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The Universe can be considered our best laboratory for the

understanding of the fundamental interactions.

So one can learn about fundamental physics via the study of the large
scale Universe.
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Dark Mysteries (1)

"Expected" Galactic Rotation Speeds

Astrophysical objects do not appear to move
according to Newton law of gravitation.

Evidence of this behavior have been found on:

.®- galactic scale (flattening of rotation curves),

- local cluster scale (motion of the galaxies),

.- supercluster scale (motion of the clusters).

Rotational Velocity (km/s)

The missing mass has been called Dark Matter.
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The expansion rate of the Universe does not decrease as GR predicts.
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Can we deal with the
Dark Menace?

Change in the

New Fields
(GGeometry

-»- X-essence, * k -»- Averaging

. Phantom fields, Dark Sector -» Tolman-Bondi

- Strange matter -# Special Solutions

Change the Law of At least on
(Gravitation large scales!

.f)—- -‘./—'- rro;-;—-' —



HOW to change gravity?

There are many different ways to modify Einstein’s theory. Some

popular models are:

& Scalar Tensor Gravity A= % / d*z\/—g [F(qb)R + %vaqbv% —V(¢)

& Higher Order Gravity A= / d*zv/—g[f(R, R, R" ,OR...)]

&+ Horava-Lifschits A= / N d°x dt\/g {Oé(Kinij —AK?) — V}

& Others (TeVeS, MOND, etc.)




WHY do we study these models?

& 'They are often recovered from very fundamental schemes
(e.g. M-theory, Supergravity, Renormalized theories of

gravitation);

& They are known to reproduce in cosmology cosmic
acceleration;

& They are known to alter the dynamics of galaxies and

clusters.




Complications...

A problem in the study of the astrophysics and cosmology of
these theories is that they often present serious technical
problems. For example:

& their equations are often highly non linear;

& their equations can be of order higher than two;

Therefore a major part of the research in this sector is devoted
to the development of techniques able to overcome these
problems.




In the past 10 years I have been developing tools to deal with
these theories. Two of them have been particularly successtul:

& The dynamical systems approach

& The covariant approaches (1+3 and 1+1+2)

These methods are based on a simple idea: Translation.
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Dynamical Systems Approach

: Autonomous system
Cosmological Y

of first order

Equations : : :
4 differential equations

So that:

# TFixed Points (FP) —— Particular exact solutions;
& Stability of the FP —— Relation of the solutions with general solutions;

©  General orbits —— Features of the general solution.
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The method consists of three basic steps:

1. Define suitable dimensionless variables including a time variable
(logarithmic time);

2. Write the cosmological equations above as an autonomous system

of first order differential equations;

3. Use the standard dynamical system theory to achieve a semi-
quantitative description of the evolution of these models (fixed
points, their stability, phase space).
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Covariant Approaches

o
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In the two covariant approaches:

AR

Simpler set of
Propagation and
Constraint equations
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(Gravitational Field
Equations
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In particular:

® 1+3 approach they are optimized for cosmology;
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® 1+1+2 approach they are optimized for astrophysics.
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Covariant Approaches

The use of both these formalisms has many advantages:

@® The variables are covariant and with easy physical
interpretation;

® Can be used to investigate both the background and the
perturbations;

@® Can be adapted to alternative gravity:.
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Dynamical Systems

Approach



FLRW F(R) cosmology

Let us consider, as an example, f(R)-gravity

e / B o/ [f(R) + Lom] |

In homogeneous and isotropic cosmologies the field equations reduce
to the system:
1 (1 3 |
= T {5 [f'R—f]+f —3Hf + pm} :

[ (i Y
ol S—f{§[fR—f]—3Hf +Mm} ,
fom + SH(Um "|'pm) = U
We will use the Dynamical System Approach to analyze these

equations.

H? +
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We define the general dimensionless variables (single fluid case):

I R f u k
V=% *Tepm i

T =

_f/Ha :Sf/HQ’ a2 H?2 3

and the logarithmic time
N =|lnal.

In the multifluid case we have a different variable Q for every different
fluid.

The dimension of the phase space is reduced when

S —aR= f(R) =R

f/




DSA for a general FOG

2. The cosmological equations are equivalent to

%:@—ﬁ—I—QK—FQZ)—I——I—y—l—l)—l-@—Sw—l),
jjg\’/ y+2K+@

jjf 'K—x+2y+4 @‘

jj\)[ @QK—x+2y 3w + 1

Zf\(/ @2K+2y—|—2)

with the constraint

L= = =5 = 24N

Here the function “€” ensures the positivity of our time coordinate.




