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INTRODUCTION�

u The	
  problem	
  of	
  the	
  detec9on	
  of	
  weak	
  signals	
  is	
  of	
  high	
  importance	
  in	
  high	
  
energy	
  physics.	
  The	
  method	
  used	
  should	
  have	
  high	
  sensi9vity	
  and	
  reliability.	
  

	
  

u In	
  this	
  thesis,	
  a	
  mul9resolu9on	
  analysis	
  method	
  has	
  been	
  applied	
  to	
  the	
  
search	
  of	
  resonances	
  in	
  	
  invariant	
  mass	
  spectra.	
  

Ø  The	
  method	
  we	
  have	
  inves9gated	
  (wavelet	
  analysis)	
  has	
  never	
  been	
  
used	
  in	
  high	
  energy	
  physics,	
  although	
  it	
  has	
  been	
  applied	
  for	
  analysis	
  in	
  
various	
  fields.	
  

Ø  This	
  is	
  an	
  explora9ve	
  work	
  s9ll	
  evolving.	
  

	
  

u We	
  analyzed	
  the	
  invariant	
  mass	
  of	
  jet	
  pairs	
  produced	
  in	
  associa9on	
  with	
  a	
  
leptonically	
  decaying	
  W	
  (from	
  p-­‐p	
  collisions	
  in	
  ATLAS	
  at	
  √s=7	
  TeV).	
  
Ø  This	
  channel	
  is	
  sensi9ve	
  to	
  Standard	
  Model	
  signals	
  of	
  interest	
  (W/Z	
  and	
  

Higgs	
  boson	
  decays)	
  and	
  also	
  to	
  hypothe9cal	
  par9cles	
  from	
  
unconven9onal	
  theories.	
  



and gluon fields exits: therefore gluons remain massless.
Similarly, when passing from the SUp2qL b Up1q gauge fields to the physical elec-
troweak fields via a liner combination, the Higgs field result to have zero coupling
with the electromagnetic field Aµ (i.e. zero electric charge), justifying the fact that
the photon is massless.
The fermions’ mass is also determined in terms of v, by adding opportune Higgs-
fermion interaction terms to the SM Lagrangian.
From this construction, it results that the couplings between Higgs and massive
particles are proportional to the particle mass; this is fundamental in the determi-
nation of Higgs production mechanisms and decay rates.
The potential term in equation (1.4) also determines the Higgs boson mass (mh “
�v): as it depends on both the unknown parameters � and v, the Higgs mass is not
predicted by the SM theory. Many more considerations about Higgs mechanism
can be found at [3].

The detection and study of the Higgs boson [4] are one of the main purposes
of the Large Hadron Collider (chapter 2).
An Higgs boson can be generated from the hard interaction between two partons.
Di↵erent processes are involved, the most relevant ones (at the actual LHC ener-
gies) are represented in figure 1.2.

Figure 1.2: Feynman diagrams of main Higgs boson production mechanisms at
leading order. The V particle can be a W or a Z boson.The production of an
Higgs boson associated with QQ (bottom-right of the figure) is dominated by the tt
channel, since the Higgs-quark coupling is directly proportional to quark mass.
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STANDARD MODEL EXPECTED SIGNALS�

u WW/WZ	
  (diboson).	
  

Ø  Measured	
  in	
  this	
  channel	
  by	
  the	
  ATLAS	
  collabora9on.	
  

q ` q1 Ñ W˘Z (1.6)

Diboson contribute to the l⌫jj final state with its semileptonic channel in which a
W decays into a lepton (electron, muon or ⌧) and a neutrino and the other W {Z
into a pair of quarks.
The measurement of WW {WZ production cross section in the semileptonic chan-
nel3 has been performed by the ATLAS collaboration [9]. The result is �WW {WZ “
72˘ 9 (stat.) ˘15 (syst.) ˘13 (MC stat.) pb, in good agreement with the predic-
tion of 63.4 ˘ 2.6 pb from the SM.

Higgs boson

As observed in section 1.1.1, one of the main channels of Higgs boson production
is the WH associated production (or Higgs-strahlung4), represented in figure 1.2
at the LO.
In this process, a virtual o↵-shell W (usually indicated as W ˚) is generated by a
qq interaction; the virtual W ˚ can then produce an on-shell W and a Higgs boson.
This process can contribute to the l⌫jj final state when W decays leptonically5

and H decays into two jets.
W leptonic branching ratios are summarized in table 1.3.

W`{W´ decay modes BR (�i{�)
e`⌫{e´⌫ p10.75 ˘ 0.13q%
µ`⌫{µ´⌫ p10.57 ˘ 0.15q%

Table 1.3: Branching ratios for leptonic W decays [10].

Main Higgs boson decays contributing to H Ñ jj channel can be extracted from
table 1.2.
At mH » 126 GeV, the dijet Higgs decay is dominated by H Ñ bb. H Ñ gg and
H Ñ ⌧⌧ BR are both one order of magnitude smaller than bb, while only a few

3Due to the jet energy resolution, it is impossible to separate the W and Z resonances in
the jet-jet invariant mass distribution. Therefore only the global WW {WZ cross section can be
measured in semileptonic channel.

4The name derives from the bremsstrahlung phenomenon, in which an electron looses it’s
energy by emitting a photon. Here, an o↵-shell W looses energy by emitting an Higgs boson:
despite the two processes are quite di↵erent, the name Higgs-strahlung is used to remind this
similarity.

5In this analysis, only muon and electron channels are considered, excluding W Ñ ⌧⌫ decay
because of the di�culties in ⌧ detection and analysis.
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u Higgs	
  boson	
  contributes	
  via	
  specific	
  channels	
  of	
  
produc9on	
  and	
  decay:	
  

Ø  Produced	
  via	
  WH	
  associated	
  produc9on.	
  	
  

Ø  W	
  decays	
  leptonically	
  and	
  H	
  decays	
  into	
  two	
  jets	
  
(mostly	
   	
   	
  	
  	
  ).	
  

Ø  	
   	
   	
  	
  	
  	
  	
  	
  was	
  recently	
  observed	
  by	
  CMS,	
  no	
  signal	
  
has	
  yet	
  been	
  observed	
  by	
  ATLAS.	
  

	
  
u  	
  The	
  analized	
  dataset	
  has	
  an	
  integrated	
  luminosity	
  of	
  	
  

L=4702	
  pb-­‐1.	
  Considering	
  the	
  W	
  decay	
  rates,	
  the	
  number	
  
of	
  produced	
  events	
  in	
  this	
  channel	
  is	
  expected	
  to	
  be:	
  

Higgs total width: � “ 4.18 ¨ 10´3 GeV

Higgs decay BR (�i{�)
H Ñ bb 5.61 ¨ 10´1`3.3%

´3.4%

H Ñ ⌧⌧ 6.16 ¨ 10´2`5.6%
´5.6%

H Ñ cc 2.83 ¨ 10´2`12.2%
´12.2%

H Ñ gg 8.48 ¨ 10´2`10.1%
´9.9%

H Ñ �� 2.28 ¨ 10´3`4.9%
´4.8%

H Ñ WW 2.31 ¨ 10´1`4.1%
´4.1%

H Ñ ZZ 2.89 ¨ 10´2`4.1%
´4.1%

Table 1.2: Branching ratios of main Higgs decays at
?
s “ 7 TeV and mH “ 126

GeV [5].

1.2 The l⌫-jet-jet final state

In this thesis, a multiresolution analysis method is applied to the detection of
small peaks in invariant mass spectrum. Such a technique could be useful for an
improvement of Higgs studies, allowing to measure Higgs decay channels which
have not been detected with conventional tools.
Another application is to use a multiresolution analysis tool for the search of new
resonances in invariant mass spectrum.
This analysis concentrates on the l⌫jj final state, applying multiresolution analysis
to the dijet invariant mass. Expected Standard Model signals are the semileptonic
decay ofWW orWZ (diboson) and associated production ofHW , with H decaying
into two jets. This channel is also sensitive to eventual evidence of physics beyond
the Standard Model.

1.2.1 Expected Standard Model signals

Diboson

A WW or WZ pair is produced by the hard interaction of two partons: the
processes involved are reported in expression (1.5) for WW and (1.6) for WZ.

q ` q Ñ W`W´ g ` g Ñ W`W´ (1.5)

12
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NWH ⇠ 200 events

Cross	
  sec9on	
  at	
  √s=7	
  TeV	
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EVENT SELECTION�

u The	
  analysis	
  is	
  performed	
  on	
  data	
  acquired	
  by	
  the	
  ATLAS	
  experiment	
  in	
  2011:	
  √s=7	
  TeV	
  
and	
  integrated	
  luminosity	
  	
  L=4.702	
  X-­‐1.	
  

u Dijets	
  events	
  are	
  selected	
  by	
  requiring	
  a	
  W	
  ⟶	
  lν	
  decay.	
  

Ø  Select	
  one	
  single	
  charged	
  lepton	
  (muon	
  or	
  electron)	
  passing	
  the	
  
lepton	
  selec9on:	
  
•  Lepton	
  trigger	
  +	
  pT	
  >	
  25	
  GeV	
  
•  |η|	
  <	
  2.4	
  	
  
•  Cut	
  on	
  impact	
  parameter	
  with	
  respect	
  to	
  primary	
  vertex.	
  
•  Track	
  and	
  calorimeter	
  isola9on.	
  

Ø  Events	
  must	
  have	
  a	
  neutrino:	
  Etmiss	
  >25	
  GeV	
  

Ø  Select	
  W	
  events:	
  MT	
  >	
  40	
  GeV	
  

u  Jet	
  selec9on	
  to	
  reduce	
  background:	
  
•  pT	
  >	
  25	
  GeV	
  
•  |η|	
  <	
  2.8	
  
•  Jet	
  Vertex	
  Frac9on	
  >	
  0.75	
  (to	
  reject	
  pile-­‐up)	
  
•  ΔR(j,l)	
  >	
  0.5	
  	
  

Ø  The	
  two	
  jets	
  of	
  highest	
  pT	
  are	
  used	
  to	
  build	
  the	
  invariant	
  mass	
  
spectrum.	
  

htemp
Entries  522804

Mean   1.494e+05

RMS    1.23e+05

Mjj (GeV)
0 500 1000 1500 2000 2500 3000

310×1

10

210

310

410

510

htemp
Entries  522804

Mean   1.494e+05

RMS    1.23e+05jet-jet invariant mass distribution

Muon	
  channel.	
  
Inclusive	
  selec9on.	
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INVARIANT	
  MASS	
  SPECTRUM	
  
Muon	
  channel.	
  
Inclusive	
  selec9on.	
  

Electron	
  channel.	
  
Inclusive	
  selec9on.	
  

•  The	
  mass	
  spectrum	
  has	
  a	
  maximum	
  at	
  
around	
  80	
  GeV.	
  

•  At	
  higher	
  mass	
  it	
  decreases	
  
exponen9ally	
  

•  It	
  reaches	
  values	
  of	
  Mjj	
  >	
  2	
  TeV	
  in	
  
both	
  channels.	
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WAVELET ANALYSIS: AN INTRODUCTION�

u A	
  mul9resolu9on	
  method	
  allows	
  to	
  separate	
  structures	
  of	
  different	
  dimensions	
  in	
  mass.	
  

u The	
  wavelet	
  analysis	
  is	
  a	
  mul9scale	
  method	
  based	
  on	
  wavelet	
  transform.	
  
Ø  It	
  was	
  developed	
  for	
  the	
  detec9on	
  of	
  local	
  structures	
  in	
  9me	
  series.	
  
Ø  It	
  can	
  be	
  applied	
  to	
  the	
  analysis	
  of	
  any	
  random	
  variable	
  m	
  of	
  density	
  f(m).	
  

u Wavelet	
  transform	
  (con9nuous	
  case):	
  
Ø  Here,	
  ψ	
  is	
  the	
  Mexican	
  Hat	
  (DoG)	
  

func9on.	
  
Ø  It	
  can	
  be	
  any	
  local	
  func9on	
  with	
  zero	
  

mean.	
  

4.1 The wavelet transform

As previously stated, the wavelet transform can be interpreted as a sort of local
Fourier transform, where the complex exponential is replaced by a local function
of variable scale.
If  0p⇠q is a complex function satisfying the wavelet function “admissibility” re-
quirements, then the wavelet transform of a function fpmq is defined in equation
(4.2), where  ˚p⇠q is the wavelet complex conjugate.

