Recent results on direct Dark Matter searches

Marco Vignati INFN Sezione di Roma *Roma, 15/Nov/13*

source: TAUP2013 conference when not specified

Dark Matter

Planck Satellite arXiv:1303.5076

Dark matter particles should have the following properties:

- 1) Stable or long-lived
- 2) Neutral
- 3) Density = 0.3 GeV/cm³
- 4) Maxwellian distribution (v₀ ~ 220 km/s)

WIMPs (Weakly interactive massive particles) of mass
~ 100 GeV, are the "miracle" candidates: Neutralinos (χ)?

WIMP detection principle

Elastic scattering off nuclei, measure nuclear recoil energy E_{nr} :

Spin dependent (SD) or spin independent (SI) interaction:

For $m_{\chi} = 100$ GeV and A = 100:

- $\sigma_{SI} = 10^{-42} 10^{-44} \text{ cm}^2$
- Rate = $10^{-2} 1$ events / (kg day)
- E_{nr} = 0 25 keV

The WIMP signal (SI)

Exponential-like shape, increasing at low E (similar to many bkgs...)

Demands O(keV) thresholds and backgrounds close to zero.

All experiments operated in low radioactivity environments and deep underground.

Counting rate annual modulation

Earth velocity combines to solar system velocity in the galaxy.

Dark matter "wind" in the heart rest frame is modulated:

$$v(t) = v_{\rm sun} + v_{\rm orb}^{||} \cos[\omega(t - t_0)]$$

and affects the counting rate:

$$S(E,t) = S_0(E) + S_m(E) \cos[\omega(t-t_0)]$$

Distinctive modulation signal features:

$$T = 1$$
 year $t_0 = 2^{nd}$ June

Pro: model independent

Con: requires detector stability and bkg control.

Detection channels

The combination of different techniques allows one to discriminate between electron and nuclear recoils, and thus to reduce the β/γ background.

Energy calibrations are done with γ sources (electron recoils).

The relative calibration of nuclear recoils ($keV_{ee} \Rightarrow keV_{nr}$), the quenching factor (QF), must be known with accuracy

DAMA/LIBRA

25 Nal crystals, 9.70 kg each

- QF: Na (30%), I (10%)
- High radiopurity: ²³²Th and ²³⁸U (ppt), ⁴⁰K (<20 ppb)

DAMA/LIBRA - data analysis

Pulse shape cuts to reject PMT noise events:

Low energy calibration with ²⁴¹Am and ¹³³Ba, check with ⁴⁰K

DAMA/LIBRA - result

DAMA/LIBRA - checks

R. Cerulli at IDM2012

11

Source	Main comment	Cautious upper limit (90%C.L.)	
RADON	Sealed Cu box in HP Nitrogen atmosphere,	<2.5×10 ⁻⁶ cpd/kg/keV	
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield→ huge heat capacity + T continuously recorded	<10 ⁻⁴ cpd/kg/keV	
NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV	
ENERGY SCALE	Routine + intrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV	
EFFICIENCIES	Regularly measured by dedicated calibrations	<10 ⁻⁴ cpd/kg/keV	
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible	<10 ⁻⁴ cpd/kg/keV	
SIDE REACTIONS	sources of background Muon flux variation measured at LNGS	<3×10 ⁻⁵ cpd/kg/keV	
+ they cannot satisfy all the requirements of annual modulation signature DAMA phase: May 26±7 μ phase @LNGS: July 6±6			

CoGeNT

One 0.5 kg p-type point contact (PPC) HP-Germanium detector

Measure ionization only (QF: 20%):

No recoil identification.

Ultra low noise:

 10^{-38}

Threshold at 0.5 keVee!

CoGeNT - Surface events

Ionization at the surface experience a weaker electric field

• surface events exhibit slower rise time, and can be rejected (almost).

CoGeNT - Results

PRD 88, 012002 (2013)

CoGeNT check - Malbek

Majorana collaboration (Double beta decay) test of CoGeNT (spin-off of Majorana).

the same detector as CoGeNT but the same detector as CoGeNT bu

Preliminary results exclude CoGeNT, but no paper yet.

CoGeNT, the WIMP and DAMA

J.I. Collar, PRC 88, 035806 (2013)

CDMSII

The basic principle is essentially that of a standard Si particle tracker or high-purity Ge

CDMSII-Si - final result

CDMSII-Si - final result

Signal+bkg. favored against bkg. only hypothesis at 99.81% CL (3σ).

Comment from the collaboration: "We do not believe this result rises to the level of a discovery, but does call for further investigation."

CDMSII-Ge - Annual modulation

<u>ODECCT</u>

bolometers (phonon detectors):

- 1) detect also scintillation light to discriminate nuclear recoils
- 2) Multi-target: sensitive to different WIMP masses:

CRESST - setup

- 10 mK operating temperature.
- 18 modules:
 - ▶ 8 active 330g CaWO₄ crystals
 - 1 CaWO₄ bad resolution
 - 1 ZnWO₄ not well working
 - ▶ 10 CaWO₄ with light detector not working.
- Other 12 modules used to reject multi-hit events
- γ-calibrations with ⁵⁷Co and ²³²Th

CRESST - discrimination

67 accepted events in the 8 modules (730 kg days)!

Source: daughter nuclei emitted after decay off source material

40

4 0 0 10 110 23 Energy [keV]

100

120

140

CRESST - Sputtering?

Astropart. Phys. 36 (2012) 77

Possible explanation of the CRESST excess: sputtering from the crystal supports.

New run with reduced background from supports already started.

Status in the low-mass region

Xenon-100

- 161 kg LXe (34 kg fiducial volume), 225 days published so far.
- Dual phase TPC, detect scintillation (S1) and ionization (S2)
 - x,y and z (via S2-S1 time difference), and recoil discrimination via S2/S1 ratio

Xenon-100 - Results

Phys.Rev.Lett 109 (2012) 181301

27

Xenon-100 - Results

Phys.Rev.Lett 109 (2012) 181301

XENON - quenching factor

Phys.Rev.D 88 (2013) 012006

Uncertainty in the scintillation efficiency for nuclear recoils at low energy (Leff)

• affects the calibration (S1 \Rightarrow E_{nr}) of the detector.

LUX

Same technique as Xenon-100: Dual phase LXe TPC

	Xenon-100	LUX
Total/Active Volume [kg]	161/62	370/250
Fiducial volume [kg]	34	118
S1 Light Yield [PhE/keVee]	2.3 (field on)	8.8 (field off)
WIMP search region [keVnr]	6.6 - 30.5	~ 3 - 18
Published live time [day]	225	85

LUX - Results

LUX - Results

LUX - WIMP space

Where are we going?

