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1. Brief Motivation



Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by @ d distances.
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Particle physicists are convinced there are more discoveries to come:

Many things not explained in the standard model:

* why three families
* matter/antimatter imbalance
* neutrinos and neutrino mass

* hierarchy problem/unification -

e dark matter
» dark energy

Need to find ways to explore
physics at higher energy scales
in a laboratory environment.

New acceleration technology !

Coupling Strengths of Fundamental Forces
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The Livingston plot shows a saturation ...
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Practical limit for accelerators at the energy frontier: Project size and

cost increasing with the energy ! New technology needed...



Teilchenenergie(gewinn) / eV

New Livingston Plot — Plasma Wakefield Acceleration
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2. Proton-driven plasma wakefield acceleration



Plasma Wakefield Acceleration

Original proposal (1. Tajima, J. W. Dawson Phys. Rev. Lett. 43 (1979) 267) considered
laser acceleration (LWFA). Impressive steps taken in recent years as
lasers have become more and more powerful. Gradients ca 100 GV/m
demonstrated.

Series of experiments at SLAC using electron beams (PWFA)

demonstrated that beam driven wakefield acceleration (P. Chen et al., Phys.

Rev. Lett. 54 (1985) 693) is also a very attractive option. Gradients 50 GV/m
demonstrated.

Our plan — use protons bunches to drive the wakefields.



Plasma Wakefield Acceleration
Original Proposal: T. Tajima and J. W. Dawson, Phys. Rev. Lett. 43 (1979) 267.
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Trailing pulse

Nonlinear regime

P J
Drive pulse h
J
E
J Electron bubble 9 %
o 3 Ch. Joshi, UCLA
.
Plasma frequency depends only on density:
2 W 27 1-101% cm—3
o _ 4mnge k,=-L )\ =>"—=1mm
Wp = Pe Pk n
P m p p

Produce an accelerator with mm (or less) scale ‘cavities’
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Just as predicted ...

Gradients >50 GV/m
achieved !

3 orders of magnitude
higher than RF cavities.

Laser Wakefield Acceleration

(Pxford
hysics.

GeV Beam Generation

312 um diameter and 33 mm length capillary

1 GeV beam: a, ~ 1.46 (40 TW, 37 fs)
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But — Acceleration is DEPLETION-LIMITED

i.e., the lasers today do not have enough energy to accelerate a
bunch of particles to very high energies

e.g.,
109 electrons - 10? eV - 1.6 - 107 J/eV = kJ

This is orders of magnitude larger than what is available today.

If use several lasers — need to have relative timing in the 10’s of fs range

Many stages, effective gradient reduced because of long sections
between accelerating elements ...
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' Strawman design of a TeV LPA Collider

Injector
Plasma Channel
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Beam driven PWA

Space charge of drive
beam displaces
olasma electrons. ===

driving force:

Plasma ions exert
restoring force

restoring force:

é
electron
beam

Electric fields can accelerate, decelerate, focus, defocus

Plasma also provides super-strong focusing force !

(many thousand T/m in frame of accelerated particles)

Space charge oscillations
(Harmonic oscillator)
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Highlight: latest SLAC/UCLA/USC results
(Nature 2007)
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Why not continue with electrons ??7?
There is a limit to the energy gain of a trailing bunch in the plasma:

ATWitness
R = —— < 2 T is the kinetic energy
ATdrlve
(for longitudinally symmetric bunches). See e.g. SLAC-PUB-3374, R.D.

Ruth et al.

This means many stages required to produce a 1TeV electron beam
from known electron beams (SLAC has 45 GeV)

Proton beams of 1TeV exist today - so, why not drive plasma with a
proton beam ?

17



Proton-Driven Wakefield Acceleration

Both laser-driven and electron-bunch driven acceleration will require
many stages to reach the TeV scale.

We know how to produce high energy protons (many TeV) in bunches
with population > 10*/bunch today, so if we can use protons to drive
an electron bunch we could potentially have a simpler arrangement -
single stage acceleration.

Linear regime (n,<n,):

N 1 :
E, max ~ 2 GeV/m - ( b ) , ( 00 Mm)

1010 o,

Need very short proton bunches for strong gradients. Today’s proton
beams have

o, ~ 10 — 30 cm

18



Magnetic bunch compression (BC)

0 Beam compression can be achieved:
(1) by introducing an energy-position correlation along the bunch with
an RF section at zero-crossing of voltage
(2) and passing beam through a region where path length is energy dependent:
this is generated by bending magnets to create dispersive regions.
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Head (delay) — center energy trajectory

"""""""" higher energy trajectory
0 To compress a bunch longitudinally, trajectory in dispersive region must be

shorter for tail of the bunch than it is for the head.