W pm, sq “
ª
fpm1q ¨  ˚

ˆ
m1 ´ m

s

˙
dm1 (4.2)

The wavelet function  
`
m1´m

s

˘
is named a daughter of the mother wavelet  0,

centered in m and scaled by the wavelet scale s.
The scale s changes the ‘size’ of the wavelet. In practice, W pm, sq explores fpmq
at the mass m with a resolution s (this can be particularly evident in the case  0

is the DoG wavelet, reported in the third line of table 4.1). By varying m through
the whole mass range and s through all resolvable scales, fpmq is represented in
two dimensions: the mass and the resolution.
This is a convenient tool for the search of hidden structures in the case fpmq is an
experimental quantity. W pm, sq gives a global picture of fpmq features: at large
scales, only very large structures will appear, while at smaller scale the wavelet
transform is sensitive to very small details that can confuse the pattern. Some
intermidiate scale could reveal interesting structures.
The discrete case is equivalent. The function fpmq is replaced by the discrete
quantity xn; if N is the total number of bins, the wavelet transform is defined in
equation (4.3).

W pm, sq “ Wnpsq “
N´1ÿ

n1“0

xn1 ¨  ˚
ˆpn1 ´ nq�m

s

˙
being : m “ n ¨ �m (4.3)

In literature, many types of wavelet functions are considered, figure 4.1 lists a few
of the more common ones.
In this thesis, the Mexican Hat wavelet function (also named DoG as reported
in figure 4.1) is used as mother wavelet for the entire analysis, because its bell-
shaped profile is similar to that of the searched resonances. The wavelet transform
is therefore expected to be sensitive to the intensity of data structures and their
position in mass4.
Wavelet analysis is then performed by representing and quantitatively analyzing
the wavelet transform W pm, sq as a function of both the mass and the scale.

4Oscillating  0 are used for other purposes, e.g. searching for a localized periodicity in data.

39

u Varying	
  m	
  and	
  the	
  scale	
  s,	
  W(m,s)	
  gives	
  a	
  global	
  picture	
  of	
  f(m)	
  features.	
  
	
  
	
  
u  In	
  prac9ce,	
  f(m)	
  is	
  subs9tuted	
  by	
  the	
  mass	
  histogram.	
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the wavelet transform W pm, sq as a function of both the mass and the scale.

4Oscillating  0 are used for other purposes, e.g. searching for a localized periodicity in data.
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4.1 The wavelet transform

As previously stated, the wavelet transform can be interpreted as a sort of local
Fourier transform, where the complex exponential is replaced by a local function
of variable scale.
If  0p⇠q is a complex function satisfying the wavelet function “admissibility” re-
quirements, then the wavelet transform of a function fpmq is defined in equation
(4.2), where  ˚p⇠q is the wavelet complex conjugate.

W pm, sq “
ª
fpm1q ¨  ˚

ˆ
m1 ´ m

s

˙
dm1 (4.2)

The wavelet function  
`
m1´m

s

˘
is named a daughter of the mother wavelet  0,

centered in m and scaled by the wavelet scale s.
The scale s changes the ‘size’ of the wavelet. In practice, W pm, sq explores fpmq
at the mass m with a resolution s (this can be particularly evident in the case  0

is the DoG wavelet, reported in the third line of table 4.1). By varying m through
the whole mass range and s through all resolvable scales, fpmq is represented in
two dimensions: the mass and the resolution.
This is a convenient tool for the search of hidden structures in the case fpmq is an
experimental quantity. W pm, sq gives a global picture of fpmq features: at large
scales, only very large structures will appear, while at smaller scale the wavelet
transform is sensitive to very small details that can confuse the pattern. Some
intermidiate scale could reveal interesting structures.
The discrete case is equivalent. The function fpmq is replaced by the discrete
quantity xn; if N is the total number of bins, the wavelet transform is defined in
equation (4.3).

W pm, sq “ Wnpsq “
N´1ÿ

n1“0

xn1 ¨  ˚
ˆpn1 ´ nq�m

s

˙
being : m “ n ¨ �m (4.3)

In literature, many types of wavelet functions are considered, figure 4.1 lists a few
of the more common ones.
In this thesis, the Mexican Hat wavelet function (also named DoG as reported
in figure 4.1) is used as mother wavelet for the entire analysis, because its bell-
shaped profile is similar to that of the searched resonances. The wavelet transform
is therefore expected to be sensitive to the intensity of data structures and their
position in mass4.
Wavelet analysis is then performed by representing and quantitatively analyzing
the wavelet transform W pm, sq as a function of both the mass and the scale.

4Oscillating  0 are used for other purposes, e.g. searching for a localized periodicity in data.
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4.2 Wavelet transform calculation

In this section, some aspects of practical wavelet transform calculation are pre-
sented.
Although it is possible to calculate the wavelet transform of a discrete sequence xn

using equation (4.3), it is considerably faster to do the calculation in Fourier space
[1]. To apply equation (4.3), it would be necessary to calculate the convolution as
many times as the number of bins (for each scale), while the convolution theorem
allows to do all the convolutions simultaneously for each scale.
The discrete Fourier transform of xn is given by equation (4.4), where k “ 0...N´1
is the frequency index, while the Fourier transform of a (continous) function
 pm{sq is  ̂ps!q.

x̂k “ 1

N

N´1ÿ

n“0

xne
´i2⇡kn{N (4.4)

By the convolution theorem, the wavelet transform is the inverse Fourier transform
of the product x̂k ¨  ̂ps!kq, as in the equation (4.5), where !k is defined as in
equation (4.6).

W pm, sq “ Wnpsq “
N´1ÿ

k“0

x̂k ̂
˚ps!kqei!k

n�m (4.5)

!k “
"

2⇡k
N�m

if k § N
2

´ 2⇡k
N�m

if k ° N
2

(4.6)

Using equation (4.5) and a Fourier transform routines, the wavelet transform can
be calculated at all n simultaneously and e�ciently for any given s [1].

4.2.1 Choice of scales

W pm, sq, as a continuos function of s, can be approximated by computing the
wavelet transform for a set of scales.
In many cases6 a suitable set of scales must be chosen to build up a more complete
picture.
In literature, it is proposed as the most convenient choice to write the scales as
fractional powers of two (as given by expression (4.7)). This solution will be
adopted here too.

sj “ s02
j�j , j “ 0, 1, ..., J (4.7)

6Wavelet functions  form a set of functions that can be orthogonal or non-orthogonal. In
the orthogonal case the set is discrete and therefore the choice is limited to a discrete set of
scales. Here, nonorthogonal wavelets are considered and one can use an arbitrary set of scales.
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EXPECTED SIGNAL�

4.3.3 Signal shape

In wavelet analysis, the intensity and width of a signal peak must be extracted
from the shape of the W pm, sq peak.
The wavelet transform (using the DoG wavelet) of a gaussian shape can be com-
puted explicitly by continuos wavelet transformation. Equation (4.14) shows the
result for a gaussian of mean µ and variance �2. It has been used m “ n dm where
m is the mass, n the bin number and dm the bin width.

W pm, sq “ Aps, �q ¨ �m ¨ Nev ¨
ˆ
1 ´ pn�m ´ µq2

�2 ` s2

˙
e

´ pn�m´µq2
2p�2`s

2q (4.14)

W pm, sq is therefore expected to peak at the signal mass and the peak intensity
to be proportional to the number of signal events Nev.
As a consequence of wavelet transform definition, the values of W at di↵erent
masses (and scales) are hightly correlated, so that a fit of W pmq at fixed s (or
vice-versa) should be avoided.
In literature [34] it is suggested that the best reconstruction of signal properties
should be done by measuring W pm, sq peak in scale and mass.
In next sections, various methods to define a calibration relation between W peak
and signal intensity and standard deviation will be shown. AlthoughW pm, sq peak
resulted to be proportional to the number of signal events Nev, the calibration is
complicated by the presence of a varying background in wavelet transform.
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  shape,	
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corresponding	
  to	
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  mean.	
  

	
  

u W(m,s)	
  depends	
  linearly	
  on	
  the	
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  of	
  
events.	
  

	
  

u W(m,s)	
  depends	
  also	
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Ø  It	
  is	
  not	
  expected	
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  be	
  highly	
  sensi9ve	
  
to	
  signal	
  width,	
  due	
  to	
  the	
  DoG	
  shape.	
  	
  



23/10/13	
   Margherita	
  Spalla	
   9	
  

DEPENDENCE ON SIGNAL PARAMETERS: CHECK WITH TOY MONTECARLO �

scales. At these scales, the wavelet function is larger than the signal: for this rea-
son the signal width is not expected to have large e↵ects on the wavelet transform
shape.
In any case, the dependence of wavelet transform on signal standard deviation (�)
has been evaluated.
For the study of signal standard deviation, the scale position and the width in
mass of the peak of the wavelet transform should both be considered.
Due to the DoG-like shape of the wavelet transform, the easiest way to define the
peak width is to evaluate the intercept of the wavelet transform with the W “ 0
line. The half width at zero is defined at fixed scale, as shown in figure 5.12: given
the peak mass m0, the first zero at m ° m0 and m † m0 are found. The half
width at zero is the distance between the two zeroes (in red in figure 5.12) divided
by 2.
This observable is expected to depend both on signal � and on the scale at which
the width is calculated.

Figure 5.12: Graphic example to clarify how the half width at zero is defined. The
shape of W pm, sq is of the same kind as the one obtained from a real wavelet
transform, but it should not be considered as significative example.

A method similar to the one proposed for the number of events is followed to
evaluate the dependence on signal standard deviation. The signal half width at
zero can is computed for the maxima found by the contour algorithm. In previous
section, three definitions of the wavelet transform maximum are provided. Refer-
ring to each of these three maxima, a correspondent definition of the half width
at zero is provided.

64
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  maximum	
  of	
  W(m,s)	
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  the	
  number	
  of	
  signal	
  events.	
  

Ø  The	
  maximum	
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  defined	
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  at	
  fixed	
  scale	
  (red,	
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  (blue).	
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  in	
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  width.	
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BACKGROUND EFFECTS, UNIFORM BACKGROUND �

u Flat	
  background	
  is	
  the	
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  in	
  which	
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literature.	
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  for	
  the	
  analysis.	
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Figure 5.3: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed mass m “ 100 GeV.
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Figure 5.4: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events): projection at
fixed scale. (a): scale index=35. (b): scale index=30. (c): scale index=25. (d):
scale index=20.
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Figure 5.4: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events): projection at
fixed scale. (a): scale index=35. (b): scale index=30. (c): scale index=25. (d):
scale index=20.
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Figure 6.5: Wavelet transform with an exponential background as a function of
mass and scale. Gaussian signal: 100 events, mean µ “ 100 GeV, standard devia-
tion � “ 15 GeV. Exponential background: 6000 events. In the plot (a) background
shape from the data fit has been subtracted. In the plot (b) no subtraction is done.

6.3 E�ciency and fakes rate

The e�ciency in case of background subtraction has been evaluated using the same
method of section 5.2.2. The contour algorithm (described in section 5.2.2) has
been used for the search of peaks.
The e�ciency has been evaluated using samples of 6000 exponential background
events, with a gaussian signal of standard deviation � “ 15 GeV and mean µ “ 100
GeV (figure 6.7 (a)), µ “ 40 GeV (figure 6.7 (b)) and µ “ 160 GeV (figure 6.7
(c)).
The method appears to be less e�cient than it was in the case of uniform back-
ground and data presents greater fluctuations. Also, comparing the case of µ “ 160
GeV (figure 6.7 (c)) with the other two, it can be observed the e�ciency increases
more, as a function of the number of events, for signals situated in the upper part
of the mass interval. This is easily explained by the fast decreasing of the back-
ground as a function of the mass. Fluctuations are smaller at higher mass1 and
this a↵ects signal detection e�ciency. This e↵ect can be seen in the plot (b) of
figure 6.4, showing the invariant mass plot after background subtraction.

Due to fit problems, the background subtraction can enhance the problem of fake
peaks.

1This because the bin contents are Poisson variables: as the mean decreases, the standard
deviation (i.e. the amplitude of the fluctuation) decreases consequently.
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Figure 6.3: Wavelet transform with an exponential background as a function of
mass and scale. Gaussian signal: 100 events, mean µ “ 140 GeV, standard devi-
ation � “ 15 GeV. Exponential background: 6000 events.

