The EUSO@TurLab Project

M. Bertaina for the JEM-EUSO Coll. Torino University & INFN

The EUSO@Turlab group:

M. Bertaina, A. Bowaire, G. Cotto, R. Forza, M. Manfrin, R. Mulas, P. Tibaldi Univ. & INFN Torino

R. Caruso, G. Contino, N. Guardone Univ. & INFN Catania

ATMOHEAD2014, Padova, 19-21 May 2014

JEM-EUSO is

an Astronomical Earth Observatory from Space

JEM-EUSO

POCKOCMOC

FoV $1.4 \ge 10^5 \text{ km}^2$ time resolution (GTU) $2.5 \ \mu \text{s}$ spatial resolution 500 m

PDM

each PDM works independently

2304 pixels

FoV: 27x27 km²

ISS

- 7.5 km/s
- 15.5 orbits per day
- 30-45 min night sight

4/36

The Pacific Ocean Through the Cupola

Videos produced by the Crew Earth Observations group at NASA Johnson Space Center

For replication and crediting information, please see our guidelines on our main video page.

European City Lights

Videos produced by the Crew Earth Observations group at NASA Johnson Space Center

For replication and crediting information, please see our guidelines on our main video page.

What we see and what JEM-EUSO will see

From satellite and balloon data typical range of night glow background between 300 - 400 nm is: 300 - 1000 ph/(m²·ns·sr)

Astroparticle Physics 36 (2013) JEM-EUSO Coll.

DMSP(Defense Meteorological Satellites Program)

reasonable scaling compared to BABY balloon data

simulating the Earth crossing central Italy

The TurLab @ Physics Department - Torino University

A laboratory for geo-fluidodynamics studies where rotation is a key parameter:

Coriolis force
 Rossby Number

Advantage of such a laboratory: Possibility of controlling the boundary conditions

Experimental approaches @ TurLab

Ink

- Qualitative measurements
- Fast and simple
- fluorescent or standard inks

Particles

- Quantitative measurements
- Density = 1.03 g/cm^3
 - Diameter: 5-1000 micron
- Good reflectivity with 'spheric' form
 - Cheap

Smallest particles (5-10 micron) stay in suspension, in fresh water, for several hours; largest ones (1000 micron) per few minutes.

Planetary Atmospheric & Fluid instabilities

Hexagon at Saturn's North Pole

instability of Kelvin-Helmholtz in not confined streams

instability in confined streams

Results at a large rotating tank (TurLab)

EUSO @ TurLab

Current set-up

- 5x5 pixel MAPMT
- electronics
- the tank

11/36

resolution

time 1 GTU = 40 μs sampled every 30 ms

space 1 pixel watches a FoV of 5x5 mm²

ISS: 8 km/s — TurLab: 10⁻² m/s speed ratio TurLab/ISS: 10⁻⁶

12/36

1 rot/20 min

R = 2 m

 $5 \text{ mm}/500 \text{ m} = 10^{-6}$

Hamamatsu R8900-M25

Possible Configurations

Background is Poissonian on all pixels

21

2 approaches:

- 'absolute time'
 - └→ s (for xxx-EUSO's PDM)
- 'sampling time'

GTU (for offline trigger purpose)

300 s (==>2250km)
10000 GTU (==>200m)

1 rotation = 15 minutes

(night part = 45 minutes) GTU x 10⁴

Moon phases (average background increasing as a function of time – factor 4)

3 rotations = 1 ISS orbit

2 phe

16/36

different light sources

- Iight emitting sources
- * materials reflecting background light

17/36

different backgrounds same materials can give different response depending on room light conditions

Possible Scenarios

changing tank speed:

18/36

http://www.nasa.gov

abs. time: 0.7 - 70 s ISS: 5 - 500 km

abs. time: 1.4 - 140 s ISS: 10-1000 km

Clouds

JEM-EUSO for wave watching?

- the tank can contain water
- 2 fans produce different conditions of wind
- We can see waves with the MAPMT

as wave height increases we have non-Poissonian luminosity 22/36

26/36

20-30 GTU: 0.6-0.9 s

An electronics prototyping platform based on open-source hardware and software

14 input/outputdigital pins and6 analog inputpins

8-bit Atmel microcontroller @ 16Mhz;

Power jack

USB connection

Ceramic

resonator

Voltage regulators and electronic circuits supporting the microcontroller

A strip of LEDs that are driven by the Arduino with an accuracy of 1µs

First level trigger

320000 pix 10¹¹ data/s very 2.5 µs

VS

ISS data transferring 300 kbit/s

rejecting most of light background fluctuations

allowed acquisition rate: few Hz/PDM

pre-trigger

EECR

35/36

Conclusions

- At TurLab we can create a wide variety of conditions reproducing the Earth luminosity
- Measures obtained with a 25 pixel MAPMT were used to test the feasibility of the experimental reproduction of situations that JEM-EUSO will encounter while flying
- In next step we plan to test at TurLab 1 Elementary Cell of JEM-EUSO

Wish to do your experiment at TurLab? http://www.euhit.org

EuHIT is looking forward for proposals submitted by young scientists.

What is EuHIT?

EuHIT is an international scientific mobility programme for researchers engaged in the **turbulence research** which provides free transnational access to cutting-edge European facilities and scientific support of 21 partners representing both academia and industry.

It's primary goal is to significantly advance the competitiveness of the European turbulence research with special focus on providing the knowledge for technological innovation and for addressing grand societal challenges.

Who can participate?

EuHIT offers free access to the participating research infrastructures and grants for travel and subsistence costs. It is addressed either to individual researchers of all levels or teams of researchers having one Leader responsible for the implementation of the project.

The Leader and the majority of the team members must be affiliated at one of the research institutions of the European Union member or associated states.

Thank you !