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Microscopic and Macroscopic

So one can learn about fundamental physics via the study of the large 
scale Universe.

Cosmology!
Astrophysics

Very Large scales Very Small scales

Fundamental 

Interactions

The Universe can be considered our best laboratory for the 

understanding of the fundamental interactions.



Dark Mysteries (I)

Astrophysical objects do not appear to move 
according  to Newton  law of gravitation.#

Evidence of this behavior have been found on: #

 galactic scale (flattening of rotation curves), #

 local cluster scale (motion of the galaxies), #

 supercluster scale (motion of the clusters).#
!
The missing mass has been called Dark Matter.#



Dark Mysteries (II)

+ }The expansion rate of the Universe does not decrease as GR predicts.



Can we deal with the  
Dark Menace?

Dark Sector

Change the Law of 
Gravitation

New Fields#

 X-essence,#
 Phantom fields,#
 Strange matter

Change in the 
Geometry

 Averaging#
 Tolman-Bondi#
 Special Solutions

At least on 
large scales!



HOW to change gravity?

Scalar Tensor Gravity #

Higher Order Gravity     #

Hořava-Lifschits#

Others (TeVeS, MOND, etc.)

There are many different ways to modify Einstein’s theory. Some 
popular models are:
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WHY do we study these models?

They are often recovered from very fundamental schemes 
(e.g. M-theory, Supergravity, Renormalized theories of 
gravitation);#

They are known to reproduce in cosmology cosmic 
acceleration;#

They are known to alter the dynamics of galaxies and 
clusters.



Complications...

their equations are often highly non linear;#

their equations can be of order higher than two;#

Therefore a major part of the research in this sector is devoted 
to the development of techniques able to overcome these 
problems.

A problem in the study of the astrophysics and cosmology of 
these theories is that they often present serious technical 
problems. For example:



...and Clever Solutions 
In the past 10 years I have been developing tools to deal with 
these theories. Two of them have been particularly successful:#

The dynamical systems approach!

The covariant approaches (1+3 and 1+1+2)

fermarsi per andare a 

fare la spesa 
stop to go shopping

These methods are based on a simple idea: Translation. 



Dynamical Systems Approach

So that:#

Fixed Points (FP)           Particular exact solutions;#

Stability of the FP          Relation of the solutions with general solutions;#

General orbits          Features of the general solution.  

Cosmological #
Equations

Autonomous system 
of first order 

differential equations



Dynamical Systems Approach
 The method consists of three basic steps:#
 #
1. Define suitable dimensionless variables including a time variable 
(logarithmic time); #

2.  Write the cosmological equations above as an autonomous system 
of first order differential equations; #

3. Use the standard dynamical system theory to achieve a semi-
quantitative description of the evolution of these models (fixed 
points, their stability, phase space). 



In the two covariant approaches:

Gravitational Field #
Equations

Simpler set of 
Propagation and 

Constraint equations

In particular:#

1+3 approach they are optimized for cosmology;#

1+1+2 approach they are optimized for astrophysics.

Covariant Approaches



The use of both these formalisms has many advantages:#

The variables are covariant and with easy physical 
interpretation; #

Can be used to investigate both the background and the 
perturbations; #

Can be adapted to alternative gravity.

Covariant Approaches



1+3 and 1+1+2 
Covariant 

Approaches.

Cosmological 
models and their 
integrability.

Linear perturbations 
of FRW models.

Electromagnetic 
fields in Cosmology

Dynamical 
systems analysis 
in cosmology.

Nonlinear 
perturbations of 
FRW models.

Perturbations of 
Bianchi models.

Perturbations of 
Black Holes.

Gravitational 
Lensing.

Covariant Approaches



Dynamical Systems 
Approach



Let us consider, as an example, f(R)-gravity#

In homogeneous and isotropic cosmologies the field equations reduce 
to the system:#

!

!