6.1.1 Background subtraction

In order to more easily distinguish the signal in the case of an exponentially
decreasing background, background subtraction is performed before the wavelet
transform is computed.
The background shape has been determined directly by fitting the data histogram.
Figure 6.4 (a) shows an example: the sample is composed by 6000 events of back-
ground, exponentially distributed, plus 100 signal events with mass µ “ 100 GeV
and standard deviation � “ 15 GeV. An exponential fit is superimposed. To pro-
vide a more clear plot, the bin width of mass histograms in figure 6.4 has been
enlarged with respect to that used for wavelet analysis.
The fit of background shape is of high importance in this analysis, since the wavelet
transform is sensitive to any structures a poor fit could produce. For this reason,
the fit function should be carefully chosen for any data sample and fit quality
should be checked properly.
Figure 6.4 shows an example of how fit quality is checked. Plot (b) shows the
invariant mass plot after background subtraction, fitted by a constant function.
Figure 6.4 (c) shows the distribution of pulls. If xn is the content of the bin at
mass mn and fpmnq is the fit function evaluated at mn, the pull ✏n is then defined
as in equation (6.2). �n is the standard deviation of the variable xn: being the bin
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Prob   0.005036
Constant  0.022± 4.006 
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Figure 6.4: Fit of invariant mass shape (a), the invariant mass histogram after
background subtraction fitted with a constant function (b) and the pull distribution
(c). Gaussian signal: 100 events, mean µ “ 100 GeV, standard deviation � “ 15
GeV. Exponential background: 6000 events. Invariant mass histogram have been
rebinned to provide a more clear picture.
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Figure 6.5: Wavelet transform with an exponential background as a function of
mass and scale. Gaussian signal: 100 events, mean µ “ 100 GeV, standard devia-
tion � “ 15 GeV. Exponential background: 6000 events. In the plot (a) background
shape from the data fit has been subtracted. In the plot (b) no subtraction is done.

6.3 E�ciency and fakes rate

The e�ciency in case of background subtraction has been evaluated using the same
method of section 5.2.2. The contour algorithm (described in section 5.2.2) has
been used for the search of peaks.
The e�ciency has been evaluated using samples of 6000 exponential background
events, with a gaussian signal of standard deviation � “ 15 GeV and mean µ “ 100
GeV (figure 6.7 (a)), µ “ 40 GeV (figure 6.7 (b)) and µ “ 160 GeV (figure 6.7
(c)).
The method appears to be less e�cient than it was in the case of uniform back-
ground and data presents greater fluctuations. Also, comparing the case of µ “ 160
GeV (figure 6.7 (c)) with the other two, it can be observed the e�ciency increases
more, as a function of the number of events, for signals situated in the upper part
of the mass interval. This is easily explained by the fast decreasing of the back-
ground as a function of the mass. Fluctuations are smaller at higher mass1 and
this a↵ects signal detection e�ciency. This e↵ect can be seen in the plot (b) of
figure 6.4, showing the invariant mass plot after background subtraction.

Due to fit problems, the background subtraction can enhance the problem of fake
peaks.

1This because the bin contents are Poisson variables: as the mean decreases, the standard
deviation (i.e. the amplitude of the fluctuation) decreases consequently.
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EXPONENTIAL BACKGROUND �

u Exponen9al	
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  W(m,s).	
  
	
  
u The	
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  strategy	
  is	
  background	
  subtrac9on.	
  	
  

u A	
  qualita9ve	
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  on	
  a	
  signal	
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  transform	
  without	
  background	
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FLAT BACKGROUND: DEPENDENCE ON NUMBER OF SIGNAL EVENTS�

Uniform	
  background:	
  
6000	
  events.	
  

u Maximum	
  of	
  W(m,s):	
  
Ø  Nonzero	
  intercept,	
  due	
  to	
  the	
  inclusion	
  

of	
  background	
  events	
  in	
  the	
  wavelet	
  
convolu9on.	
  	
  

Blue:	
  Wmax(N)	
  at	
  variable	
  scale	
  
Green	
  and	
  red:	
  Wmax(N)	
  at	
  fixed	
  scale	
  

(a)

(b)

Figure 5.10: Wmax (blue), W fixedS
max (red) and W pmmax, s0q (green) for varying num-

ber of signal events (the fixed scale is js0 “ 29). The signal standard deviation is
� “ 15 GeV. (a): no background is added. (b): 6000 events of uniform background
are added. The three variables have bin fitted with a linear function: fit results are
also shown.
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u Dependence	
  on	
  number	
  of	
  signal	
  events	
  ater	
  background	
  subtrac9on.	
  
Ø  Condi9ons	
  are	
  similar	
  to	
  that	
  with	
  flat	
  background.	
  

Exponen9al	
  background:	
  
6000	
  events.	
  
Signal:	
  μ=100	
  GeV,	
  σ=15	
  GeV	
  

Wmax(N)	
  
Variable	
  scale	
  

Wmax(N)	
  
Fixed	
  scale	
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Fixed	
  scale	
  

EXPONENTIAL BACKGROUND: DEPENDENCE ON NUMBER OF SIGNAL EVENTS�
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UNIFORM BACKGROUND: EFFICIENCY�
u For	
  each	
  toy	
  MonteCarlo	
  sample,	
  we	
  looked	
  for	
  a	
  W(m,s)	
  local	
  maximum:	
  

Ø within	
  the	
  region	
  js≥25	
  
Ø  compa9ble	
  with	
  the	
  inserted	
  signal.	
  
	
  

u  The	
  efficiency	
  is	
  defined	
  as	
  the	
  frac9on	
  of	
  cases	
  in	
  which	
  a	
  compa9ble	
  W(m,s)	
  
peak	
  is	
  found.	
  
Ø  It	
  is	
  large	
  even	
  for	
  very	
  small	
  signals.	
  

Flat	
  background:	
  	
  
6000	
  events.	
  
Signal:	
  	
  
μ=100	
  GeV,	
  σ=15	
  GeV	
  

u Efficiency	
  has	
  been	
  
compared	
  to	
  what	
  found	
  
with	
  simple	
  fit	
  methods	
  
(gaussian	
  +	
  constant).	
  This	
  
method	
  is	
  definitely	
  more	
  
efficient.	
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EXPONENTIAL BACKGROUND: EFFICIENCY AND FAKE RATE�

u The	
  efficiency	
  is	
  similar	
  to	
  what	
  
computed	
  for	
  flat	
  background.	
  
Ø  A	
  bit	
  smaller	
  and	
  affected	
  by	
  

greater	
  fluctua9ons.	
  

W pNevq: exponential background, subtracted.
slope constant term

Wmax 0.037 ˘ 0.0021 2.4 ˘ 0.23

W fixedS
max 0.036 ˘ 0.0025 1.6 ˘ 0.25

W pmmax, s0q 0.038 ˘ 0.0026 1.3 ˘ 0.28

Table 6.1: Results of the linear fit of the three variables used as wavelet trans-
form peak height as a function of the number of signal events. Results with 6000
background events and a gaussian signal of µ “ 100 GeV and standard deviation
� “ 15 GeV are presented.

The definition of the fake rate is not simple: the bell-shape of the wavelet tends
to simulate peaks also in absence of signal.
On the other hand, in the scale region of acceptable signals (js • 25), the wavelet
width is large (10-100 GeV): this means that independent maxima are rare at this
scale and the fluctuations of W pm, sq that could result in a fake peak are in fact
eated up by the signal. If the fakes become less, the signal is corrupted by the
background fluctuations.
These are qualitative considerations, but they impliy that the fake rate measured
by counting the peaks found in absence of signal is not a good estimation of the
background when a signal is really there.
However, the amount of fake peaks found in background-only samples, is a param-
eter of interest when applying the wavelet analysis to the search of new structures
in data.
This ‘background-only fake rate’ has been evaluated with an exponentially de-
creasing toy MonteCarlo sample, composed by 6000 events of background and no
signals added. The sample has been analyzed via the contour algorithm2 and using
a mass µ “ 100 GeV to define the center of the acceptance region.
The result is the percentage of fake peaks reported in (6.3).

Rfakes “ 0.567 ˘ 0.0082 (6.3)

The simple counting is a poor way to define the fakes: a confidence level must
then be defined to evaluate the significance of found peaks.
Before moving to confidence level definition, we have considered the maximum

2The contour algorithm is the same as was described is section 5.2.1, but in this case no
check on the acceptance region is done (i.e. point (4.) of description in section 5.2.1 should be
ignored.
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u A	
  confidence	
  level	
  must	
  be	
  defined	
  to	
  evaluate	
  the	
  significance	
  of	
  found	
  peaks.	
  
Ø  We	
  use	
  the	
  W(m,s)	
  maximum	
  height	
  as	
  sta9s9c.	
  

	
  
u The	
  fake	
  rate	
  is	
  possibly	
  increased	
  by	
  fit	
  problems:	
  

Ø  	
  evaluated	
  applying	
  the	
  efficiency	
  algorithm	
  to	
  background-­‐only	
  MonteCarlo	
  
samples	
  (6000	
  events).	
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u The	
  significance	
  level	
  is	
  computed	
  locally,	
  evalua9ng	
  W(m,s)	
  distribu9on,	
  fixed	
  m,s.	
  
Ø  xn	
  are	
  Poisson	
  variables:	
  we	
  assume	
  gaussian	
  approxima9on	
  to	
  be	
  valid	
  	
  
	
  

	
   	
   	
  	
   	
  ⇒	
  	
  W(m,s)	
  ～	
  N(0,σ(m,s))	
  	
  
	
  

	
  
	
  

Ø  The	
  α	
  confidence	
  level	
  should	
  be	
  compared	
  to	
  W(m,s)/σ(m,s).	
  

u The	
  frac9on	
  of	
  false	
  posi9ve	
  is	
  large	
  since	
  in	
  W(m,s)	
  plot	
  the	
  number	
  of	
  independent	
  
channels	
  is	
  large	
  and	
  difficult	
  to	
  quan9fy	
  because	
  high	
  and	
  not	
  uniform	
  correla9on	
  
between	
  m×s	
  bins.	
  

Ø  To	
  reduce	
  the	
  fake	
  rate,	
  a	
  global	
  confidence	
  level	
  should	
  be	
  defined.	
  

Ø  The	
  defini9on	
  is	
  made	
  difficult	
  by	
  correla9on	
  effects.	
  

4.1 The wavelet transform

As previously stated, the wavelet transform can be interpreted as a sort of local
Fourier transform, where the complex exponential is replaced by a local function
of variable scale.
If  0p⇠q is a complex function satisfying the wavelet function “admissibility” re-
quirements, then the wavelet transform of a function fpmq is defined in equation
(4.2), where  ˚p⇠q is the wavelet complex conjugate.

W pm, sq “
ª
fpm1q ¨  ˚

ˆ
m1 ´ m

s

˙
dm1 (4.2)

The wavelet function  
`
m1´m

s

˘
is named a daughter of the mother wavelet  0,

centered in m and scaled by the wavelet scale s.
The scale s changes the ‘size’ of the wavelet. In practice, W pm, sq explores fpmq
at the mass m with a resolution s (this can be particularly evident in the case  0

is the DoG wavelet, reported in the third line of table 4.1). By varying m through
the whole mass range and s through all resolvable scales, fpmq is represented in
two dimensions: the mass and the resolution.
This is a convenient tool for the search of hidden structures in the case fpmq is an
experimental quantity. W pm, sq gives a global picture of fpmq features: at large
scales, only very large structures will appear, while at smaller scale the wavelet
transform is sensitive to very small details that can confuse the pattern. Some
intermidiate scale could reveal interesting structures.
The discrete case is equivalent. The function fpmq is replaced by the discrete
quantity xn; if N is the total number of bins, the wavelet transform is defined in
equation (4.3).

W pm, sq “ Wnpsq “
N´1ÿ

n1“0

xn1 ¨  ˚
ˆpn1 ´ nq�m

s

˙
being : m “ n ¨ �m (4.3)

In literature, many types of wavelet functions are considered, figure 4.1 lists a few
of the more common ones.
In this thesis, the Mexican Hat wavelet function (also named DoG as reported
in figure 4.1) is used as mother wavelet for the entire analysis, because its bell-
shaped profile is similar to that of the searched resonances. The wavelet transform
is therefore expected to be sensitive to the intensity of data structures and their
position in mass4.
Wavelet analysis is then performed by representing and quantitatively analyzing
the wavelet transform W pm, sq as a function of both the mass and the scale.