DSA for genera I

An important part of the system above is the function

2 <dlogf’>1 M=

dlocR) — Rf"’

In order to obtain a closed system on has to express this function in terms

of the dynamical variables....

...but this is far from a trivial task!

In fact:

B The operations involved to obtain this relation might be non trivial e.g.
a transcendental form of f(R).

B This transformation might have a non trivial dominion and this would
imply constraints on the phase space
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DSA for a general |

3. Once the system is closed the standard dynamical system theory

allows to:

{& find fixed points i.e. particular exact solutions:

H:ozHQ, o — == -t =7

: 3(1 + w)

MUm — — Hm
ot [

{3 find their stability i.e. the relation of the above solutions with the

general integral !

{3 have an idea of the global properties of the phase space i.e. the '

ey rw T yw

behavior of the general integral

Let us now consider an example.....
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Let us consider, for example
A = / d*z/—g [xR" + Lu]

Using the variables above we obtain

d 4
il (—2x2—|—%—|—ﬂx—2x+—y—2y—3wQ—|—Q) ,

W_g T n

dy 1 Y

o _9 2(— 1) 20| |
dN yg{(n_l >x+ n+ o }
df) 2y

— = —eQ( -3w-— ]

N € (?)w 3:1:+n+ ),

l+x4+y+ K—-—Q =0,

note that this case is degenerate.

T —————— R — R e . = e = —w = =



Point Coordinates (z,y, 2) Scale Factor
A [0,0,0] a — CLO(t—to)
B [—1,0,0] a = ag(t —t9)/2 (only for n = 3/2)
c [
kt :
N i e
E [—1 — 3w, 0, —1 — 3uw] a = ag(t — to)
E [l = &, 0,2 — 3w a = ao(t —to)/? (only for n = 3/2)
G [_3(n—1)(1+w) (n—l)[4n—23(w—|—1)]
n / 2n !
n(13—|—9w)—2n;£42—|—3w)—3(1+w)-‘ p - t%
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An Example

In terms of the phase space one schematically has

)

1.36 <n < 1.5 /(?')
C
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i.e. one has a smooth transition between Friedmannian cosmologies
and dark energy eral




Covariant

Approaches

(1+3)



1+3 Covariant Approach

Given the path

of an observer




1+3 Covariant Approack

From the time-like flow u*we construct
the projection onto surfaces orthogonal to

the flow: hgp = Gap + UqUp .
Three-volume form: Mabc = Udndabc.

Covariant convective derivative and

projected derivative on scalar:

f: uavaf @af = hbavbf

P S T —— — — —————— -



Kinematics of u® gives geometry of congruence of flow lines:

acceleration expansion shear vorticity
Valp = —Uglpy + §@ha,b T Ogb T Wab

Other relevant quantities can be defined using the Weyl tensor.

The total energy-momentum tensor can be decomposed relative to u®

1vVing: o ’ o . o
giving Ttbt - ,ut tuaub _|_pt tha,b 4 QC]fatUb) _I_ngt

a

We can then give a set of propagation and constraint equations for

these quantities. Which are very complicated...

We can now treat any space times with these equations.
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Linearization

We will focus , however, their linearized version...

I )
i--’-’." ///u~c‘ /,L// “'f H,u,nyj\,/

Variavles that vanish in
chosen vackground are O(1)
and Gl1.

O + 102 +aha® — 2w — Vi + tglh® + 3 (p'°* + 3p*t) = 0

@ L %@2 e @a,&a NG %(NtOt 1L 3ptot) — 0

( 1 N u«' 1, 1,
u(,b' uL /'1// ‘ [ 42 u(«
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The FLRW-linearized propagation equations are

"7 . I, 1 1
O+ 562 — g = = T = ==l Bl

2 2

: 2 1 .
Wiay T §@w“ + §Curlua =0,

: 2 i i
O (ab) T §@0ab + Eap — V(aUp) = 5Mab »

. [ .
E(ab) - @Eab b CurlHab 5 §(Nm + pm)gab

1 L 1~ 1
B _§(lu —l_p)o_ab Ll §7T(ab> _ §v(aQb> = é@ﬂab ;
: 1

Hapy + OHgp + curlEyy, = §Curl7rab '




1+3 Covariant Equations

The FLRW-linearized constraint equations are

Vew, =0,
- 9 _
Vo, — curlw, — §Va@ = —q, ,

curlo,p + @W""b) — H,;, =0,

- ~ 1~ | 1
b b
Ha:__ a o Val — o a
V°E., — SV — |o, H] 2V7Tb+3V v 3@q
1

Ve — (7 —5eurlgq + (4 + p)wa




The matter conservation equations are

/l+@GQa:_@(U‘|’p)a

. = ~ 4 .
9(a) _I_vap_l_vbﬂ-ab - _g@CIa o (M+p)ua :

These equations are equivalent to the linearized gravitational field
equations, but are expressed in terms of quantities which have a clear
physical meaning.