We will use the Dynamical System Approach to analyze these 
equations.
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If we limit ourselves it could be better ”If we focus on fourth order gravity models....” in place of ”If we limit
ourselves.....”? to fourth order and we use the Gauss Bonnet theorem [30] the action above ”above
action” isn’t it? can be written as
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⇥
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In situations where the metric has a high degree of symmetry, the term Rµ⇥Rµ⇥ gives upon variation the
same contributions of the R2 term. In particular, in the case of homogeneous and isotropic spacetimes
a fourth order gravity action can be written as a function of the sole Ricci sclalar scalar and, as a
consequence, the most general action for fourth order gravity can be represented by Along with referee
suggestions I would write the whole previous paragraph ”In situations........represented by..” as ”Actually, in situations
where the metric has a high degree of symmetry, the term Rµ⇥Rµ⇥ gives upon variation the same contributions of
the R2 term into the field equations. As matter of fact, in the case of homogeneous and isotropic spacetimes (i.e.
Friedmann-Robertson-Walker universes) a fourth order gravity action can be expressed as a function of the sole Ricci
scalar since more complicate actions will provide analogous evolution equations. Thus, the most general action for
fourth order gravity can be written as”
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⌥

d4x
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where Lm represents the matter contribution. Varying the action with respect to the metric gives the
generalization of the Einstein equations:
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These equations reduce to the standard Einstein field equations when f(R) = R. It is crucial for our purposes to be
able to write (8) in the form
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represent two e⇥ective “fluids”: the curvature “fluid” (associated with TR
ab) and the e�ective matter “fluid” (associated

with T̃m
ab). This step is important because it allows us to treat fourth order gravity as standard Einstein gravity in

the presence of two “e⇥ective” fluids. This means that once the e⇥ective thermodynamics of these fluids has been
studied, we can apply the covariant gauge invariant approach in the standard way.

The conservation properties of these e⇥ective fluids are given by the Bianchi identities T tot ;b
ab . When applied to the

total stress energy tensor, these identities reveal that if standard matter is conserved, the total fluid is also conserved
even though the curvature fluid may in general possess o⇥–diagonal terms [12, 31, 32]. In other words, no matter how
complicated the e⇥ective stress energy tensor T tot

ab is, it will always be divergence free if Tm;b
ab = 0. When applied to

the single e⇥ective tensors, the Bianchi identities read
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with the last expression being a consequence of total energy-momentum conservation. It follows that the individual
e⇥ective fluids are not conserved but exchange energy and momentum.

It is worth noting here that even if the energy-momentum tensor associated with the e⇥ective matter source is not
conserved, standard matter still follows the usual conservation equations Tm ;b

ab = 0. It is also important to stress that



DSA for a general FOG

1.  We define the general dimensionless variables (single fluid case):#
!
!
!
and the logarithmic time#
!

In the multifluid case we have a different variable Ω for every different 
fluid.#
The dimension of the  phase space is reduced when

x =
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2. The cosmological equations are equivalent to#

!

!

!

!

!

!

with the constraint
1 = �K � x� y + z + � .

dx
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Here the function “ɛ” ensures the positivity of our time coordinate.

DSA for a general FOG



An important part of the system above is the function #
!
!
!

In order to obtain a closed system on has to express this function in terms 
of the dynamical variables....

q �
�

d log f ⇥

d log R

⇥�1

=
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.

...but this is far from a trivial task!
In fact:#

 The operations involved to obtain this relation might be non trivial e.g. 
a transcendental form of f(R).#

 This transformation might have a non trivial dominion and this would 
imply constraints on the phase space

DSA for a general FOG



3.  Once the system is closed the standard dynamical system theory 
allows to:#
find fixed points i.e. particular exact solutions:#
!

!

find their stability i.e. the relation of the above solutions with the 
general integral#

have an idea of the global properties of the phase space i.e. the 
behavior of the general integral

Let us now consider an example.....

Ḣ = ↵H2 , ↵ = �1� ⌦i + xi � zi ,

µ̇m = �3(1 + w)
↵ t

µm ,

DSA for a general FOG



An Example
Let us consider, for example#

!

Using the variables above we obtain#

!

!

!

note that this case is degenerate.
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An Example

Point Coordinates (x, y, z) Scale Factor
A [0, 0, 0] a = a0(t� t0)
B [�1, 0, 0] a = a0(t� t0)1/2 (only for n = 3/2)
C

⇥
2(n�2)
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⇤
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n�2
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�

a = kt
2n2�2n�1 if k ⇥= 0

a = a0t if k = 0
E [�1� 3�, 0,�1� 3�] a = a0(t� t0)
F [1� 3�, 0, 2� 3�] a = a0(t� t0)1/2 (only for n = 3/2)
G

⇥
� 3(n�1)(1+�)

n , (n�1)[4n�3(�+1)]
2n2 ,

n(13+9�)�2n2(4+3�)�3(1+�)
2n2
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2n
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1.36 < n < 1.5

In terms of the phase space one schematically has

STD cosmology

Cosmic 
acceleration

An Example

i.e. one has a smooth transition between Friedmannian cosmologies 
and dark energy era!