4Oscillating  0 are used for other purposes, e.g. searching for a localized periodicity in data.
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equation (4.11).

W pm, sq “
N´1ÿ

n1“0

xn1 ¨  ˚
ˆpn1 ´ nq�m

s

˙
“

N´1ÿ

n1“0

xn1 ¨ cn1pm, sq (4.11)

W pm, sq distribution has been simplified by assuming gaussian approximation to
be valid for xn distribution. Furthermore, significance level calculation is done,
here, after background subtraction (see section 4.3.1), so that the bin contents are
distributed as gaussian variables with µb “ 0 and �b “ xn, where xn is the bin
content mean before background subtraction.
W pm, sq is thus distributed as a gaussian of zero mean and variance �2

pm,sq given
by equation (4.12).

�2
pm,sq “ V arpW pm, sqq “

N´1ÿ

n1“0

xn1 ¨ |cn1pm, sq|2 (4.12)

The ↵ confidence level is computed for a standard normal distribution Np0, 1q, as
in equation (4.13). Since we are interested in detecting only positive peaks, the
confidence level is calculated only for the upper tail of the gaussian distribution.

↵ “
ª 8

x
CL

Np0, 1qdx (4.13)

The obtained level is then compared to W pm, sq{�pm,sq („ Np0, 1q if H0), i.e. the
wavelet transform scaled by the standard deviation �pm,sq, dependent on the mass
and scale values.
This method have been tested on background samples obtained with toy Monte-
Carlo; a detailed description will be presented in section 6.7.
In this thesis has been used ↵ “ 5%. This is a local confidence level, computed
for each single bin.
The global significance (i.e. the probability of having more than one signal any-
where in the mass region) should also be computed in case of claim of a new signal.
However, gaussian signals as those expected for this thesis (NpµS, �

2 » p15GeVqq2)
are mainly detected at large scales (see chapter 5). At these scales the DoG wavelet
is almost as wide as the considered mass interval. This limits the number of pos-
sible independent fake signals.
Also, the values of the wavelet transform at varying mass and scale are all corre-
lated and this complicates the definition of a global confidence level.
These fine details won’t be further discussed in this thesis.
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level has been averaged over 100 events, it is reported in equation 6.4.

RoverCL
fakes “ 0.46 (6.4)

The fake rate is not negligible, a global confidence level should be calculated to
have more stringent results on the significance of W pm, sq maxima. However, the
definition of a global confidence level for wavelet transform is not simple, due to
the large and not uniform correlation e↵ects a↵ecting the value of W pm, sq at
di↵erent masses and scales.
In this thesis, only statistical considerations based on the local confidence level
will be presented, the statistical calculation of a global confidence level is left to
further work.
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CONFIDENCE LEVEL�

equation (4.11).
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= 5%

u We	
  evaluated	
  the	
  mean	
  number	
  of	
  peaks	
  exceeding	
  the	
  95%	
  confidence	
  level	
  via	
  toy	
  
MonteCarlo.	
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WAVELET ANALYSIS OF JET-JET MASS SPECTRUM �

W/Z	
  mass.	
  

W/Z	
  SIGNAL	
  

u The	
  detec9on	
  of	
  W/Z	
  boson	
  is	
  
complicated	
  because	
  the	
  background	
  
peaks	
  at	
  about	
  80	
  GeV.	
  

Ø  The	
  wavelet	
  transform	
  detects	
  a	
  
huge	
  peak,	
  but	
  it	
  is	
  impossible	
  to	
  
correctly	
  separate	
  signal	
  and	
  
background	
  effects.	
  

u The	
  problem	
  could	
  be	
  fixed	
  by	
  refining	
  
the	
  sample	
  selec9on.	
  	
  

[100,200]	
  GeV	
  MASS	
  REGION	
  

u The	
  decreasing	
  background	
  have	
  been	
  fised	
  with	
  an	
  exponen9al	
  and	
  subtracted.	
  

Ø  Fit	
  quality	
  appeared	
  to	
  be	
  sa9sfactory	
  

u Wavelet	
  transform	
  has	
  then	
  been	
  computed.	
  

Muon	
  channel.	
  
Inclusive	
  selec9on.	
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FIT QUALITY: EXAMPLE OF ELECTRON CHANNEL�
(a)
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mjj for wavelet analysis
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pull distribution

(c)

Figure 7.2: Fit quality for jet-jet invariant mass spectrum in the region mjj P
r100, 200s GeV, electron channel. (a): fit of invariant mass shape. (b): the invari-
ant mass histogram after background subtraction fitted with a constant function.
(c): and the pull distribution. Fit results are reported.
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content a Poisson variable, the standard deviation of xn is �n “ ?
xn.

✏n “ xn ´ fpmnq
�n

(6.2)

If the fit is correct, the pull distribution is expected to be a standard normal
Np0, 1q. A gaussian fit is performed in figure 6.4 (c): the results (reported in the
figure) are compatible with a normal distribution with zero mass and standard
deviation equal to one.
The result of background subtraction is shown in figure 6.5. The same data sample
presented in figure 6.4 has been processed via the wavelet transform: plot (a) shows
the wavelet transform after background has been subtracted, plot (b) shows the
wavelet transform without any background subtraction.
The signal peak appears now to be much more evident and larger structures due
to background have been removed.
Details of the method performances when background subtraction is applied are
presented in the following.

6.2 Dependence on signal intensity

The dependence of wavelet peak maximum on number of signal events has been
evaluated after background subtraction.
To evaluate the peak height we have used the maximum of W pm, sq, Wmax, and
the two definitions of maximum at fixed scale W fixedS

max and W pmmax, s0q, as defined
in section 5.2.2.
For consistence with the previous results, the fixed scale index used is js0 “ 29.
Figure 6.6 shows the result for a signal of mean µ “ 100 GeV and standard
deviation � “ 15 GeV over an exponential background of 6000 events. Wmax

(blue), W fixedS
max (red) and W pmmax, s0q (green) are plotted together.

The linearity is still evident also after background subtraction. A linear fit has
been performed and the three variables resulted to have compatible slopes, a bit
larger than in the case of flat background. The constant term of the fit is bigger
for Wmax, which then seems to be more sensitive to the presence of background.
Table 6.1 summarizes the fit results in the three cases.
The three variables, Wmax, W fixedS

max and W pmmax, s0q, are both acceptable for
the extraction of the number of signal events. In section 7.2.2 the calibration
for the data sample background conditions is discussed: the calibration method
introduced here will be tested using MonteCarlo simulation that reproduce the
data sample shape, using low signal over background ratios.
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Expected	
  to	
  be	
  a	
  standard	
  normal	
  
distribu9on.	
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RESULTS IN [100,200] GeV MASS REGION�

u The	
  peak	
  mass	
  have	
  been	
  computed,	
  its	
  
uncertainty	
  is	
  given	
  by	
  the	
  scale	
  at	
  which	
  the	
  
maximum	
  have	
  been	
  found.	
  

Higgs’ boson mass from ATLAS: 

The contour algorithm finds the wavelet maximum Wmaxpmmax, smaxq in the scale
region js • 25: the mass mmax at which the maximum in found is used to estimate
the peak mass.

Figure 7.5: Wavelet transform (W pm, sq) of the invariant mass spectrum of two
jets associated with a W decaying leptonically in W Ñ µ⌫ (muon channel): tridi-
mensional view. The wavelet transform has been computed in the mass region
mjj P r100, 200s GeV, after background subtraction. It is represented as a function
of mass and scale.

The uncertainty on mmax is given by the scale of the maximum smax: in section
5.2.2 it has been shown that standard deviation of signals only weakly e↵ects the
wavelet transform width, which mostly depends on the scale. For this reason the
scale smax is the better estimator for mass uncertainty3.
The peak masses found in this way for the two channels are listed in table 7.1.
The peak masses in the two channels are compatible to each other. Also they are
compatible with the Higgs boson mass as measured by the CERN experiments AT-
LAS (mH “ 126˘ 0.4 pstatq ˘ 0.4psysq GeV) and CMS (mH “ 125.3˘ 0.4 pstatq ˘
0.5psysq GeV) [7],[8].

3This choice is consistent with definition of the acceptance region for the calculation of
e�ciency proposed in section 5.2.1.

90

Detected peak mass (GeV)

Muon channel 131 ˘ 14

Electron channel 125 ˘ 10

Table 7.1: Mass of the peak detected in dijet invariant mass spectrum via the
wavelet analysis in electron and muon channel. The mass range mjj P r100, 200s
has been used. The mass is the mass of the wavelet transform maximum, while its
uncertainty is given by the scale of the wavelet transform maximum.

Due to the jet energy resolution, the width of any resonance in dijet invariant mass
spectrum is expected to be of the order of 15 GeV. The uncertainties on the mass
value, are therefore of the expected order of magnitude, but a bit smaller than jet
energy resolution. However, here the purpose is to evaluate the results of wavelet
analysis method applied to real data: in the case this method is used to provide
a measure of any particle mass, uncertainties should be more carefully evaluated
considering the e↵ects of systematics.
Finally it must be pointed out that here the scale smax is not an estimator of signal
standard deviation (as described in section 5.2.2). Therefore, no considerations on
the signal width will be done via this method.
The conclusions on the evidence of a mass peak at mjj „ 126 GeV has been vali-
dated by repeating the analysis changing the mass range used for wavelet transform
calculation. In this way we have more evidence that the structures are not a by-
product of the boundaries.
The wavelet analysis has been applied to data moving the mass range to bigger
and smaller values. To avoid the background peak, it is impossible to check the
method result with strong variations of the mass range: checks have been done
using ranges mjj P r90, 190s GeV and mjj P r110, 210s GeV, results are reported
in table 7.2, while figure 7.7 shows the contour plots in the four cases.

The masses found in the three ranges are compatible. The maximum scale smax is
smaller in the mjj P r110, 210s GeV, while it slightly increase when mjj P r90, 190s
GeV. The reason is that when the peak is close to the range edge, a larger wavelet
is more influenced by edge e↵ects (see section 4.2.3) which tends to reduce its
height. For this reason, the peak is found at a smaller scale when the interesting
mass region is closer to the edge.
For the same reason, it can be seen (figure 7.7) that the peak of the wavelet trans-
form also tends to be higher when located in a more central region of the mass
interval. This is not always possible, because a good fit quality is also needed and
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u W(m,s)	
  shows	
  a	
  signal	
  at	
  a	
  mass	
  compa9ble	
  to	
  Higgs	
  mass	
  in	
  both	
  e	
  and	
  mu	
  channels	
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RESULTS IN [100,200] GeV MASS REGION: �
CONFIDENCE LEVEL�

u The	
  95%	
  local	
  confidence	
  level	
  computed	
  for	
  a	
  standard	
  normal	
  distribu9on	
  has	
  been	
  
compared	
  to	
  W(m,s)/σ(m,s)	
  of	
  the	
  peak.	
  

	
  
u Both	
  peaks	
  in	
  muon	
  and	
  electron	
  channel	
  resulted	
  to	
  be	
  significa9ve.	
  

u Beser	
  considera9ons	
  could	
  be	
  done	
  via	
  a	
  global	
  confidence	
  level	
  	
  
Ø  Due	
  to	
  the	
  difficul9es	
  in	
  defining	
  a	
  global	
  confidence	
  level	
  for	
  W(m,s),	
  this	
  topic	
  

has	
  not	
  been	
  developed	
  in	
  this	
  thesis.	
  	
  

Detected peak mass (GeV): muon channel

Subsample A 138 ˘ 17

Subsample B 128 ˘ 12

Table 7.3: Mass of the peak detected in dijet invariant mass spectrum via the
wavelet analysis in muon channel. The analysis has been repeated independently
using the subsamples A and B, each containing half of the original muon chan-
nel sample. The mass is the mass of the wavelet transform maximum, while its
uncertainty is given by the scale of the wavelet transform maximum.

The 95% confidence level is computed and compared to the wavelet transform
maximum divided by it’s standard deviation Wmaxpmmax, smaxq{�pm

max

,s
max

q.
Figure 7.10 shows the ratio W pm, sq{�m,s at fixed scale s “ smax, a red line has
been drawn to indicate the 5% significance level. Both muon channel (plot (a))
and electron channel (plot (b)) are significative at 95% confidence level.

(a) (b)

Figure 7.10: Wavelet transform of the jet-jet invariant mass spectrum for di↵erent
mass ranges divided by its standard deviation (W pm, sq{�m,s): projection at the
scale s “ smax where the peak maximum have been found. The wavelet transform
has been computed after background subtraction. (a): Muon channel. (b): Electron
channel. The 95% confidence level is indicated by the red line.