6/23/09 G. Xia LPWAO9 Workshop, Kardamili
Greece, June 22-26, 2009



Phase space of beam

0,03 T T T T T i T T T T
0,02 RF phase: -102 degree | -
i 2600 cavities i
final energy is 986.487 Ge
0,01} total length of BC 4131 m | 4
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See A. Caldwell, G. Xia et al., Preliminary study of proton driven plasma wakefield acceleration, Proceedings of
PACO09, May 3-8, 2009, Vancouver, Canada

6/23/09 LPWAOQO9 Workshop, Kardamili 17
Greece, June 22-26, 2009
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Simulation study

Assume proton bunch compression
solved !

Quadrupoles used
to guide head of

driving bunch\

________________________________

A. Caldwell, K. Lotov, A. Pukhov, F. Simon
Nature Physics 5, 363 - 367 (2009)

_________________________________
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Plasma Wakefield Acceleration
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Energy
1TeV

protons

electrons

K. V. Lotov, Phys. Rev. ST Accel.
Beams 13, 041301 (2010).
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3. Self-modulation approach



PWA via Modulated Proton Beam

Producing short proton bunches not possible today w/o major
investment. Instead, modulate a long (SPS) bunch
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Microbunches are generated by a transverse modulation of the bunch
density (transverse two-stream instability). Naturally spaced at the
plasma wavelength, and resonantly drive wakefields to large
amplitudes. (N. Kumar, A. Pukhov, and K. V. Lotov, Phys. Rev. Lett. 104, 255003 (2010)).
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The modulation process develops over a distance of several
meters. The wake phase velocity and strength of field vary

2 -
L=0 m laser pulse (a)

g Plasma Neutral gas
proton beam

m

Using the same laser pulse for the electron photoinjector allows for
precise phasing of the electron bunch and proton microbunches.



Phase velocity of the wake

To trap & accelerate electrons in
the wake of the protons, it is Pukhov et al., Phys Rev Lett (2011)
important that the wake phase
velocity matches the electron
velocity. Initially, the
gamma-factor is

(Vo =€)/ ¢, x10 (b)

YminN 40

This is order of magnitude below
that of the beam.

Requires that we inject electrons
after the phase velocity has 0"81‘9,70
stabilized.

Distance behind
head of bunch, in A

September 11, 2013 A. Caldwell - Columbia



Solution: Delayed Electron Injection

Pulsed valve Dipole
magnet
\Electrons
50
SLESTE B e
Neutral gas Protons + Laser

Electron bunch injected off-axis at an angle, so that it merges with the
proton bunch once the modulation is developed and the phase velocity
is high.

September 11, 2013 A. Caldwell - Columbia



Electron injection needs to occur after modulation has completed. For
single plasma cell experiment, we achieve this using side-injection.

—2.85 2.8 275 2.7 265 2.6 255

0.4 -

Simulations indicate can _
capture up to 40% of electron 03
bunch this way.

0.2

0.1
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4. Outline of AWAKE experiment
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Table 1: Baseline parameters of the AWAKE experiment.

Parameter & notation Value
Plasma density, n. 7 x 10"* cm™3
Plasma ion-to-electron mass ratio (rubidium), M; | 157 000
Proton bunch population, NV, 3 x 101
Proton bunch length, o, 12 cm
Proton bunch radius, o, 0.02cm
Proton energy, W} 400 GeV
Proton bunch relative energy spread, 6 W;, /W, 0.35%
Proton bunch normalized emittance, €, 3.5 mm mrad
Electron bunch population, /V, 1.25 x 10?
Electron bunch length, o 0.25cm
Electron bunch radius at injection point, o, 0.02 cm
Electron energy, W, 16 MeV
Electron bunch normalized emittance, €., 2 mm mrad
Injection angle for electron beam, ¢ 9 mrad
Injection delay relative to the laser pulse, &g 13.6cm
Intersection of beam trajectories, 2 3.9m




Plasma Requirements

— length L ~ 10 m.

— radius I?;, larger than approximately three proton bunch rms radii or ~ 1 mm.
— density n. within the 10'* — 10 cm ™3 range.

— density uniformity én. /n. on the order of 0.2% or better.

