A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN

AWAKE Collaboration

Allen Caldwell Max-Planck-Institut für Physik

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- 1. Brief Motivation
- 2. Proton-driven plasma wakefield acceleration
- 3. Self-modulation approach
- 4. Outline of AWAKE experiment
- 5. What we will measure
- 6. Proposed location
- 7. Required resources from CERN
- 8. Responsibilities & resources of other participating institutes
- 9. Timeline & outlook

1. Brief Motivation

- 2. Proton-driven plasma wakefield acceleration
- 3. Self-modulation approach
- 4. Outline of AWAKE experiment
- 5. What we will measure
- 6. Proposed location
- 7. Required resources from CERN
- 8. Responsibilities & resources of other participating institutes
- 9. Timeline & outlook

Properties of the Interactions

e sı

cit d distances.

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by

Particle physicists are convinced there are more discoveries to come:

Many things not explained in the standard model:

- why three families
- matter/antimatter imbalance
- neutrinos and neutrino mass
- hierarchy problem/unification
- dark matter
- dark energy

Need to find ways to explore physics at higher energy scales in a laboratory environment.

New acceleration technology !

The Livingston plot shows a saturation ...

Practical limit for accelerators at the energy frontier: Project size and cost increasing with the energy ! New technology needed...

1. Brief Motivation

2. Proton-driven plasma wakefield acceleration

- 3. Self-modulation approach
- 4. Outline of AWAKE experiment
- 5. What we will measure
- 6. Proposed location
- 7. Required resources from CERN
- 8. Responsibilities & resources of other participating institutes
- 9. Timeline & outlook

Plasma Wakefield Acceleration

Original proposal (T. Tajima, J. W. Dawson Phys. Rev. Lett. **43** (1979) 267) considered laser acceleration (LWFA). Impressive steps taken in recent years as lasers have become more and more powerful. Gradients ca 100 GV/m demonstrated.

Series of experiments at SLAC using electron beams (PWFA) demonstrated that beam driven wakefield acceleration (P. Chen et al., Phys. Rev. Lett. 54 (1985) 693) is also a very attractive option. Gradients 50 GV/m demonstrated.

Our plan – use protons bunches to drive the wakefields.

Plasma Wakefield Acceleration

Original Proposal: T. Tajima and J. W. Dawson, Phys. Rev. Lett. 43 (1979) 267.

Plasma frequency depends only on density:

$$\omega_p^2 = \frac{4\pi n_p e^2}{m} \qquad k_p = \frac{\omega_p}{c} \qquad \lambda_p = \frac{2\pi}{k_p} = 1mm \sqrt{\frac{1 \cdot 10^{15} \text{ cm}^{-3}}{n_p}}$$

Produce an accelerator with mm (or less) scale 'cavities'

Laser Wakefield Acceleration

0

mrad

3

0.90

0.95

1.05

1.10

1.00

GeV

Just as predicted ...

Gradients >50 GV/m achieved !

3 orders of magnitude higher than RF cavities.

But – Acceleration is <u>DEPLETION-LIMITED</u> i.e., the lasers today do not have enough energy to accelerate a bunch of particles to very high energies

e.g.,

$$10^{10} \text{ electrons} \cdot 10^{12} \text{ eV} \cdot 1.6 \cdot 10^{-19} \text{ J/eV} = kJ$$

This is orders of magnitude larger than what is available today.

If use several lasers – need to have relative timing in the 10's of fs range Many stages, effective gradient reduced because of long sections between accelerating elements ...

Strawman design of a TeV LPA Collider

.....

[111]

Beam driven PWA

Space charge of drive beam displaces plasma electrons.

Space charge oscillations (Harmonic oscillator)

restoring force:

Plasma ions exert restoring force

Electric fields can accelerate, decelerate, focus, defocus

Plasma also provides super-strong focusing force ! (many thousand T/m in frame of accelerated particles)

Highlight: latest SLAC/UCLA/USC results (Nature 2007)

SLAC beam

- 42 GeV
- 3 nC @ 10 Hz
- focused to 10 µm spot size
- compressed to 50 fs

- Some electrons double their energy: from 42 to > 80 GeV
- E=50 GV/m over 0.8 meters

I. Blumenfeld et al., Nature **445**, 741 (2007)

Why not continue with electrons ???

There is a limit to the energy gain of a trailing bunch in the plasma:

$$R = \frac{\Delta T^{\text{witness}}}{\Delta T^{\text{drive}}} \le 2 \quad \text{T is the kinetic energy}$$

(for longitudinally symmetric bunches).

See e.g. SLAC-PUB-3374, R.D. Ruth et al.