The confidence level can also be represented in the m ˆ s plane. Figure 7.11
shows the ratio W pm, sq{�m,s as a function of mass and scale index js for electron
and muon channel. A black contour has been fixed to the 5% confidence level.
As already pointed out in section 6.3.1 the confidence level considered here is a
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Electron	
  channel.	
  
W (m, s)

�(m,s)

Mjj	
  (GeV)	
  

Detected peak mass (GeV): muon channel

Subsample A 138 ˘ 17

Subsample B 128 ˘ 12

Table 7.3: Mass of the peak detected in dijet invariant mass spectrum via the
wavelet analysis in muon channel. The analysis has been repeated independently
using the subsamples A and B, each containing half of the original muon chan-
nel sample. The mass is the mass of the wavelet transform maximum, while its
uncertainty is given by the scale of the wavelet transform maximum.

The 95% confidence level is computed and compared to the wavelet transform
maximum divided by it’s standard deviation Wmaxpmmax, smaxq{�pm

max

,s
max

q.
Figure 7.10 shows the ratio W pm, sq{�m,s at fixed scale s “ smax, a red line has
been drawn to indicate the 5% significance level. Both muon channel (plot (a))
and electron channel (plot (b)) are significative at 95% confidence level.

(a) (b)

Figure 7.10: Wavelet transform of the jet-jet invariant mass spectrum for di↵erent
mass ranges divided by its standard deviation (W pm, sq{�m,s): projection at the
scale s “ smax where the peak maximum have been found. The wavelet transform
has been computed after background subtraction. (a): Muon channel. (b): Electron
channel. The 95% confidence level is indicated by the red line.

The confidence level can also be represented in the m ˆ s plane. Figure 7.11
shows the ratio W pm, sq{�m,s as a function of mass and scale index js for electron
and muon channel. A black contour has been fixed to the 5% confidence level.
As already pointed out in section 6.3.1 the confidence level considered here is a
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Muon	
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Slice	
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  where	
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peak	
  maximum	
  have	
  been	
  found.	
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Figure 7.9: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
for di↵erent mass ranges without background subtraction. It is represented as a
function of mass and scale, mass range mjj P r100, 200s GeV have been used. (a):
Muon channel. (b): Electron channel.
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Figure 7.9: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
for di↵erent mass ranges without background subtraction. It is represented as a
function of mass and scale, mass range mjj P r100, 200s GeV have been used. (a):
Muon channel. (b): Electron channel.
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RESULTS IN [100,200] GeV MASS REGION: �
QUALITATIVE CHECKS�

u Check	
  1:	
  the	
  analysis	
  was	
  repeated	
  moving	
  the	
  
mass	
  interval	
  of	
  ±10	
  GeV.	
  

mass range (GeV) Detected peak mass (GeV)

Muon channel Electron channel

r90, 190s 129 ˘ 17 129 ˘ 21

r110, 210s 132 ˘ 10 126 ˘ 7.5

Table 7.2: Mass of the peak detected in dijet invariant mass spectrum via the
wavelet analysis in electron and muon channel for di↵erent mjj ranges. The mass
is the mass of the wavelet transform maximum, while its uncertainty is given by
the scale of the wavelet transform maximum.

therefore the background peak must be excluded from the mass range used in the
analysis.
For this analysis, we keep the mass interval mjj P r100, 200s GeV, because the
peak of the background is completely outside the fit range and the interesting
mass region is not too close to the edges.
Another check of the obtained results have been done by dividing the muon sample
into two subsamples, each composed by half of the muon sample statistics, and
repeating the analysis for each subsample separately. The same check has not been
done with electron channel because in this case the statistic is much smaller4 and
a further division would compromise the quality of the result.

Figure 7.8 shows the wavelet transform computed for the two subsamples of muon
channel in the mass range mjj P r100, 200s GeV, a peak is visible in both the
plots. The masses (mmax) of the two maxima in figure 7.8 have been found via
the contour algorithm, as applied previously in this section; they are listed in table
7.3. As has been done in the case of the full data sample, the uncertainties over
measured masses are the scales smax at which the maximum has been found.
The results obtained with the two subsamples are compatible with both the results
from the whole sample and the Higgs’ mass reported in literature.

Signal peak without background subtraction

In section 6.1, it was observed that a signal over a decreasing background could
also be visible without background subtraction if the mass range is moved to put
the signal in the upper side of the interval (an example wa given in figure 6.3). In
this way, the negative valley that appears in the upper side of the range reduces

4247086 events are recorded in the electron channel sample and 522804 events in muon
channel sample
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u Check	
  2:	
  the	
  muon	
  sample	
  was	
  divided	
  in	
  two	
  
subsample	
  and	
  the	
  analysis	
  repeated	
  for	
  each	
  
one.	
   Detected peak mass (GeV): muon channel

Subsample A 138 ˘ 17

Subsample B 128 ˘ 12

Table 7.3: Mass of the peak detected in dijet invariant mass spectrum via the
wavelet analysis in muon channel. The analysis has been repeated independently
using the subsamples A and B, each containing half of the original muon chan-
nel sample. The mass is the mass of the wavelet transform maximum, while its
uncertainty is given by the scale of the wavelet transform maximum.

GeV.
The 95% confidence level is computed and compared to the wavelet transform
maximum divided by it’s standard deviation Wmaxpmmax, smaxq{�pm

max

,s
max

q.
Figure 7.10 shows the ratio W pm, sq{�m,s at fixed scale s “ smax, a red line has
been drawn to indicate the 5% significance level. Both muon channel (plot (a))
and electron channel (plot (b)) are significative at 95% confidence level.

(a) (b)

Figure 7.10: Wavelet transform of the jet-jet invariant mass spectrum for di↵erent
mass ranges divided by its standard deviation (W pm, sq{�m,s): projection at the
scale s “ smax where the peak maximum have been found. The wavelet transform
has been computed after background subtraction. (a): Muon channel. (b): Electron
channel. The 95% confidence level is indicated by the red line.

The confidence level can also be represented in the m ˆ s plane. Figure 7.11
shows the ratio W pm, sq{�m,s as a function of mass and scale index js for electron
and muon channel. A black contour has been fixed to the 5% confidence level.
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u Check	
  3,	
  only	
  qualita9ve:	
  W(m,s)	
  has	
  been	
  computed	
  
without	
  background	
  subtrac9on.	
  The	
  bump	
  at	
  126	
  GeV	
  
is	
  s9ll	
  visible	
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DETERMINATION OF SIGNAL INTENSITY: CALIBRATION �

u The	
  number	
  of	
  background	
  events	
  is	
  much	
  larger	
  in	
  real	
  data	
  than	
  in	
  sample	
  used	
  for	
  
calibra9on.	
  

Ø  Ater	
  subtrac9on,	
  residual	
  background	
  has	
  larger	
  fluctua9ons.	
  

u The	
  direct	
  determina9on	
  of	
  the	
  signal	
  intensity	
  via	
  the	
  maximum	
  of	
  W(m,s)	
  becomes	
  
badly	
  condi9oned	
  by	
  the	
  strong	
  fluctua9on	
  of	
  the	
  background.	
  

Muon	
  channel:	
  	
  
522804	
  events	
  
Electron	
  channel:	
  	
  
247086	
  events	
  

u The	
  W(m,s)	
  maximum,	
  as	
  a	
  func9on	
  of	
  the	
  
number	
  of	
  signal	
  events,	
  has	
  a	
  large	
  
constant	
  term	
  and	
  a	
  small	
  slope.	
  

Ø  In	
  this	
  way	
  we	
  cannot	
  provide	
  an	
  
adequate	
  calibra9on.	
  

Ø  The	
  precision	
  in	
  background	
  modelling	
  
and	
  the	
  search	
  algorithm	
  should	
  be	
  
refined	
  

fixed scale s0can be far from the wavelet peak and thus insensitive to the presence
of the signals. The maximum Wmax plotted in figure 7.12 is then the one found
by the contour algorithm (section 5.2.2) over the bi-dimensional contour.
To reduce the contamination of fake peaks in calibration, the contour algorithm
has been slightly modified with respect to the definition of section 5.2.2. A loop
is done over all the contours: if more than one is found in the acceptance region
(mmax P rµ ´ smax, µ ` smaxs) the one closest to the added signal mass (µ “ 126
GeV) is taken and used for calibration. From figure 7.12, Wmax appears to still
have a linear dependence on the number of signal events, the slope is about one
order of magnitude smaller than that obtained in section. Wmax is therefore only
slightly dependent on the number of events.

Number of signal events
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W peak height vs number of signal events: exponential background fitted to real data.

Figure 7.12: Wmax for varying number of signal events. The signal mean is µ “ 126
GeV and the standard deviation is � “ 15 GeV. The exponential distribution of
background reproduces the actual data in shape and number of events, background
subtraction has been performed.

In these conditions, the precision in background modelling provided by fit and toy
MonteCarlos, that was acceptable for applications described previously, could not
be su�cient to perform an adequate calibration of the dependence on the signal
intensity.
As already mentioned, the huge background a↵ects the signal detection, increasing

100



23/10/13	
   Margherita	
  Spalla	
   23	
  

DETERMINATION OF SIGNAL INTENSITY: AN ALTERNATIVE SOLUTION�

u Since	
  background	
  varia9ons	
  are	
  difficult	
  to	
  control,	
  fix	
  the	
  background	
  distribu9on	
  and	
  
vary	
  only	
  the	
  signal	
  intensity.	
  	
  

Ø  	
  A	
  simple	
  way:	
  subtract	
  a	
  gaussian	
  signal	
  (μ	
  =	
  126	
  GeV,	
  σ	
  =	
  15	
  GeV)	
  from	
  the	
  data.	
  	
  

Ø  When	
  the	
  wavelet	
  transform	
  is	
  not	
  able	
  to	
  detect	
  a	
  peak	
  any	
  more,	
  the	
  number	
  of	
  
subtracted	
  events	
  is	
  an	
  es9ma9on	
  of	
  the	
  number	
  of	
  signal	
  events.	
  	
  

evaluate how the wavelet transform is ‘flat’.7

A useful feature for this task is the definition of entropy introduced by Shannon
in the theory of communication and transmission of information. The Shannon
entropy quantifies the unevenness of a probability distribution [36].
Given a random variable Z with a finite set of possible values tz1, ...., znu, the
Shannon entropy is defined as reported in equation 7.1, where p is the probability
distribution of variable Z.

HpZq “ ´
z
nÿ

z
i

“z1

ppziq log2pppziqq “ ´ 1

ln2

z
nÿ

z
i

“z1

ppziq lnpppziqq • 0 (7.1)

In particular, the minimum HpZq “ 0 corresponds to a variable with a determined
outcome i.e. with a fully localized probability distribution ppz´0q “ 1 and ppzq “ 0
for z ‰ z0. At the opposite, HpZq is maximal for a uniform distribution. Also,
the Shannon entropy is dependent only on the probability distribution and not on
the random variable itself [36].
To use this variable for the evaluation of wavelet transform, W pm, sq must be
adapted to respect the conditions of a probability distribution, i.e. having unitary
integral and being non-negative.
Starting from W pm, sq, a few passages are followed to build the Shannon entropy
H.

1. It is assumed that the wavelet transform W pm, sq has a peak at the mass
mmax and scale smax: the analysis is restricted to a small region in mass and
scale, centered on pmmax, smaxq. The dimension of this region are not strictly
fixed, they can be variated to include the whole signal peak, excluding other
structures8.

2. The integral I` of the wavelet transform is computed by summing up all the
positive values of W pm, sq inside the region previously fixed.

3. The distribution pW is defined as in equation 7.2. The Shannon entropy
is computed following definition 7.1, this results in the entropy HpW q of
equation 7.3.

pW pm, sq “
"

W pm, sq{I` if W pm, sq ° 0
0 if W pm, sq § 0

(7.2)

7Negative valleys are not considered as signal features: the used index should be sensitive
only to the wavelet transform positive peaks.