Covariant 
Approaches#

(1+3)



dt

dx

1+3 Covariant Approach

Given the path 
of an observer

Thermodynamics

��������� �����

���������

...



✴ From the time-like flow      we construct 
the projection onto surfaces orthogonal to 
the flow:                                .#

✴ Three-volume form:                           .#

✴ Covariant convective derivative and                                              
projected derivative on scalar:    

u
a

hab = gab + uaub

ḟ = ua∇af

ηabc = u
d
ηdabc

�̃af = hb
a�bf

u
a

ua
m

1+3 Covariant Approach



✴ Kinematics of      gives geometry of congruence of flow lines:#

!

!

✴ Other relevant quantities can be defined using the Weyl tensor.#
✴  The total energy-momentum tensor can be decomposed relative to      

giving: #

!

✴ We can then give a set of propagation and constraint equations for 
these quantities. Which are very complicated…#

✴ We can now treat any space times with these equations.

T tot

ab

= µtotu
a

u
b

+ ptoth
ab

+ 2qtot(a u
b) + ⇡tot

ab

∇aub = −uau̇b + 1

3
Θhab + σab + ωab

acceleration expansion shear vorticity

u
a

u
a

1+3 Covariant Approach



Exact equations valid 
in any spacetime.

Choose background spacetime: 
FRW.

Variables that vanish in 
chosen background are O(1) 
and GI.

Linearize by dropping 
all terms that are O(2) 
and higher. 

�̇ + 1
3�2 + ⇥ab⇥

ab � 2⇤a⇤a � ⇥̃au̇a + u̇au̇a + 1
2 (µtot + 3ptot) = 0

�̇ + 1
3�2 � ⇥̃au̇a + 1

2 (µtot + 3ptot) = 0

Linearization
We will focus , however, their linearized version…



1+3 Covariant Equations
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Ḣhabi +⇥Hab + curlEab =
1

2
curl⇡ab .

The FLRW-linearized propagation equations are



1+3 Covariant Equations
The FLRW-linearized constraint equations are

r̃a!a = 0 ,

r̃b�ab � curl!a �
2

3
r̃a⇥ = �qa ,
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1+3 Covariant Equations

The matter conservation equations are#
!
!
!
!
!
!
!
These equations are equivalent to the linearized gravitational field 
equations, but are expressed in terms of quantities which have a clear 
physical meaning.

µ̇+ r̃aqa = �⇥ (µ+ p) ,

q̇hai + r̃ap+ r̃b⇡ab = � 4

3
⇥ qa � (µ+ p) u̇a .



 CoGI Perturbations
Covariant Gauge 

Invariant theory of 
perturbations

1+3 Covariant #
Equations

The natural set of inhomogeneity variables are:#
!
!
!
together with other variables able to capture the additional degrees 
of freedom of the theory we are analyzing. #
!

8

V. DYNAMICS OF SCALAR PERTURBATIONS

A. Perturbation Equations

We are now ready to analyze the evolution of the density perturbations on a FLRW background. The quantities
appearing in the linearized equations given in the previous section can be decomposed in scalar vector and tensor
components, i.e.

Va = V̄a + V̂a = �abc⇧̃bV̄c + ⇧̃av̂ , where ⇧̃aV̄a = 0 , �abc⇧̃bV̂c = 0 , (57)

and

Wab = W̄ab + Ŵab + W �
ab = W̄ab + ⇧̃aW̄b + ⇧̃a⇧̃bW

� , (58)

where

⇧̃aW̄ab = 0 , (curl Ŵ )ab = 0 , (curl W �)ab = 0 , (59)

and both of these decompositions are unique. Note that here we define scalars, vectors or tensors as quantities
that transform like scalars, solenoidal vectors or symmetric tensors, or are obtained from them using the hab or ⇧̃a

operators [? ].
In linear regime and in homogeneous and isotropic backgrounds these di⇤erent components do not interact with

each other. In the following we will focus only on the evolution of scalar perturbations because they are directly
related with density fluctuations. This can be done simply discarding the non scalar quantities in the equation above
i.e. setting

Va = ⇧̃aV , Wab = ⇧̃⇤a⇧̃b⌅W . (60)

