1.62	1.66	1.23	0.91	0.95	0.73	0.76
	Tracking	0.87	2.78	2.19	2.09	0.38	1.32	1.12	1.23	0.93	0.96	0.79	0.76
P4	Modeling	0.52	0.15	0.45	0.36	0.32	0.21	0.20	0.11	0.90	0.99	0.97	0.99
	Rigid	3.93	2.63	1.57	1.75	1.75	1.15	0.58	0.47	0.45	0.69	0.89	0.87
	Tracking	1.26	0.41	0.65	1.17	0.56	0.36	0.31	0.33	0.80	0.99	0.94	0.92

✓ Tracking Test:

- Localization error (COM) = 1,4 mm (GTV), 1,3 ÷ 1,5 mm (OARs)
- Contour surface distance (Haussdorf) = 0,55 mm (GTV), 0,57 ÷ 0,53 mm (OARs)
- Volume overlap (Dice) = 0,83 (GTV), 0,87 ÷ 0,93 (OARs)

Global 4D model: HU difference

B) HU difference

Quantification of range variations

↓ <u>∆WEL calculation</u>

A) Mean absolute ΔWEL

B) Signed ΔWEL distribution

✓ Rigid alignment Test
| ΔWEL | = 1,6 ÷ 7,8 mm
mean(ΔWEL (GTV)) ≠ 0 mm
→ Systematic variations

✓ Tracking Test:
| ΔWEL | = 0,7 ÷ 1,4 mm
mean(ΔWEL (GTV)) ≈ 0 mm
→ NO systematic variations

- 1. Local correlation models validated experimentally in scanned particle therapy
 - **RMS tracking error** < 1.5 mm
 - few % dosimetric deviation wrt static irradiation
- 2. Global 4D models can predict anatomy changes (preliminary)
 - Results are patient dependent
 - Systematic WEL variations can be compensated

Motion compensated PET imaging

POLITECNICO

- ✓ Off-line PET-based treatment verification for moving target
 - reduced count statistics due to time delay before acquisition
 - reduced count statistics due to 4D acquisition

Ideal PET image

(NCAT phantom)

34

SW-MLEM

4D treatment verification

Motion compensated PET imaging: alternative strategies

✓ 4D MLEM (motion compensation through DIR in image domain)

4D-MLEM

- ✓ "4D Virtual PET" (Gianoli et al, TCRT, in press)
- Pre-reconstruction sinogram warping (anticipated motion compensation in sinogram domain)

4D Protonradiography

✓ Simulated 4D transmission imaging (image contrast through lung masking for lesion detection)

(courtesy of J. Seco)

(courtesy of MF Spadea)

4D eye motion monitoring (under development)

Infra-red eye tracking technique for real-time 3D clipless eye motion monitoring (Fassi et al. JBO, 2012)

Guido Baroni, PhD

POLITECNICO DI MILANO

Acknowledgments

POLITECNICO DI MILANO	fondazione	
Cart Cas ab	INFN Istituto Nazionale di Fisica Nucleare	
Chiara Paganelli	Marco Donetti	ł
Matteo Seregni	Luciano Capasso	C
Aurora Fassi	Flavio Marchetto	L
Andrea Pella		I
Giovanni Fattori	Alfredo Mirandola	
Chiara Gianoli	Mario Ciocca	
Marta Peroni	Roberto Orecchia	
Pietro Cerveri		
Marco Riboldi		
Riccardo Via	ULICE Union of Light Ion Centres in Europe	N

UniversitätsKlinikum Heidelberg	G S I
Katia Parodi	Christoph Bert
Christopher Kurz	Nami Saito
Julia Bauer	Robert Kaderka
Ilaria Rinaldi	Anna Costantines
	Marco Durante
	Centre Léon Bérari
	Joël Schaerer
	Mathieu Fernande

477 eidelberg Ionenstrahl-Therapie Centrum V

> istoph Bert ni Saito ert Kaderka a Costantinescu co Durante

Schaerer hieu Fernandes **David Sarrut**

Thank you

www.cartcas.polimi.it