8The usual dimensions are 15 or 20 GeV in mass and ˘10 in scale index. Only small variation
around these values have been made.
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HpW q “ ´ 1

ln2

ÿ

m,s

pW pm, sq lnppW pm, sqq (7.3)

It must be pointed out that the m ˆ s region where the entropy is computed can
be chosen among the whole scale interval, i.e. it can cover also the region js † 25.
For this first trial, the choice of the scale region is made simply by centering it on
the wavelet peak position.
Therefore, the analysis is performed starting from signal plus background sample:
a well defined gaussian signal is subtracted to the invariant mass histogram. Fixed
the invariant mass sample, a m ˆ s region is chosen and the entropy HpW q is
computed over this region for varying number of subtracted signal events. HpW q
is then plotted as a function of the number of subtracted events.
If a maximum, or a sharp variation of the trend of entropy as a function of number
of subtracted events is found, than the corresponding number of subtracted events
is an estimation of the number of signal events.
The method has to be validated using MonteCarlo simulated experiments to ver-
ify that no bias is present in the evaluation of signal events and to measure the
expected resolution of the method. Figure 7.13 shows an example obtained with a
MonteCarlo background distribution simulating slope and number of events of real
data, a gaussian signal of 500 events, mean µ “ 126 GeV and standard deviation
� “ 15 GeV has been added. The entropy plot has a peak compatible with 500
signal events.
This method is not expected to provide high precision measurements, but it can
be used to provide a first estimation of the number of signal events.
The resolution of the method have been evaluated using MonteCarlo simulation as
the one used for figure 7.13. An important point is that now MonteCarlo is used
only for the evaluation of method resolution: no calibration constant are extracted
from toy MonteCarlo.
The procedure used for figure 7.13 has been repeated simulating several exper-
iments. In each experiment 500,1000,1500 signal events have been injected to
simulate the signal. In each experiment the signal has been ‘eroded’ by precise
steps (50 events each step); entropy is computed at each step. When the slope
of the entropy versus the events subtracted suddenly variate, the number of sub-
tracted events corresponding to the point where the slope variates is taken as an
estimation of the number of signal events. Results obtained with this method are
reported in table 7.4.
The uncertainties reported in table 7.4 are statistical uncertainties obtained from
averaging over a number of trials.
However, in some cases the identification of entropy maximum was not unambigu-
ous and the number of events was found with an uncertainty sometimes larger
than statistical uncertainties of table 7.4. Also, the subtraction method has been
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u The	
  index	
  used	
  for	
  this	
  evalua9on	
  is	
  the	
  Shannon	
  entropy	
  (H(W)).	
  

Ø  It	
  quan9fies	
  the	
  unevenness	
  of	
  a	
  probability	
  distribu9on.	
  

I+	
  is	
  the	
  integral	
  of	
  W(m,s),	
  
computed	
  by	
  summing	
  up	
  the	
  
posi9ve	
  values	
  of	
  W(m,s).	
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u The	
  method	
  has	
  to	
  be	
  validated	
  using	
  toy	
  MonteCarlo.	
  
Ø  A	
  systema9c	
  uncertainty	
  of	
  ̆200	
  events	
  has	
  been	
  added	
  to	
  the	
  sta9s9cal	
  

uncertain9es.	
  

Figure 7.13: (a): wavelet transform (W pm, sq) of a gaussian signal of 500 events
mean µ “ 126 GeV and standard deviation � “ 15 GeV over an exponentially
decreasing background fitted to real data. W pm, sq is computed in the mass re-
gion mjj P r100, 200s GeV after background subtraction. (b): Shannon entropy
computed for the wavelet transform of the sample of plot (a), in the m ˆ s region
marked by a rectangle in plot (a), after the subtraction of a gaussian signal of mean
µ “ 126 GeV, standard deviation � “ 15 GeV and varying number of event. It is
represented as a function of the number of subtracted events.
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Number	
  of	
  subtracted	
  events	
  

H(W)	
  

Mjj	
  (GeV)	
  

Number of signal inserted events Average number of events
measured with subtraction method

500 522 ˘ 40

1000 1025 ˘ 40

1500 1490 ˘ 30

Table 7.4: Number of events measured with the signal subtraction method for dif-
ferent intensity of MonteCarlo signals. Average over 10 trials. Statistical uncer-
tainties are reported.

only preliminary defined to fix the problem of ine�ciency of standard calibration
method: it seems to provide consistent results, but needs a more accurate opti-
mization. To be conservative, a systematic uncertainty of ˘200 events has to be
added to the statistical uncertainties reported in table 7.4.
The method of signal subtraction has been applied to real data in both electron and
muon channels: figure 7.14 shows the wavelet transform and the entropy HpW q
plotted as a function of the number of events subtracted at mass µ “ 126 GeV.
In both electron and muon channel the entropy shows a clear maximum, the cor-
responding number of events are reported in table 7.5, the systematic uncertainty
˘200 has been used as uncertainty of these measures.

Number of signal events
measured with the signal subtraction method

Muon channel 1250 ˘ 200

Electron channel 1100 ˘ 200

Table 7.5: Number of events measured with the signal subtraction method for real
data sample in muon and electron channel. Systematic uncertainties are reported.

These results provide a quantitative evaluation of the number of signal events. It
has therefore been possible to obtain a quantitative result based on wavelet anal-
ysis in the real data background conditions.
Improvements on these methods are left to further work.
The number of signal events Nev allows to calculate the H Ñ jj decay branching
ratio (BR), via the formula of equation 7.4, in which �prod is the HW associated
production cross section (details are reported in section 1.1.1), L is the integrated
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SIGNAL SUBTRACTION: FIRST CHECKS�

u The	
  subtrac9on	
  method	
  has	
  been	
  preliminary	
  defined	
  to	
  fix	
  the	
  problem	
  of	
  calibra9on.	
  
Ø  It	
  seems	
  to	
  provide	
  consistent	
  results,	
  but	
  needs	
  a	
  more	
  accurate	
  op9miza9on.	
  	
  

Example	
  with	
  500	
  events	
  

u  If	
  the	
  distribu9on	
  was	
  not	
  perfectly	
  
exponen9al,	
  eventual	
  background	
  
structures	
  could	
  be	
  included	
  in	
  the	
  
signal	
  peak.	
  	
  

Ø  The	
  number	
  of	
  
events	
  could	
  be	
  
overes9mated.	
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SIGNAL SUBTRACTION: RESULTS�
Muon channel

Electron channel

Figure 7.14: (a): wavelet transform (W pm, sq) of the invariant mass spectrum
of two jets associated with a W decaying leptonically in W Ñ e⌫ (on the top,
muon channel, on the bottom, electron channel), computed in the mass region
mjj P r100, 200s GeV after background subtraction. (b): Shannon entropy com-
puted for the wavelet transform of muon channel data, in the mˆ s region marked
by a rectangle in plot (a), after the subtraction of a gaussian signal of mean µ “ 126
GeV, standard deviation � “ 15 GeV and varying number of event. It is repre-
sented as a function of the number of subtracted events.
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Muon channel

Electron channel

Figure 7.14: (a): wavelet transform (W pm, sq) of the invariant mass spectrum
of two jets associated with a W decaying leptonically in W Ñ e⌫ (on the top,
muon channel, on the bottom, electron channel), computed in the mass region
mjj P r100, 200s GeV after background subtraction. (b): Shannon entropy com-
puted for the wavelet transform of muon channel data, in the mˆ s region marked
by a rectangle in plot (a), after the subtraction of a gaussian signal of mean µ “ 126
GeV, standard deviation � “ 15 GeV and varying number of event. It is repre-
sented as a function of the number of subtracted events.
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Number of signal inserted events Average number of events
measured with subtraction method

500 522 ˘ 40

1000 1025 ˘ 40

1500 1490 ˘ 30

Table 7.4: Number of events measured with the signal subtraction method for dif-
ferent intensity of MonteCarlo signals. Average over 10 trials. Statistical uncer-
tainties are reported.

only preliminary defined to fix the problem of ine�ciency of standard calibration
method: it seems to provide consistent results, but needs a more accurate opti-
mization. To be conservative, a systematic uncertainty of ˘200 events has to be
added to the statistical uncertainties reported in table 7.4.
The method of signal subtraction has been applied to real data in both electron and
muon channels: figure 7.14 shows the wavelet transform and the entropy HpW q
plotted as a function of the number of events subtracted at mass µ “ 126 GeV.
In both electron and muon channel the entropy shows a clear maximum, the cor-
responding number of events are reported in table 7.5, the systematic uncertainty
˘200 has been used as uncertainty of these measures.

Number of signal events
measured with the signal subtraction method

Muon channel 1250 ˘ 200

Electron channel 1100 ˘ 200

Table 7.5: Number of events measured with the signal subtraction method for real
data sample in muon and electron channel. Systematic uncertainties are reported.

These results provide a quantitative evaluation of the number of signal events. It
has therefore been possible to obtain a quantitative result based on wavelet anal-
ysis in the real data background conditions.
Improvements on these methods are left to further work.
The number of signal events Nev allows to calculate the H Ñ jj decay branching
ratio (BR), via the formula of equation 7.4, in which �prod is the HW associated
production cross section (details are reported in section 1.1.1), L is the integrated
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u These	
  results	
  are	
  not	
  in	
  
agreement	
  with	
  what	
  expected	
  
from	
  Standard	
  Model.	
  
Ø  The	
  number	
  of	
  produced	
  

events	
  was:	
  
	
  
	
  
u W(m,s)	
  peak	
  could	
  include	
  

eventual	
  underlying	
  
background	
  structures.	
  
Ø  Signal	
  subtrac9on	
  may	
  

overes9mate	
  the	
  number	
  
of	
  events.	
  

	
  
u Further	
  work	
  is	
  needed	
  to	
  have	
  

a	
  beser	
  separa9on	
  of	
  signal	
  
and	
  background	
  effects.	
  

NWH ⇠ 200 events
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WAVELET ANALYSIS: RESULTS IN THE HIGH MASS REGION �
�

u Wavelet	
  transform	
  has	
  been	
  computed	
  in	
  [150,500]	
  GeV	
  mass	
  region.	
  
Ø  At	
  higher	
  masses	
  the	
  fit	
  quality	
  is	
  not	
  sufficiently	
  good	
  to	
  obtain	
  reliable	
  results.	
  	
  
	
  

u The	
  wavelet	
  transform	
  is	
  computed	
  in	
  a	
  mass	
  range	
  of	
  100	
  GeV,	
  which	
  has	
  been	
  moved	
  
upwards	
  in	
  steps	
  of	
  50	
  GeV.	
  	
  
Ø  This	
  avoids	
  that	
  part	
  of	
  the	
  mass	
  range	
  is	
  analyzed	
  only	
  in	
  the	
  edges	
  of	
  mass	
  intervals.	
  

Ø  Only	
  structures	
  appearing	
  at	
  compa9ble	
  masses	
  in	
  overlapping	
  mass	
  intervals	
  have	
  
been	
  considered.	
  

Ø  Muon	
  channel:	
  
•  mpeak=	
  385	
  GeV	
  

Ø  Electron	
  channel:	
  
•  mpeak	
  =	
  360	
  GeV	
  
•  mpeak	
  =	
  424	
  GeV	
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Figure 8.3: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r350, 450s GeV. (b):r400, 500s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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u Further	
  work	
  is	
  needed:	
  we	
  then	
  avoid	
  any	
  
further	
  comments.	
  

u The	
  nature	
  of	
  these	
  peaks	
  s9ll	
  has	
  to	
  
be	
  inves9gated:	
  
Ø  The	
  fit	
  quality	
  is	
  poor,	
  fit	
  needs	
  

to	
  be	
  improved.	
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CONCLUSIONS �
�

u From	
  tests	
  with	
  toy	
  MonteCarlo,	
  the	
  wavelet	
  analysis	
  resulted	
  to	
  be	
  able	
  to	
  detect	
  small	
  
signals,	
  invisible	
  to	
  simple	
  observa9on.	
  

u The	
  quan9ta9ve	
  treatment	
  (significance	
  and	
  determina9on	
  of	
  signal	
  intensity)	
  needs	
  further	
  
work	
  to	
  be	
  refined.	
  
Ø  It	
  is	
  influenced	
  by	
  background,	
  especially	
  if	
  the	
  background	
  is	
  very	
  large.	
  

u By	
  applying	
  wavelet	
  analysis	
  to	
  real	
  data,	
  a	
  signal	
  evidence	
  has	
  been	
  found	
  at	
  mjj	
  ≈	
  126	
  GeV.	
  
Ø  It	
  is	
  above	
  the	
  95%	
  local	
  confidence	
  level.	
  
Ø  It	
  it	
  confirmed	
  by	
  two	
  independent	
  channels.	
  