The identities in Appendix C, the vorticity constraint equation (35) and the gravito-magnetic constraint equation
(37) then show that

curlVa = 0 = curl Wab , ⇧̃bWab = 2
3⇧̃

2(⇧̃aW ) , ⇤a = 0 = Hab , (61)

as in standard General Relativity.
In order to derive the equations governing density perturbations in the general case, we define the density and

expansion gradients

Dm
a =

S

µm
⇧̃aµm , Za = S⇧̃a� , Ca = S⇧̃aR̃ , (62)

and the (dimensionless) gradients describing inhomogeneity in the Ricci scalar:

Ra = S⇧̃aR , ⇥a = S⇧̃aṘ . (63)

Another important quantity in the treatment of the evolution of the density perturbations is the Newtonian potential
(defined through the divergence of the electric part of the Weyl tensor (38) [26]).
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where Dtot
a represents the total energy density fluctuation.

Using equations (43) -(51), equations (26)–(29), the identities in Appendix C, assuming matter to be a barotropic
perfect fluid with barotropic factor w = pm/µm and that the vorticity is zero [? ], we obtain the following system of
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evolution equations for the above variables:
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together with the constraint
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The propagation equation for the variable C is
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⇤̃2Ra +

⇧
12⇥f ��

2⇥f � + 3Ṙf ��
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this equation, which is redundant, will be used in Section VI to substitute (67) because of its specific form in the long
wavelength limit [37].

B. Scalar Variables

The variables we have defined above describe the general evolution of the density perturbations and the other
scalars on a FLRW background. The phenomenon of the clustering of matter is traditionally described, however,
considering only the scalar part of these variables. This can be easily done using the local decomposition [26]

S⇤̃aXa = Xab =
1
3
habX + ⇤X

ab + X[ab] where ⇤X
ab = X(ab) �

1
3
habX . (71)

so that the operator ⇤̃a applied to the (62) and (63) extracts the scalar part of the perturbation variables. In this
way we can define the scalar quantities

�m = S⇤̃aDm
a , Z = S⇤̃aZa , C = S⇤̃aCa , R = S⇤̃aRa , ⇥ = S⇤̃a⇥a ⌅N = S⇤̃a⌅N

a . (72)
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evolution equations for the above variables:

Ḋm
a = w⇥Dm

a � (1 + w)Za , (65)
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f � �
1
3
Ṙ⇥

f ��

f �

⌃�
Ra

+⇤̃2Ra , (68)

together with the constraint
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The propagation equation for the variable C is
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⇤̃2Ra +

⇧
12⇥f ��

2⇥f � + 3Ṙf ��
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this equation, which is redundant, will be used in Section VI to substitute (67) because of its specific form in the long
wavelength limit [37].

B. Scalar Variables

The variables we have defined above describe the general evolution of the density perturbations and the other
scalars on a FLRW background. The phenomenon of the clustering of matter is traditionally described, however,
considering only the scalar part of these variables. This can be easily done using the local decomposition [26]
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Extracting the scalar modes
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2Ṙ⇥

f (3)

f � �
f ��

f �

⇧
f � 2µ + 2Ṙ⇥f �� + 2
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+ 2

f ��

f �

⌃
⇥a

+

�

✏�
2S2

⇤
⇥f �� � 3Ṙf (3)
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so that the operator ⇤̃a applied to the (62) and (63) extracts the scalar part of the perturbation variables. In this
way we can define the scalar quantities

�m = S⇤̃aDm
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To simplify the resolution of the perturbations equations it is common 
to exploit an harmonic decomposition.#

 Using the covariant harmonics defined by#
!
!
!
where                 is the wavenumber and           , we can expand every 
first order quantity as

Harmonic Decomposition

⇥̃2Q = � k2

S2
Q ,

k2 = 1/� Q̇ = 0

X =
�

X(k)(t) Q(k)



Let us consider the case of f(R)-gravity#
!
!
!
The natural set of inhomogeneity variables are:#
!
!
!
!
!
Let us see what the perturbation equations look like…#
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V. DYNAMICS OF SCALAR PERTURBATIONS

A. Perturbation Equations

We are now ready to analyze the evolution of the density perturbations on a FLRW background. The quantities
appearing in the linearized equations given in the previous section can be decomposed in scalar vector and tensor
components, i.e.