— reproducible density.

— gas/vapor easy to ionize.

— allow for seeding of the SMI.

— high-Z gases to avoid background plasma ion motion [25].

Choice for first experiments: Rubidium vapor cell

34



>449K >A444K

450K 445K

Delevoped at MPP

- Density uniformity set by temperature uniformity of neutral vapor.
Fraction of a degree achievable using oil bath

- Rubidium vapor sources available commercially

- Valve development started with industry

35



Discharge Cell

(Instituto Superior Tecnico, Lisboa and Imperial College, London)

vacuum discharge plasma
'
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R&D for long, uniform cells

Helicon Cell
(Max Planck
Institute for Plasma
Physics)

1 meter prototype at the IPP in Greifswald.
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EIectron Source

Quadrupole

|
Magnet Horizontal and

Sllt

YAG Booster Linac
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Support lon Pump

ASTeC, STFC Dg?ggbury Laboratory, Warrington, UK

Merging of electron bunch with
proton bunch achieved with
dipoles around plasma cell.
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\g t \

Horizontal coordinate [m]
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0.2t

Parameter Nominal value
Beam Energy 10 — 20 MeV
Energy Spread (rms) < 1%

Bunch Length 0.3 —10ps

Laser / RF Synchronization 0.1ps
Synchronization to Experiment | 0.1 ps

Free Repetition Rate 10Hz
Synchronized Repetition Rate | 0.03 Hz
Focused Transverse Size < 250 pm
Angular Divergence < Jmrad
Normalized Emittance 0.5 mm mrad
Bunch Charge 1 —1000pC
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5. What we will measure



Measurement Plan

Schematic for

... incoherent TR
1. After commissioning the proton beam

and plasma cell, start with demonstration .,,,,,,,,,.
of modulation of proton bunch. \
a. OTR to demonstrate increase in / \
transverse bunch size
b. Resolve radius modulation along ﬁ}
bunch with streak camera 237> Gl
c. Coherent transition radiation at Filter ?%
modulation frequency

Broadband
Detector

Real-time ~
Oscilloscope Qé)

(Developed at MPP)



1. After commissioning the proton beam and plasma cell, start with
demonstration of modulation of proton bunch.

d. Electro-optical sampling for direct field measurement

n

I L
Time

Time Time
Trigger
L. D Intensity L.D ‘
11 Modulator 2072
DCF = N DCF e
Femtosecond  -30ps/nm EDFA Wavelength- Polarisation- EO- Polarizer  (Raman-pumped) Photo Real-Time
Pulse- Filter Rotator Crystal -3000ps/nm Detector Oscilloscope
Laser 1550nm
T, =100fs
Linear
Polarization
M = 1+D,/D, m

Proton-
Bunch
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1. After commissioning the proton beam and plasma cell, start with
demonstration of modulation of proton bunch.

e. Transverse CTR —distinguish SMI from hosing

Electro-optic
Sensors — Conducting Foil
y |
|
.\ Optical Transition
Modulated ‘ Transygrse Co'he.rent Radiation Cone
Transition Radiation

Proton-beam

¥ o o(o(<

Discs

WG CCCCCe

A. Pukhov, T. Tickmantel PRSTAB 15, 111301 (2012) "\
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2. After commissioning the electron beam and side-injection,
demonstration of electron acceleration.

Scintillator Screen

\
Electron spectrometer Cgeﬁ rotons
system (UCL, CERN) &R

Electrons +
Protons

Plasma cell




Electron Spectrometer

Simulation of scintillator
screen shot from full
simulation of electrons in
plasma cell & tracking
through spectrometer

1150 1200 1250 1300
X pixels

— Actual
600} | — Measured

(o))
o
o

Comparison of true electron
energy spectrum with that
reconstructed from captured
screen image (simulation).
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3. Experiments with density steps and 2 plasma cells. Separate the
SMI phase from the acceleration phase. Achieve large energy gains
for electron bunches.

Simulations for LHC beam parameters A. caldwell and K. V. Lotov, Phys. Plasmas 18, 103101 (2011).

@) 1.22 stepped-u ()
§ 1_0E 1Y p
p /" |on, ¢ 0.8-
% 0.6
g ]
N 0.4-
= m ] )
02 uniform
. 0 - ‘ ‘ ‘ ‘ ‘
z 0 20 40 60 80 100
Z, m

Possibility for density step, either in single plasma cell or in double cell
will be tried out in AWAKE experiment. Potential for very significant
energy gains 10’s-100 GeV with SPS beam.
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4. Experiments with compressed SPS bunches — demonstration of

multi GeV/m gradients

Bunch rotation

Sudden
voltage
increase

Long-term: investigate ab-initio
designs for short proton bunch
accelerators.