Ø  Its	
  intensity	
  could	
  not	
  be	
  completely	
  es9mated.	
  

	
  
	
  
SOME	
  POSSIBLE	
  DEVELOPMENTS	
  

u Refine	
  the	
  peak	
  search	
  algorithm	
  in	
  wavelet	
  analysis	
  and	
  the	
  calibra9on	
  method:	
  other	
  
variables	
  could	
  be	
  used	
  instead	
  of	
  W(m,s)	
  maximum.	
  

u Define	
  a	
  quan9ta9ve	
  treatment	
  of	
  wavelet	
  analysis	
  performed	
  without	
  background	
  
subtrac9on.	
  

u Try	
  to	
  use	
  other	
  wavelet	
  func9ons	
  instead	
  of	
  the	
  DoG.	
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THE ATLAS DETECTOR�
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DATA PREPARATION: PHYSICAL OBJECTS RECONSTRUCTION�

Reconstruc9on	
  of	
  physical	
  objects	
   in	
  ATLAS	
   is	
  performed	
  via	
  different	
  algorithms	
  depending	
  on	
  the	
  
par9cular	
  object.	
  
In	
  this	
  thesis,	
  we	
  used	
  muons,	
  electrons,	
  jets	
  and	
  Etmiss.	
  	
  

Muons	
  

•  We	
   used	
   combined	
   muons:	
   muon	
   tracks	
   are	
   reconstructed	
   independently	
   in	
   the	
   muon	
  
spectrometer	
  (MS)	
  and	
  inner	
  detector	
  (ID),	
  the	
  (MS)	
  and	
  (ID)	
  tracks	
  are	
  then	
  matched.	
  

Electrons	
  

•  The	
   reconstruc9on	
   starts	
   from	
   a	
   seed	
   cluster	
   (an	
   η-­‐φ	
   window	
   of	
   predefined	
   dimension)	
   in	
  
electromagne9c	
   calorimeter	
   with	
   ET>2.5	
   GeV.	
   Seed	
   clusters	
   matching	
   an	
   ID	
   track	
   are	
   taken	
   as	
  
electron	
  candidates.	
  

•  Electron	
  candidates	
  are	
  then	
  iden9fied	
  to	
  reject	
  photons	
  and	
  hadrons.	
  Three	
  levels	
  are	
  provided:	
  
loose,	
  medium,	
  Ught.	
  We	
  used	
  the	
  9ghter	
  iden9fica9on	
  level.	
  

Jets	
  

•  Jets	
   are	
   reconstructed	
   from	
   calorimeters:	
   neighboring	
   cells	
  with	
   significant	
   signal-­‐to-­‐noise	
   ra9o	
  
are	
  collected	
  in	
  topoclusters,	
  topoclusters	
  are	
  processed	
  with	
  the	
  AnU-­‐kt	
  algorithm	
  to	
  form	
  jets.	
  

•  The	
   four-­‐momentum	
   must	
   be	
   corrected	
   for	
   energy	
   losses	
   in	
   uninstrumented	
   material	
   or	
  
calorimeter	
  non-­‐compensa9on:	
  a	
  calibra9on	
  scale	
  factor	
  has	
  been	
  applied	
  before	
  the	
  analysis.	
  	
  

ETmiss	
  
•  It	
  is	
  defined	
  as	
  the	
  sum	
  of	
  the	
  measured	
  energy	
  of	
  all	
  physics	
  objects	
  changed	
  by	
  sign.	
  
•  Due	
  to	
  jets	
  momentum	
  correc9on,	
  it	
  has	
  been	
  rebuilt	
  at	
  the	
  beginning	
  of	
  the	
  selec9on.	
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SELECTION APPLIED TO DATA: OBJECT SELECTION�
Objects passing the selection are defined as good objects. �

�
MUON	
  SELECTION.	
  
•  Combined	
  muons	
  are	
  used.	
  	
  
•  Trigger:	
  EF_mu18_MG,	
  EF_mu18_MG_medium.	
  

pT>25	
  GeV	
  is	
  required	
  to	
  restrict	
  to	
  the	
  trigger	
  
efficiency	
  plateau.	
  

•  Track	
  quality	
  cuts.	
  
•  |η|	
  <	
  2.4	
  
•  Impact	
  parameter:	
  |d0/√σ(d0)|	
  <	
  3	
  and	
  z0<1	
  mm.	
  
•  Isola9on.	
  	
  

Track:	
  Σ(pTtrack)/pT	
  <	
  0.15	
  in	
  a	
  cone	
  of	
  radius	
  
R=0.3	
  
Calorimeter:	
  Σ(ETcorr)/pT	
  <	
  0.14	
  in	
  a	
  cone	
  of	
  
radius	
  R=0.3	
  

ELECTRON	
  SELECTION.	
  
•  Candidates	
  sa9sfying	
  the	
  Ught++	
  iden9fica9on	
  

criteria.	
  	
  
•  Trigger:	
  EF_e20_medium,	
  EF_e22_medium,	
  

EF_e22vh_medium1.	
  pT>25	
  GeV	
  is	
  required	
  to	
  
restrict	
  to	
  the	
  trigger	
  efficiency	
  plateau.	
  

•  |η|	
  <	
  2.47,	
  excluding	
  1.37	
  <	
  |η|	
  <	
  1.52.	
  
•  Impact	
  parameter:	
  |d0/√σ(d0)|	
  <	
  10	
  and	
  z0<1	
  

mm.	
  
•  Isola9on.	
  	
  

Track:	
  Σ(pTtrack)/pT	
  <	
  0.14	
  in	
  a	
  cone	
  of	
  	
  R=0.3	
  
Calorimeter:	
  Σ(ETcorr)/pT	
  <	
  0.13	
  in	
  a	
  cone	
  of	
  	
  
R=0.3	
  

JET	
  SELECTION.	
  
•  Jets	
  reconstructed	
  with	
  AnU-­‐kt	
  algorithm,	
  passing	
  looser	
  quality	
  criteria.	
  
•  pT	
  >	
  25	
  GeV	
  
•  |η|	
  <	
  2.8	
  
•  Jet	
  Vertex	
  Frac9on	
  >	
  0.75	
  to	
  reject	
  jets	
  from	
  pile-­‐up	
  interac9ons.	
  
•  ΔR(j,l)	
  >	
  0.5	
  ,	
  l	
  is	
  the	
  selected	
  lepton.	
  This	
  to	
  remove	
  overlap	
  between	
  jets	
  and	
  energy	
  deposits	
  due	
  to	
  

leptons.	
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EVENT SELECTION�

Dijets	
  events	
  are	
  triggered	
  by	
  requiring	
  a	
  W	
  ⟶	
  lν	
  decay.	
  
	
  
Ø  	
  Events	
  are	
  firstly	
  pre-­‐selected	
  applying	
  cuts	
  on	
  event	
  quality:	
  	
  

•  Stable	
  beam	
  condi9ons,	
  absence	
  of	
  large	
  noise	
  bursts	
  or	
  data	
  integrity	
  errors	
  in	
  the	
  
LAr,	
  no	
  jets	
  of	
  pT>20	
  GeV	
  poin9ng	
  to	
  the	
  Lar	
  non-­‐sensi9ve	
  area	
  (Lar	
  hole).	
  

•  A	
  reconstructed	
  primary	
  vertex	
  with	
  at	
  least	
  three	
  associated	
  tracks	
  of	
  pT>0.5	
  GeV	
  

Ø  Events	
  with	
  one	
  charged	
  lepton	
  passing	
  
the	
  object	
  selec9on.	
  
•  Events	
  are	
  discarded	
  if	
  a	
  second	
  

lepton	
  passes	
  the	
  object	
  selec9on.	
  
•  Trigger-­‐matching:	
  a	
  check	
  to	
  verify	
  

that	
  the	
  selected	
  lepton	
  is	
  the	
  one	
  
that	
  fired	
  the	
  trigger	
  in	
  the	
  event.	
  

Ø  Events	
  containing	
  also	
  a	
  neutrino:	
  	
  	
  Etmiss	
  >25	
  GeV	
  
•  Cleaning	
  cuts	
  are	
  applied	
  to	
  the	
  jets	
  before	
  ETmiss	
  cut	
  to	
  avoid	
  non-­‐physical	
  ETmiss	
  

due	
  to	
  jet	
  reconstruc9on	
  errors.	
  
	
  
Ø  Cut	
  on	
  the	
  lepton-­‐neutrino	
  transverse	
  mass:	
  MT	
  >	
  40	
  GeV	
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Figure 3.5: Invariant mass distributions for a subsample of the WW {WZ Monte-
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EVENT SELECTION�

Once	
  W	
  ⟶	
  lν	
  events	
  are	
  selected,	
  further	
  cuts	
  are	
  applied	
  to	
  jets.	
  
➙ with	
  respect	
  to	
  the	
  selec9on	
  used	
  in	
  Standard	
  Model	
  diboson	
  measurement,	
  fewer	
  

cuts	
  are	
  applied	
  to	
  apply	
  wavelet	
  analysis	
  at	
  a	
  more	
  inclusive	
  level.	
  
Ø  At	
  least	
  two	
  jets	
  passing	
  the	
  object	
  selec9on	
  
Ø  Δφ(Etmiss,	
  j1)	
  >	
  0.8.	
  Where	
  j1	
  is	
  the	
  jet	
  of	
  highest	
  pT	
  
Ø  The	
  dijet	
  invariant	
  mass	
  is	
  built	
  using	
  the	
  two	
  selected	
  jets	
  of	
  highest	
  pT	
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Table 4.1: Three wavelet mother functions and their Fourier transform [1]. Con-
stant factors for  0 and  ̂0 are for normalisation. The plots on the right give the
real part (solid) and imaginery part (dashed) for the wavelets as functions of the
parameter ⌘ (the same as ⇠ in the text).
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u  W(m,s),	
  as	
  a	
  con9nuous	
  func9on	
  of	
  s,	
  can	
  be	
  approximated	
  by	
  compu9ng	
  the	
  wavelet	
  transform	
  for	
  a	
  
set	
  of	
  scales.	
  	
  	
  
•  s0	
  is	
  the	
  smallest	
  resolvable	
  scale:	
  s0	
  =	
  δm	
  
•  δj	
  sets	
  the	
  smallest	
  wavelet	
  resolu9on:	
  δj	
  =	
  0.25	
  
•  J	
  sets	
  the	
  value	
  of	
  the	
  largest	
  scale:	
  J	
  =	
  44	
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DETAILS ON WAVELET TRANSFORM CALCULATION�

u  It	
  is	
  considerably	
  faster	
  to	
  compute	
  the	
  wavelet	
  transform	
  
in	
  Fourier	
  space.	
  
•  The	
  discrete	
  Fourier	
  transform	
  of	
  xn	
  is:	
  	
  

•  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  Fourier	
  transform	
  of	
  a	
  (con9nuous)	
  func9on	
  
ψ(m/s).	
  

4.2 Wavelet transform calculation

In this section, some aspects of practical wavelet transform calculation are pre-
sented.
Although it is possible to calculate the wavelet transform of a discrete sequence xn

using equation (4.3), it is considerably faster to do the calculation in Fourier space
[1]. To apply equation (4.3), it would be necessary to calculate the convolution as
many times as the number of bins (for each scale), while the convolution theorem
allows to do all the convolutions simultaneously for each scale.
The discrete Fourier transform of xn is given by equation (4.4), where k “ 0...N´1
is the frequency index, while the Fourier transform of a (continous) function
 pm{sq is  ̂ps!q.

x̂k “ 1

N

N´1ÿ

n“0

xne
´i2⇡kn{N (4.4)

By the convolution theorem, the wavelet transform is the inverse Fourier transform
of the product x̂k ¨  ̂ps!kq, as in the equation (4.5), where !k is defined as in
equation (4.6).

W pm, sq “ Wnpsq “
N´1ÿ

k“0

x̂k ̂
˚ps!kqei!k

n�m (4.5)

!k “
"

2⇡k
N�m

if k § N
2

´ 2⇡k
N�m

if k ° N
2

(4.6)

Using equation (4.5) and a Fourier transform routines, the wavelet transform can
be calculated at all n simultaneously and e�ciently for any given s [1].