This means many stages required to produce a 1TeV electron beam from known electron beams (SLAC has 45 GeV)

Proton beams of 1TeV exist today - so, why not drive plasma with a proton beam ?

Proton-Driven Wakefield Acceleration

Both laser-driven and electron-bunch driven acceleration will require many stages to reach the TeV scale.

We know how to produce high energy protons (many TeV) in bunches with population > 10^{11} /bunch today, so if we can use protons to drive an electron bunch we could potentially have a simpler arrangement single stage acceleration.

Linear regime $(n_b < n_0)$:

$$E_{z,\max} \approx 2 \text{ GeV/m} \cdot \left(\frac{N_b}{10^{10}}\right) \cdot \left(\frac{100 \ \mu\text{m}}{\sigma_z}\right)^2$$

Need very short proton bunches for strong gradients. Today's proton beams have

$$\sigma_z \approx 10 - 30 \text{ cm}$$

Magnetic bunch compression (BC)

Beam compression can be achieved:

- (1) by introducing an energy-position correlation along the bunch with an RF section at zero-crossing of voltage
- (2) and passing beam through a region where path length is energy dependent: this is generated by bending magnets to create dispersive regions.

To compress a bunch longitudinally, trajectory in dispersive region must be shorter for tail of the bunch than it is for the head.

6/23/09 14 G. Xia LPWA09 Workshop, Kardamili Greece, June 22-26, 2009

Phase space of beam

6/23/09

LPWA09 Workshop, Kardamili Greece, June 22-26, 2009 17

Simulation study

Plasma Wakefield Acceleration

Size of accelerator structure set by plasma density

A. Caldwell, K. Lotov, A. Pukhov, F. Simon, Nature Physics 5, 363 - 367 (2009)

- 1. Brief Motivation
- 2. Proton-driven plasma wakefield acceleration
- 3. Self-modulation approach
- 4. Outline of AWAKE experiment
- 5. What we will measure
- 6. Proposed location
- 7. Required resources from CERN
- 8. Responsibilities & resources of other participating institutes
- 9. Timeline & outlook

PWA via Modulated Proton Beam

Producing short proton bunches not possible today w/o major investment. Instead, modulate a long (SPS) bunch

Microbunches are generated by a transverse modulation of the bunch density (transverse two-stream instability). Naturally spaced at the plasma wavelength, and resonantly drive wakefields to large amplitudes. (N. Kumar, A. Pukhov, and K. V. Lotov, Phys. Rev. Lett. **104**, 255003 (2010)).

The modulation process develops over a distance of several meters. The wake phase velocity and strength of field vary

Using the same laser pulse for the electron photoinjector allows for precise phasing of the electron bunch and proton microbunches. 27

Phase velocity of the wake

To trap & accelerate electrons in the wake of the protons, it is important that the wake phase velocity matches the electron velocity. Initially, the gamma-factor is

 γ_{min} ~40

This is order of magnitude below that of the beam.

Requires that we inject electrons after the phase velocity has D_{i_s} stabilized.

Pukhov et al., Phys Rev Lett (2011)

Solution: Delayed Electron Injection

Electron bunch injected off-axis at an angle, so that it merges with the proton bunch once the modulation is developed and the phase velocity is high.

Electron injection needs to occur after modulation has completed. For single plasma cell experiment, we achieve this using side-injection.

- 1. Brief Motivation
- 2. Proton-driven plasma wakefield acceleration
- 3. Self-modulation approach
- 4. Outline of AWAKE experiment
- 5. What we will measure
- 6. Proposed location
- 7. Required resources from CERN
- 8. Responsibilities & resources of other participating institutes
- 9. Timeline & outlook

- 1. Merging of SPS proton beam & ionizing/seeding laser pulse
- 2. Schematic relative timing
- 3. SMI developing, electron bunch parallel to proton bunch
- 4. Acceleration sections
- 5. Laser pulse dumped & diagnosed
- 6. Electro-optical sampling diagnostic
- 7. Transition radiation diagnostics
- 8. RF electron gun
- 9. e/p bunch merging section
- 10. Electron spectrometer system

Table 1: Baseline parameters of the AWAKE experiment.