Va = V̄a + V̂a = �abc⇧̃bV̄c + ⇧̃av̂ , where ⇧̃aV̄a = 0 , �abc⇧̃bV̂c = 0 , (57)

and

Wab = W̄ab + Ŵab + W �
ab = W̄ab + ⇧̃aW̄b + ⇧̃a⇧̃bW

� , (58)

where

⇧̃aW̄ab = 0 , (curl Ŵ )ab = 0 , (curl W �)ab = 0 , (59)

and both of these decompositions are unique. Note that here we define scalars, vectors or tensors as quantities
that transform like scalars, solenoidal vectors or symmetric tensors, or are obtained from them using the hab or ⇧̃a

operators [? ].
In linear regime and in homogeneous and isotropic backgrounds these di⇤erent components do not interact with

each other. In the following we will focus only on the evolution of scalar perturbations because they are directly
related with density fluctuations. This can be done simply discarding the non scalar quantities in the equation above
i.e. setting

Va = ⇧̃aV , Wab = ⇧̃⇤a⇧̃b⌅W . (60)

The identities in Appendix C, the vorticity constraint equation (35) and the gravito-magnetic constraint equation
(37) then show that

curlVa = 0 = curl Wab , ⇧̃bWab = 2
3⇧̃

2(⇧̃aW ) , ⇤a = 0 = Hab , (61)

as in standard General Relativity.
In order to derive the equations governing density perturbations in the general case, we define the density and

expansion gradients

Dm
a =

S

µm
⇧̃aµm , Za = S⇧̃a� , Ca = S⇧̃aR̃ , (62)

and the (dimensionless) gradients describing inhomogeneity in the Ricci scalar:

Ra = S⇧̃aR , ⇥a = S⇧̃aṘ . (63)

Another important quantity in the treatment of the evolution of the density perturbations is the Newtonian potential
(defined through the divergence of the electric part of the Weyl tensor (38) [26]).

⇥N
a = S2µtot Dtot

a

=
2S2µ�

2�f ⇥ + 3Ṙf ⇥⇥
Dm

a +
3Ṙf ⇥⇥

2
�
2�f ⇥ + 3Ṙf ⇥⇥

⇥ Ca �
2S2f ⇥⇥�2

2�f ⇥ + 3Ṙf ⇥⇥
⇥a

+
S2

⇤
f ⇥⇥

�
f � 2µ + 2Ṙ�f ⇥⇥

⇥
� 2Ṙ�f ⇥f (3)

⌅
�

f ⇥
�
2�f ⇥ + 3Ṙf ⇥⇥

⇥ Ra (64)

where Dtot
a represents the total energy density fluctuation.

Using equations (43) -(51), equations (26)–(29), the identities in Appendix C, assuming matter to be a barotropic
perfect fluid with barotropic factor w = pm/µm and that the vorticity is zero [? ], we obtain the following system of

 CoGI f(R) Perturbations
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⇥ Ra (64)

where Dtot
a represents the total energy density fluctuation.
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3

If we limit ourselves it could be better ”If we focus on fourth order gravity models....” in place of ”If we limit
ourselves.....”? to fourth order and we use the Gauss Bonnet theorem [30] the action above ”above
action” isn’t it? can be written as

AG =
⌥

d4x
⌅
�g

�
� + c0R + c1R

2 + c2Rµ⇥Rµ⇥
⇥

. (6)

In situations where the metric has a high degree of symmetry, the term Rµ⇥Rµ⇥ gives upon variation the
same contributions of the R2 term. In particular, in the case of homogeneous and isotropic spacetimes
a fourth order gravity action can be written as a function of the sole Ricci sclalar scalar and, as a
consequence, the most general action for fourth order gravity can be represented by Along with referee
suggestions I would write the whole previous paragraph ”In situations........represented by..” as ”Actually, in situations
where the metric has a high degree of symmetry, the term Rµ⇥Rµ⇥ gives upon variation the same contributions of
the R2 term into the field equations. As matter of fact, in the case of homogeneous and isotropic spacetimes (i.e.
Friedmann-Robertson-Walker universes) a fourth order gravity action can be expressed as a function of the sole Ricci
scalar since more complicate actions will provide analogous evolution equations. Thus, the most general action for
fourth order gravity can be written as”

A =
⌥

d4x
⌅
�g [f(R) + Lm] , (7)

where Lm represents the matter contribution. Varying the action with respect to the metric gives the
generalization of the Einstein equations:

f �Gab = f �
⇤

Rab �
1
2

gabR

⌅
= Tm

ab +
1
2
gab (R�Rf �) +⇧b⇧af � � gab⇧c⇧cf � , (8)

where f = f(R), f � =
df(R)

dr
, and TM

µ⇥ =
2⌅
�g

�(
⌅
�gLm)
�gµ⇥

represents the stress energy tensor of standard matter.