Investigate what can be
achieved by also tuning pre-SPS
accelerator parameters.

.
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Bunch length (ns)

-
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Already tried out in SPS — it works !
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6. Proposed location






CERN NEUTRINOS TO GRAN SASSO

Underground structures at CERN Access shaft
PCC SPS/ECA4

U Excavated
B Concreted
I Decay tube

(2nd contract)

,06 /2003
CERN-AC-DI-MM
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Proton beam line
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Present CNGS Layout (end of the line) Rea rra nge feW magnets at end
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8. Responsibilities & resources of other participating institutes



Participating Institutes:
ASTeC, STFC Daresbury Laboratory
Budker Institute of Nuclear Physics
CERN

Cockroft Institute

Heinrich Heine University, Diisseldorf
Instituto Superior Tecnico

Imperial College

Ludwig Maximilian University

Max Planck Institute for Physics

Max Planck Institute for Plasma Physics |

Rutherford Appleton Laboratory
University College London
University of Strathclyde

DESY

Interested Institutes:

John Adams Institute for Accelerator
Science

Wigner Research Center for Physics

A TWALKE

Management Positions Person Institute
Spokesperson Allen Caldwell MPP
Deputy spokesperson Matthew Wing UCL
Beam lines, experimental areas and infrastructure | Edda Gschwendtner | CERN
Experimental aspects Patric Muggli MPP
Theory & simulations Konstantin Lotov BINP
Task Groups Person Institute

1 Metal vapor plasma cell Erdem Oz MPP

2 Helicon plasma cell Olaf Grulke IPP

3 Pulsed discharge plasma cell Nelson Lopes IC/IST

4 Proton and electron beam lines Chiara Bracco CERN

5  Experimental area Edda Gschwendtner | CERN

6  Radiation protection Helmut Vincke CERN

7  Electron source Tim Noakes ASTeC/CI

8  Electron spectrometer Simon Jolly UCL

9  Optical sampling diagnostics Patric Muggli MPP

10  Simulations Konstantin Lotov BINP
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9. Timeline & outlook



June 2012: Official CERN Study Project
— Mandate to identify best site for the AWAKE facility and write a design report.
25 March 2013: Submit AWAKE Design Report to CERN management and SPS Committee
— Use the CNGS facility for AWAKE (not West Area).
9-10 April 2013: SPSC Meeting
— Very positive feedback; List of questions — Answers sent back to referees
Mid May 2013: several discussion with CERN management and finance group
— Needed resources for AWAKE@CERN are fully included in the CERN Medium-Term Plan
— AWAKE program has been stretched from 3 years to 5 years.
17-21 June 2013: Council week
—  MTP with AWAKE fully funded inside is approved.
25-26 June 2013: SPSC meeting
— SPSC recommends AWAKE proposal for approval.
31 July 2013: IEFC meeting
— Present detailed planning and manpower needs as agreed with various groups

28 August 2013: Research Board
— Approval of the AWAKE experiment.



Time-scale for AWAKE as in the MTP

2013 2014 2015 2016 2017 2018

Proton beam- Installation

line

Modification, Civil Engineering and installation

3uluoissiwwo)

Experimental
area

Electron
source and
beam-line

Fabrication Installation

Suiu
olSSIWwo)

Science Program (first three years after start of data taking):
Benchmark experiments — first ever proton-driven plasma wakefields
Detailed comparison of experimental measurements with simulations
Demonstration of high-gradient acceleration of electrons

Develop long, scalable & uniform plasma cells; test in AWAKE experiment
Develop scheme for production and acceleration of short proton bunches

Lk wn e

Goal: Design high quality & high energy electron accelerator based on acquired
knowledge.
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Summary

Beam- and laser-driven wakefield experiments have shown the
potential of plasmas for producing high gradients

Protons are ideal drivers because of the large energy carried in a
bunch

Exploiting the self-modulation instability allows for immediate
experimentation

CERN SPS beam ideal tool to perform this accelerator R&D

The AWAKE collaboration has the required expertise in both
experimentation&simulation

AWAKE will allow us to learn what is required to make a real
accelerator based on proton-driven wakefield acceleration