Parameter & notation	Value		
Plasma density, n_e	$7 imes 10^{14}\mathrm{cm}^{-3}$		
Plasma ion-to-electron mass ratio (rubidium), M_i	157 000		
Proton bunch population, N_b	3×10^{11}		
Proton bunch length, σ_z	12 cm		
Proton bunch radius, σ_r	0.02 cm		
Proton energy, W_b	400 GeV		
Proton bunch relative energy spread, $\delta W_b/W_b$	0.35%		
Proton bunch normalized emittance, ϵ_{bn}	3.5 mm mrad		
Electron bunch population, N_e	1.25×10^9		
Electron bunch length, σ_{ze}	0.25 cm		
Electron bunch radius at injection point, σ_{re}	0.02 cm		
Electron energy, W_e	16 MeV		
Electron bunch normalized emittance, ϵ_{en}	2 mm mrad		
Injection angle for electron beam, ϕ	9 mrad		
Injection delay relative to the laser pulse, ξ_0	13.6 cm		
Intersection of beam trajectories, z_0	3.9 m		

Plasma Requirements

- length $L \approx 10$ m.
- radius R_p larger than approximately three proton bunch rms radii or ≈ 1 mm.
- density n_e within the $10^{14} 10^{15} \text{ cm}^{-3}$ range.
- density uniformity $\delta n_e/n_e$ on the order of 0.2% or better.
- reproducible density.
- gas/vapor easy to ionize.
- allow for seeding of the SMI.
- high-Z gases to avoid background plasma ion motion [25].

Choice for first experiments: Rubidium vapor cell

- Density uniformity set by temperature uniformity of neutral vapor. Fraction of a degree achievable using oil bath
- Rubidium vapor sources available commercially
- Valve development started with industry

Discharge Cell (Instituto Superior Tecnico, Lisboa and Imperial College, London)

1 meter prototype at the IPP in Greifswald.

Electron Source

ASTeC, STFC Daresbury Laboratory, Warrington, UK

Merging of electron bunch with proton bunch achieved with dipoles around plasma cell.

- 1. Brief Motivation
- 2. Proton-driven plasma wakefield acceleration
- 3. Self-modulation approach
- 4. Outline of AWAKE experiment
- 5. What we will measure
- 6. Proposed location
- 7. Required resources from CERN
- 8. Responsibilities & resources of other participating institutes
- 9. Timeline & outlook

Measurement Plan

- 1. After commissioning the proton beam and plasma cell, start with demonstration of modulation of proton bunch.
 - a. OTR to demonstrate increase in transverse bunch size
 - b. Resolve radius modulation along bunch with streak camera
 - c. Coherent transition radiation at modulation frequency
 - d. Electro-optical sampling for direct field measurement
 - e. Transverse CTR distinguish SMI from hosing

- 1. After commissioning the proton beam and plasma cell, start with demonstration of modulation of proton bunch.
 - a. OTR to demonstrate increase in transverse bunch size
 - b. Resolve radius modulation along bunch with streak camera
 - c. Coherent transition radiation at modulation frequency
 - d. Electro-optical sampling for direct field measurement
 - e. Transverse CTR distinguish SMI from hosing

41

- 1. After commissioning the proton beam and plasma cell, start with demonstration of modulation of proton bunch.
 - a. OTR to demonstrate increase in transverse bunch size
 - b. Resolve radius modulation along bunch with streak camera
 - c. Coherent transition radiation at modulation frequency
 - d. Electro-optical sampling for direct field measurement
 - e. Transverse CTR distinguish SMI from hosing

2. After commissioning the electron beam and side-injection, demonstration of electron acceleration.

Electron Spectrometer

Simulation of scintillator screen shot from full simulation of electrons in plasma cell & tracking through spectrometer

Comparison of true electron energy spectrum with that reconstructed from captured screen image (simulation).

 Experiments with density steps and 2 plasma cells. Separate the SMI phase from the acceleration phase. Achieve large energy gains for electron bunches.

Simulations for LHC beam parameters A. Caldwell and K. V. Lotov, Phys. Plasmas 18, 103101 (2011).

Possibility for density step, either in single plasma cell or in double cell will be tried out in AWAKE experiment. Potential for very significant energy gains 10's-100 GeV with SPS beam.

Experiments with compressed SPS bunches – demonstration of 4. multi GeV/m gradients

- 1. Brief Motivation
- 2. Proton-driven plasma wakefield acceleration
- 3. Self-modulation approach
- 4. Outline of AWAKE experiment
- 5. What we will measure
- 6. Proposed location
- 7. Required resources from CERN
- 8. Responsibilities & resources of other participating institutes
- 9. Timeline & outlook

CERN NEUTRINOS TO GRAN SASSO Underground structures at CERN Access shaft PGCN SPS/ECA4 Excavated 55m TJ8 Concreted Decay tube (2nd contract) SPS tunnel protons TT41 Access galleries LHC/TI8 tunnel WAKE experiment Target chamber Service gallery LEP/LHC tunnel 140m Decay tunnel Proposed Site for AWAKE Experiment Hadron stop and first muon detector Connection gallery to TI8/LHC neutrinos /06 / 2003 to Gran Sasso CERN-AC-DI-MM