These equations reduce to the standard Einstein field equations when f(R) = R. It is crucial for our purposes to be
able to write (8) in the form

Gab = T̃m
ab + TR

ab = T tot
ab , (9)

where T̃m
ab =

Tm
ab

f � and

TR
ab =

1
f �

⇧
1
2
gab (R�Rf �) +⇧b⇧af � gab⇧c⇧cf

⌃
, (10)

represent two e⇥ective “fluids”: the curvature “fluid” (associated with TR
ab) and the e�ective matter “fluid” (associated

with T̃m
ab). This step is important because it allows us to treat fourth order gravity as standard Einstein gravity in

the presence of two “e⇥ective” fluids. This means that once the e⇥ective thermodynamics of these fluids has been
studied, we can apply the covariant gauge invariant approach in the standard way.

The conservation properties of these e⇥ective fluids are given by the Bianchi identities T tot ;b
ab . When applied to the

total stress energy tensor, these identities reveal that if standard matter is conserved, the total fluid is also conserved
even though the curvature fluid may in general possess o⇥–diagonal terms [12, 31, 32]. In other words, no matter how
complicated the e⇥ective stress energy tensor T tot

ab is, it will always be divergence free if Tm;b
ab = 0. When applied to

the single e⇥ective tensors, the Bianchi identities read

T̃M ;b
ab =

Tm;b
ab

f � � f ��

f �2 Tm
ab R;b , (11)

TR;b
ab =

f ��

f �2 T̃M
ab R;b , (12)

with the last expression being a consequence of total energy-momentum conservation. It follows that the individual
e⇥ective fluids are not conserved but exchange energy and momentum.

It is worth noting here that even if the energy-momentum tensor associated with the e⇥ective matter source is not
conserved, standard matter still follows the usual conservation equations Tm ;b

ab = 0. It is also important to stress that
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f 002

6f 0 � R̈f (3) �⇥f (3)Ṙ� f (4)Ṙ2
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The full first order equations are too long to be given in full, but it is 
useful to look at the second order ones in their harmonically 
developed form:#
!



 Rn gravity Perturbations

The perturbations can grow even in a accelerating expanding 
backgrounds!!

Let us apply these equation Rn gravity. In the long wavelength limit  
the equations in the quasi-friedmann phase admit an exact solution 
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Let us now focus on the case of dust (w = 0). The above solution becomes

�m = K1t
�1 + K2t

�+|w=0 + K3t
��|w=0 �K4

C0

S2
0

t2�
4n
3 , (110)

where

�±|w=0 = �1
2
±

�
(n� 1)(n(32n(8n� 19) + 417)� 81)

6(n� 1)
, (111)

K4|w=0 =
9(n(12n� 31) + 18)

8(4n� 9) (12n3 � 19n2 � 3n + 9)
. (112)

A graphical representation of the behavior of the exponent of the modes in (110) as n changes is given in Figure 1.
This solution has many interesting features. For 0.33 < n < 0.71 and 1 < n < 1.32 [? ] the modes t�±|w=0 become
oscillatory. However since the real part of the exponents �±|w=0 is always negative the oscillation are damped and
bound to become subdominant at late times. The appearance of this kind of modes is not associated with any
peculiar behavior of the thermodynamic quantities in the background i.e. none of the energy condition are violated
for the values of n which are associated with the oscillations. The nature of these oscillations is then an higher order
phenomenon. Here we will not undertake a detailed investigation of the origin of these modes, such a study will be
left for a future work. Also, for most of the values of n the perturbations grow faster in Rn-gravity than in GR. In
fact only for 1.32 ⇤ n < 1.43 all the modes grow with a rate slower than t2/3.