: Covariant (Gauge P
1+3 Covariant

Equations

perturbations

The natural set of inhomogeneity variables are:

D" = 3

a m

Ve VP Z.,=58V,0. C,=SV,R.

together with other variables able to capture the additional degrees
of freedom of the theory we are analyzing.
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Extracting the scalar modes

Pancake Spherical
formation ik clumping
—
7
T - sy —
formation . i
N\ e/ C =SV°C,, Z=8VZ,
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To simplify the resolution of the perturbations equations it is common
to exploit an

Using the covariant harmonics defined by

2
V Q_— —ﬁ ]

where k* =1/X is the wavenumber and @ = 0, we can expand every
first order quantity as

= ZX(k)(t) Q(k)




Let us consider the case of f(R)-gravity

ot / do/=g[f(R) + L] |

I'he natural set of inhomogeneity variables are:

pm = 2

a IU/m

Vo™, Z.,=2S8V,0. C,=SV,R.

R, = SV,R. ®. = SV,R.

Let us see what the perturbation equations look like...




The full first order equations are too long to be given in full, but it is
useful to look at the second order ones in their harmonically
developed form:

; 2 B k2 2wROf"  (3w®—1)p
il fodion el f<3) k) (w+1)Of" .,
F'R® + (Of +2Rf) R® — i f”+ @2 " (w4 1) 7 = 2 (R 4 3T
37 2 f 6 M p
f/ B @f”2 _RrG _efr®p _ 4)R2 (k) —
6f’f + R 67 Rf fYR— "R R
1 w : 7 . . (w—1)Rf"
e (3) P2 R Rygpr | 1" 1" A(k) . A(k) .
[3<3w e (PO + Rty 4 e+ ) | af) - DR A




Rn gravity Perturbations

Let us apply these equation R” gravity. In the long wavelength limit

the equations in the quasi-friedmann phase admit an exact solution

S = Syt

Am — Klt_l -+ tha+|wzo -+

| . -
The perturbations can grow even in a accelerating expanding

backgrounds!!




Rn gravity Perturbations

Looking at the perturbation spectrum...
logyo P(k)

—————

"

Small Size

Objects




Covariant

Approaches

(1+1+2)



1+1+2 Covariant Approach

This formalism is a further specialization of the 1+3 approach:

e.g. in the case of
spherical symmetry




* From the spacelike surfaces we single out a special direction e,,.

Gab = —UgUp + €q€p + Ngp
* The projected derivative is split accordingly:

&a“bc..d — ef@fwa“bc..d 5f¢a..bcud — NabegthdeNf]@gwngj .

* Kinematics of ¢ gives geometry of the spatial 2-hypersurfaces:

- 1
Vaeep = eqap + §¢Nab = CEaup =t Lot -

* All the 1+3 quantities can be further split in terms of the projectors

above
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1+1+2 Covariant Approach

& Considering spherically symmetric metrics the non trivial

variables reduce to

A? @7¢7€7 Z7Q7E7H7M7P7H7Q

w Scalar Equations
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1+1+2 Covariant Approach

The general equations for static spherically symmetric metrics read

1
- A+ @A+ S (nt3p) .
with the constraint

1 1
OZ—AQb—F §(,LL—|—3p)—5—|—§H




1+1+2 f(R)-gravity

In the case of f(R) gravity

P / oG [f(R) + L] |

the above equations, in vacuum, become:
¥ L S
Flo+6(50-A)| = 3R - 31
+f"X (¢ +2A)
I A 1 1 / 7
f'lA+AA+9)| = <f = SRF — f'XA,

R=X,
A 1 2
f//X:_ng/+gf_f”/X2_X(¢_|—A)fN-




These equations can be used to find exact solutions, but also to

understand better general properties of these theories.

For example the structure of the equations reveals that

Birkhoff e
Theorem 0 <\ =0

Which means that cosmological constant and a linear term are

crucial to avoid e.g. gravitational monopole radiation.
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There are many possible future developments of these research lines:

£ Dynamical Systems Approach can be further refined and
potentiated;

£ Study of Structure Formation and Cosmic Microwave Background

with 1+3 approach;

D e - — —— - - ——— —

& Study of Relativistic Astrophysics with 1+1+2 approach;

& These tools can be applied to any other modification of Einstein

theory might be proposed in the future.