- 1. Brief Motivation
- 2. Proton-driven plasma wakefield acceleration
- 3. Self-modulation approach
- 4. Outline of proposed experiment
- 5. What we will measure
- 6. Proposed location
- 7. Required resources from CERN
- 8. Responsibilities & resources of other participating institutes
- 9. Timeline & outlook

Participating Institutes:

ASTeC, STFC Daresbury Laboratory Budker Institute of Nuclear Physics CERN

Cockroft Institute

Heinrich Heine University, Düsseldorf Instituto Superior Tecnico

Imperial College

- Ludwig Maximilian University
- Max Planck Institute for Physics
- Max Planck Institute for Plasma Physics Rutherford Appleton Laboratory University College London

University of Strathclyde DESY

Interested Institutes:

John Adams Institute for Accelerator Science Wigner Research Center for Physics

	Management Positions	Person	Institute
	Spokesperson	Allen Caldwell	MPP
	Deputy spokesperson	Matthew Wing	UCL
	Beam lines, experimental areas and infrastructure	Edda Gschwendtner	CERN
	Experimental aspects	Patric Muggli	MPP
	Theory & simulations	Konstantin Lotov	BINP
	Task Groups	Person	Institute
1	Metal vapor plasma cell	Erdem Öz	MPP
2	Helicon plasma cell	Olaf Grulke	IPP
3	Pulsed discharge plasma cell	Nelson Lopes	IC/IST
4	Proton and electron beam lines	Chiara Bracco	CERN
5	Experimental area	Edda Gschwendtner	CERN
6	Radiation protection	Helmut Vincke	CERN
7	Electron source	Tim Noakes	ASTeC/CI
8	Electron spectrometer	Simon Jolly	UCL
9	Optical sampling diagnostics	Patric Muggli	MPP
10	Simulations	Konstantin Lotov	BINP

- 1. Brief Motivation
- 2. Proton-driven plasma wakefield acceleration
- 3. Self-modulation approach
- 4. Outline of proposed experiment
- 5. What we will measure
- 6. Proposed location
- 7. Required resources from CERN
- 8. Responsibilities & resources of participating institutes
- 9. Timeline & outlook

- June 2012: Official CERN Study Project
 - Mandate to identify best site for the AWAKE facility and write a design report.
- 25 March 2013: Submit AWAKE Design Report to CERN management and SPS Committee
 - Use the CNGS facility for AWAKE (not West Area).
- 9-10 April 2013: SPSC Meeting
 - Very positive feedback; List of questions Answers sent back to referees
- Mid May 2013: several discussion with CERN management and finance group
 - Needed resources for AWAKE@CERN are fully included in the CERN Medium-Term Plan
 - AWAKE program has been stretched from 3 years to 5 years.
- 17-21 June 2013: Council week
 - MTP with AWAKE fully funded inside is approved.
- 25-26 June 2013: SPSC meeting
 - SPSC recommends AWAKE proposal for approval.
- 31 July 2013: IEFC meeting
 - Present detailed planning and manpower needs as agreed with various groups
- 28 August 2013: Research Board
 - Approval of the AWAKE experiment.

Time-scale for AWAKE as in the MTP

	202	13	2014	20	15	201	6	2017		2018
Proton beam- line		Study, Procure	Design, ement, Component p	preparation	Insta	illation	Commi	data taking		
Experimental area		Study, I Procure	Modification, C Design, ement, Component p	Civil Engine reparation	ering and	installation	ssioning			
Electron source and beam-line			Studies, design		Fab	rication		Installation	Commissio ning	data taking

Science Program (first three years after start of data taking):

- 1. Benchmark experiments first ever proton-driven plasma wakefields
- 2. Detailed comparison of experimental measurements with simulations
- 3. Demonstration of high-gradient acceleration of electrons
- 4. Develop long, scalable & uniform plasma cells; test in AWAKE experiment
- 5. Develop scheme for production and acceleration of short proton bunches

Goal: Design high quality & high energy electron accelerator based on acquired knowledge.

Summary

- Beam- and laser-driven wakefield experiments have shown the potential of plasmas for producing high gradients
- Protons are ideal drivers because of the large energy carried in a bunch
- Exploiting the self-modulation instability allows for immediate experimentation
- CERN SPS beam ideal tool to perform this accelerator R&D
- The AWAKE collaboration has the required expertise in both experimentation&simulation
- AWAKE will allow us to learn what is required to make a real accelerator based on proton-driven wakefield acceleration