Measuring Atmospheric Condition with an Imaging Air Cherenkov Telescope

Dorothée Hildebrand, Adrian Biland for the FACT Collaboration

FACT

FACT Design and construction: JINST 8 (2013) P06008 (open access) FACT System performance: astro-ph/1403.5747, submitted to JINST

FACT and LIDAR

On a site with many telescopes and devices, Laser shots of Lidars can affect instruments,

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FACT and LIDAR

On a site with many telescopes and devices, Laser shots of Lidars can affect instruments,

Camera trigger rate vs time

Why not use the IACT itself to monitor the atmosphere?

Knowledge about the atmosphere is necessary since it affects the measurement of gamma-rays showers

Hadronic showers are also affected by the atmosphere

The flux and spectrum of hadrons is constant

IACT measure hadronic as well as gamma-ray showers

Can hadrons be used as kind of concurrent testbeam ?

What Rate Scans are about

Cherenkov flashes only from within field of view of the IACT

Rate Scans during different light conditions

Rate Scans with Different Light Conditions (March - June) 2012

Rate Scans & system stability

Rate Scans with Calima

Rate Scans with different cloudiness

Disturbed atmosphere e.g. Clouds: trigger rates from (hadronic) flashes change

Rate scans taken during two hours showing various atmospheric conditions.

Rate Scans with different cloudiness

11

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH Institute for Particle Physics

FACT Trigger

programmable threshold with a counter; necessary to interrupt data-taking to take a ratescan

Possible Trigger Improvements

Use a 2nd programmable threshold for the counter => can take serial ratescans concurrent to data-taking

Possible Trigger Improvements

Use several preset thresholds => do parallel ratescans concurrent to data-taking

Or use a fully digital trigger like in `Flashcam`

Conclusion

Cherenkov telescopes can monitor the atmospheric condition within their field of view concurrent to data taking without auxiliary devices

Absolutely no disturbance of neighbouring systems => no problem if CTA operated as many subarrays

D. Hildebrand et al. (FACT Collaboration): Proceedings 33rd ICRC, Rio de Janeiro 2013

ETH Institute for Particle Physics

Integrated electronics DRS4 readout

320 bias voltage channels (1 per 4/5 G-APDs)

Power consumption ≤500W Readout via Ethernet

160 trigger patches (sum of 9 channels)

single pixel / single run

Dark noise from a single pixel allows to measure gain (>1pe from crosstalk intrinisc to G-APD)

ETH Institute for Particle Physics

Since Oct 2011, FACT is operated almost every night

Sitting in the container @ La Palma

- or wherever you want

Full system so stable and reliable that remote operation since summer 2012; working on minor improvements on auxiliary systems to allow robotic operation.