Probably the most striking feature of the solutions (110) and (107) is that the long wavelength perturbations grow
for every value of n, even if the universe is in a state of accelerated expansion (see Figure 1). This is somehow expected
from the fact that in [12] the fixed point representing our background is unstable for every value of the parameters.
However, the consequence of this feature is quite impressive because it implies that in Rn gravity large scale structures
can in principle also be formed in accelerating backgrounds. This is not possible in General Relativity, where it is
well known that as soon as the deceleration parameter becomes positive the modes of the � solutions (or density
contrast) are both decreasing. The suppression of perturbations due to the presence of classical forms of Dark Energy
(DE) is one of the most important sources of constraints on the nature of DE itself. Our example shows that if one
considers DE as a manifestation of the non-Einsteinian nature of the gravitational interaction on large scales, there
is the possibility to have an accelerated expanding background that is compatible with the growth of structures. Of
course, in order to better understand this e⇤ect, one should also analyze the evolution of perturbations on small scales.
However this analysis is beyond the scope of this paper and it is left to left to a future, more detailed investigation.

In the limit n⌅ 1 two of the modes of (107) reproduce the two classical modes t2/3 and t�1 typical of GR, but the
other two diverge. At first glance this might be surprising but it does not represent a real pathology of the model. In
fact equation (103) reduces to a first order di⇤erential equation when n = 1. Therefore in this case the two modes in
the solution can be discarded and GR is recovered.

From the system (100) we can also obtain the solution for the other scalars:
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where

⇥± = �± � 2 , (115)
⇤± = �± � 3 (116)

and the constants K5, ..K12 are all functions of K1, ..K4. These expressions are rather complicated and will not be
given here. It is interesting that these quantities have an oscillatory behavior for the same values of n for which �m

is oscillating. Also for these quantities the oscillating modes are always decreasing.
Finally it is useful to derive and expression for the Newtonian potential ⇥N given in (64) which for our background
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from the fact that in [12] the fixed point representing our background is unstable for every value of the parameters.
However, the consequence of this feature is quite impressive because it implies that in Rn gravity large scale structures
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(DE) is one of the most important sources of constraints on the nature of DE itself. Our example shows that if one
considers DE as a manifestation of the non-Einsteinian nature of the gravitational interaction on large scales, there
is the possibility to have an accelerated expanding background that is compatible with the growth of structures. Of
course, in order to better understand this e⇤ect, one should also analyze the evolution of perturbations on small scales.
However this analysis is beyond the scope of this paper and it is left to left to a future, more detailed investigation.

In the limit n⌅ 1 two of the modes of (107) reproduce the two classical modes t2/3 and t�1 typical of GR, but the
other two diverge. At first glance this might be surprising but it does not represent a real pathology of the model. In
fact equation (103) reduces to a first order di⇤erential equation when n = 1. Therefore in this case the two modes in
the solution can be discarded and GR is recovered.
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and the constants K5, ..K12 are all functions of K1, ..K4. These expressions are rather complicated and will not be
given here. It is interesting that these quantities have an oscillatory behavior for the same values of n for which �m

is oscillating. Also for these quantities the oscillating modes are always decreasing.
Finally it is useful to derive and expression for the Newtonian potential ⇥N given in (64) which for our background
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 Rn gravity Perturbations
Looking at the perturbation spectrum...
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Covariant 
Approaches#

(1+1+2)



1+1+2 Covariant Approach

�

dt

dx

Thermodynamics
e.g. in the case of 

spherical symmetry

This formalism is a further specialization of  the 1+3 approach:

...



1+1+2 Covariant Approach
✴ From the spacelike surfaces we  single out a special direction      .    #

!

✴ The projected derivative is split accordingly:#

!

✴ Kinematics of      gives geometry of the spatial 2-hypersurfaces:    #
!

✴ All the 1+3 quantities can be further split in terms of the projectors 
above

ea

 ̂a..b
c..d ⌘ ef r̃f a..b

c..d �f a..b
c..d ⌘ Na

f ...Nb
gNh

c..Ni
dNf

jr̃j f..g
i..j .

ea

r̃aeb = eaab +
1

2
�Nab + ⇠"ab + ⇣ab ,

gab = �uaub + eaeb +Nab



Considering spherically symmetric metrics the non trivial 
variables reduce to#

1+1+2 Covariant Approach

Scalar EquationsTensor Equations

1+1+2 formalism

A,⇥,�, ⇠,⌃,⌦, E ,H, µ, p,⇧, Q



The general equations for static spherically symmetric metrics read#

!

!

!

!

with the constraint#

1+1+2 Covariant Approach
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⇧



In the case of f(R) gravity #

the above equations, in vacuum, become:#

!

!

!

1+1+2  f(R)-gravity

f 0
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��A
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Rf 0 � f 00XA ,
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If we limit ourselves it could be better ”If we focus on fourth order gravity models....” in place of ”If we limit
ourselves.....”? to fourth order and we use the Gauss Bonnet theorem [30] the action above ”above
action” isn’t it? can be written as

AG =
⌥

d4x
⌅
�g

�
� + c0R + c1R

2 + c2Rµ⇥Rµ⇥
⇥

. (6)

In situations where the metric has a high degree of symmetry, the term Rµ⇥Rµ⇥ gives upon variation the
same contributions of the R2 term. In particular, in the case of homogeneous and isotropic spacetimes
a fourth order gravity action can be written as a function of the sole Ricci sclalar scalar and, as a
consequence, the most general action for fourth order gravity can be represented by Along with referee
suggestions I would write the whole previous paragraph ”In situations........represented by..” as ”Actually, in situations
where the metric has a high degree of symmetry, the term Rµ⇥Rµ⇥ gives upon variation the same contributions of
the R2 term into the field equations. As matter of fact, in the case of homogeneous and isotropic spacetimes (i.e.
Friedmann-Robertson-Walker universes) a fourth order gravity action can be expressed as a function of the sole Ricci
scalar since more complicate actions will provide analogous evolution equations. Thus, the most general action for
fourth order gravity can be written as”

A =
⌥

d4x
⌅
�g [f(R) + Lm] , (7)

where Lm represents the matter contribution. Varying the action with respect to the metric gives the
generalization of the Einstein equations:

f �Gab = f �
⇤

Rab �
1
2

gabR

⌅
= Tm

ab +
1
2
gab (R�Rf �) +⇧b⇧af � � gab⇧c⇧cf � , (8)

where f = f(R), f � =
df(R)

dr
, and TM

µ⇥ =
2⌅
�g

�(
⌅
�gLm)
�gµ⇥

represents the stress energy tensor of standard matter.

These equations reduce to the standard Einstein field equations when f(R) = R. It is crucial for our purposes to be
able to write (8) in the form

Gab = T̃m
ab + TR

ab = T tot
ab , (9)

where T̃m
ab =

Tm
ab

f � and

TR
ab =

1
f �

⇧
1
2
gab (R�Rf �) +⇧b⇧af � gab⇧c⇧cf

⌃
, (10)

represent two e⇥ective “fluids”: the curvature “fluid” (associated with TR
ab) and the e�ective matter “fluid” (associated

with T̃m
ab). This step is important because it allows us to treat fourth order gravity as standard Einstein gravity in

the presence of two “e⇥ective” fluids. This means that once the e⇥ective thermodynamics of these fluids has been
studied, we can apply the covariant gauge invariant approach in the standard way.

The conservation properties of these e⇥ective fluids are given by the Bianchi identities T tot ;b
ab . When applied to the

total stress energy tensor, these identities reveal that if standard matter is conserved, the total fluid is also conserved
even though the curvature fluid may in general possess o⇥–diagonal terms [12, 31, 32]. In other words, no matter how
complicated the e⇥ective stress energy tensor T tot

ab is, it will always be divergence free if Tm;b
ab = 0. When applied to

the single e⇥ective tensors, the Bianchi identities read

T̃M ;b
ab =

Tm;b
ab

f � � f ��

f �2 Tm
ab R;b , (11)

TR;b
ab =

f ��

f �2 T̃M
ab R;b , (12)

with the last expression being a consequence of total energy-momentum conservation. It follows that the individual
e⇥ective fluids are not conserved but exchange energy and momentum.

It is worth noting here that even if the energy-momentum tensor associated with the e⇥ective matter source is not
conserved, standard matter still follows the usual conservation equations Tm ;b

ab = 0. It is also important to stress that



These equations can be used to find exact solutions, but also to 
understand better general properties of these theories. #

For example the structure of the equations reveals that#

!

!

 Which means that cosmological constant and a linear term are 
crucial to avoid e.g. gravitational monopole radiation.

1+1+2  f(R)-gravity

Birkhoff 
Theorem

⇢
f(0) = 0 ,
f 0(0) 6= 0 .



    Perspectives
There are many possible future developments of these research lines:#

Dynamical Systems Approach can be further refined and 
potentiated;#

Study of Structure Formation and Cosmic Microwave Background 
with 1+3 approach;#

Study of Relativistic Astrophysics with 1+1+2 approach;#

These tools can be applied to any other modification of Einstein 
theory might be proposed in the future.