4.2.1 Choice of scales

W pm, sq, as a continuos function of s, can be approximated by computing the
wavelet transform for a set of scales.
In many cases6 a suitable set of scales must be chosen to build up a more complete
picture.
In literature, it is proposed as the most convenient choice to write the scales as
fractional powers of two (as given by expression (4.7)). This solution will be
adopted here too.

sj “ s02
j�j , j “ 0, 1, ..., J (4.7)

6Wavelet functions  form a set of functions that can be orthogonal or non-orthogonal. In
the orthogonal case the set is discrete and therefore the choice is limited to a discrete set of
scales. Here, nonorthogonal wavelets are considered and one can use an arbitrary set of scales.
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The scale index j has been often used in plotting wavelet transform, instead of the
scale itself. The meaning of other parameters in equation (4.7) and how they have
been fixed in this work is listed below.

• s0 is the smallest resolvable scale: in this work, s0 “ �m has been used (�m
is the bin size of the histogram).

• The choice of �j sets the smallest wavelet resolution: the smaller is the value
of �j, the finer is the resolution. Here �j “ 0.25 is used.

• J is defined from the value of the largest scale J “ �j´1log2psmax{s0q. To
follow [1], J “ 44 has been adopted.
It is quite evident that the maximum wavelet resolution should be approx-
imately as large as the whole mass range, i.e. smax » N�m. Having fixed
smax “ s02J�j, it follows that a range in mass of the order of 102 GeV has to
be used to perform the analysis.

4.2.2 Normalization

Wavelet transform normalization changes according to each analysis purposes. In
many cases, W pm, sq at di↵erent scales must be directly compared, therefore the
wavelet normalization at each scale is important.
For this thesis, the choice adopted in [1] was followed. Since the wavelet transform
is computed using the method in equation 4.5, the normalization is fixed for the
Fourier transform of the mother wavelet function  ̂0.  ̂0 is normalized to have
unit energy, as expressed in equation 4.87.

ª `8

´8
| ̂0ps!q|2d! “ 1 (4.8)

To compare the the wavelet at di↵erent scales, it is necessary that they all have
the same normalization. Therefore, for consistency all the daughter wavelets are
normalized in the same wav as  ̂0.
This normalization condition is satisfied adding a normalization constant as in
equation 4.9. Finally, this requirements imply that the wavelet daughters have the
property expressed by equation (4.10), where N is the number of points.

 ̂ps!kq “
ˆ
2⇡s

�m

˙1{2
 ̂0ps!kq (4.9)

N´1ÿ

k“0

| ̂ps!kq|2 “ N (4.10)

7The mother wavelets in table 4.1 are already normalized to satisfy the condition in equation
4.8
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u  Normaliza9on:	
  W(m,s)	
  at	
  different	
  scales	
  must	
  be	
  directly	
  compared,	
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  they	
  all	
  have	
  the	
  same	
  normaliza9on.	
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  normaliza9on	
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  for	
  the	
  Fourier	
  transform	
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func9on:	
  it	
  is	
  normalized	
  to	
  have	
  unit	
  energy.	
  
	
  
•  The	
  wavelet	
  daughter	
  are	
  normalized	
  in	
  the	
  same	
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  a	
  

normaliza9on	
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  to	
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  Fourier	
  transform.	
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u  Fourier	
  transform	
  is	
  computed	
  padding	
  with	
  zeroes	
  the	
  end	
  of	
  the	
  mass	
  range:	
  this	
  influence	
  W(m,s)	
  
in	
  the	
  region	
  close	
  to	
  the	
  edges.	
  
Ø  The	
  Cone	
  of	
  Influence	
  (COI)	
  is	
  the	
  region	
  in	
  	
  m	
  ×	
  s	
  plane	
  where	
  edge	
  effects	
  are	
  important.	
  

Discon9nui9es	
  at	
  the	
  edges	
  decrease	
  exponen9ally:	
  at	
  each	
  scale,	
  COI	
  is	
  defined	
  by	
  the	
  ‘characteris9c	
  length’	
  
of	
  this	
  decrease.	
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Figure 5.2: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed scale. (a): scale index=35. (b):
scale index=30. (c): scale index=25. (d): scale index=20. (e): scale index=15.
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Figure 5.2: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed scale. (a): scale index=35. (b):
scale index=30. (c): scale index=25. (d): scale index=20. (e): scale index=15.
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Figure 5.2: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed scale. (a): scale index=35. (b):
scale index=30. (c): scale index=25. (d): scale index=20. (e): scale index=15.
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WAVELET	
  TRANSFORM	
  OF	
  A	
  GAUSSIAN	
  
SIGNAL:	
  PROJECTIONS	
  AT	
  FIXED	
  SCALE.	
  

u  At	
  larger	
  scale	
  W(m,s)	
  has	
  a	
  DoG-­‐like	
  
shape,	
  with	
  mean	
  corresponding	
  to	
  the	
  
signal	
  mean.	
  

	
  
	
  
u  at	
  low	
  scale	
  the	
  DoG	
  shape	
  is	
  lost	
  and	
  W	
  

presents	
  various	
  narrower	
  peaks,	
  
corresponding	
  to	
  sta9s9cal	
  fluctua9ons	
  of	
  
groups	
  of	
  bins.	
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Figure 5.3: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed mass m “ 100 GeV.
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(d)

Figure 5.4: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events): projection at
fixed scale. (a): scale index=35. (b): scale index=30. (c): scale index=25. (d):
scale index=20.
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Figure 5.3: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed mass m “ 100 GeV.
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Figure 5.4: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events): projection at
fixed scale. (a): scale index=35. (b): scale index=30. (c): scale index=25. (d):
scale index=20.
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BACKGROUND EFFECTS, UNIFORM BACKGROUND �

u  A	
  flat	
  background	
  is	
  the	
  condi9on	
  in	
  which	
  wavelet	
  analysis	
  has	
  been	
  applied	
  in	
  most	
  of	
  literature.	
  
W(m,s)	
  is	
  computed	
  considering	
  varia9ons	
  with	
  respect	
  to	
  arithme9c	
  mean	
  of	
  the	
  data.	
  	
  

u  Wavelet	
  transform	
  of	
  a	
  gaussian	
  signal	
  
over	
  a	
  uniform	
  background	
  at	
  fixed	
  scale	
  
(from	
  the	
  example	
  of	
  slide	
  11-­‐16).	
  
Ø  At	
  scale	
  index	
  js	
  =	
  30,	
  the	
  wavelet	
  

transform	
  has	
  a	
  DoG	
  shape	
  in	
  the	
  region	
  
of	
  the	
  signal.	
  

Ø  At	
  higher	
  scale,	
  W(m,s)	
  is	
  hardly	
  sensi9ve	
  
to	
  the	
  signal.	
  

Ø  At	
  lower	
  scale	
  it	
  is	
  dominated	
  by	
  
sta9s9cal	
  fluctua9on:	
  only	
  the	
  scale	
  
region	
  js	
  ≥	
  25	
  is	
  used	
  for	
  the	
  analysis.	
  

	
  
	
  

u  The	
  signal	
  is	
  not	
  always	
  detected	
  as	
  
clearly	
  as	
  in	
  this	
  example.	
  
Ø  The	
  wavelet	
  transform	
  peak	
  can	
  be	
  

moved	
  in	
  mass	
  and	
  scale,	
  change	
  in	
  
shape	
  or	
  eventually	
  not	
  be	
  detected	
  
at	
  all.	
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(e)

Figure 5.5: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events). In example
(a), the peak appears displaced at the lower mass. Examples (b),(c),(d) shows how
the peak shape and position in scale varies. In example (e) the peak has not been
found.
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(e)

Figure 5.5: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events). In example
(a), the peak appears displaced at the lower mass. Examples (b),(c),(d) shows how
the peak shape and position in scale varies. In example (e) the peak has not been
found.
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(e)

Figure 5.5: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events). In example
(a), the peak appears displaced at the lower mass. Examples (b),(c),(d) shows how
the peak shape and position in scale varies. In example (e) the peak has not been
found.
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Figure 5.5: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events). In example
(a), the peak appears displaced at the lower mass. Examples (b),(c),(d) shows how
the peak shape and position in scale varies. In example (e) the peak has not been
found.
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Wavelet	
  transform	
  of	
  a	
  gaussian	
  signal	
  (100	
  events,	
  mean=100	
  GeV,	
  standard	
  
devia9on=15	
  GeV)	
  over	
  a	
  flat	
  background	
  (6000	
  events):	
  	
  
EXAMPLES	
  OF	
  HOW	
  THE	
  PEAK	
  CAN	
  VARY.	
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THE CONTOUR ALGORITHM �

u  To	
  develop	
  a	
  quan9ta9ve	
  analysis,	
  the	
  efficiency	
  of	
  wavelet	
  analysis	
  and	
  the	
  dependence	
  of	
  wavelet	
  
transform	
  on	
  signal	
  intensity	
  should	
  be	
  evaluated.	
  

u  To	
  do	
  this	
  we	
  must	
  define	
  an	
  appropriate	
  algorithm	
  to	
  find	
  a	
  peak	
  in	
  the	
  W(m,s)	
  plot.	
  
Ø  The	
  contour	
  algorithm	
  is	
  the	
  basic	
  strategy	
  for	
  the	
  search	
  of	
  a	
  signal	
  in	
  a	
  W(m,s)	
  plot.	
  
Ø  It	
  starts	
  from	
  the	
  contour	
  level	
  representa9on	
  of	
  the	
  wavelet	
  transform.	
  

(a) (b)

Figure 5.6: Invariant mass histograms obtained with a toy MonteCarlo. Signal
and background have been marked with di↵erent colors to be distinguishable. The
background (blue) if uniformly distributed, 6000 events have been simulated. A
gaussian signal (red) of 100 events and mean=100 GeV is superimposed. The
standard deviation is � “ 7 GeV (a) and � “ 15 GeV (b).

Figure 5.7: Graphic example to clarify how the contour algorithm works. The
contours are of the same kind as those obtained from a real wavelet transform plot,
but the position of the maximum and the contour level have a purely explicative
meaning and no numerical significance.
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1.  Fixed	
  a	
  single	
  contour	
  level	
  W0,	
  the	
  
algorithm	
  searches	
  for	
  contours	
  at	
  W0.	
  

	
  
2.  Loop	
  on	
  the	
  contours:	
  given	
  a	
  contour,	
  

check	
  if	
  at	
  least	
  a	
  part	
  of	
  it	
  is	
  contained	
  
in	
  the	
  scale	
  region	
  js	
  ≥	
  25.	
  If	
  not,	
  the	
  
contour	
  is	
  discarded.	
  

	
  
3.  The	
  maximum	
  value	
  of	
  W	
  is	
  searched.	
  

The	
  search	
  is	
  limited	
  to	
  the	
  region	
  of	
  
m×js	
  plane	
  which	
  is	
  both	
  inside	
  the	
  
contour	
  and	
  contained	
  in	
  the	
  scale	
  
region	
  js	
  ≥	
  25.	
  

4.  Assume	
  the	
  maximum	
  Wmax	
  has	
  been	
  
found	
  in	
  a	
  certain	
  point	
  (mmax,	
  Jsmax):	
  smax	
  
is	
  used	
  to	
  define	
  the	
  acceptance	
  region	
  
for	
  the	
  calcula9on	
  of	
  efficiency,	
  if	
   	
  	
  
	
  the	
  signal	
  have	
  been	
  found	
  and	
  the	
  
loop	
  is	
  interrupted.	
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(a) (b)

Figure 5.6: Invariant mass histograms obtained with a toy MonteCarlo. Signal
and background have been marked with di↵erent colors to be distinguishable. The
background (blue) if uniformly distributed, 6000 events have been simulated. A
gaussian signal (red) of 100 events and mean=100 GeV is superimposed. The
standard deviation is � “ 7 GeV (a) and � “ 15 GeV (b).

Figure 5.7: Graphic example to clarify how the contour algorithm works. The
contours are of the same kind as those obtained from a real wavelet transform plot,
but the position of the maximum and the contour level have a purely explicative
meaning and no numerical significance.
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scales. At these scales, the wavelet function is larger than the signal: for this rea-
son the signal width is not expected to have large e↵ects on the wavelet transform
shape.
In any case, the dependence of wavelet transform on signal standard deviation (�)
has been evaluated.
For the study of signal standard deviation, the scale position and the width in
mass of the peak of the wavelet transform should both be considered.
Due to the DoG-like shape of the wavelet transform, the easiest way to define the
peak width is to evaluate the intercept of the wavelet transform with the W “ 0
line. The half width at zero is defined at fixed scale, as shown in figure 5.12: given
the peak mass m0, the first zero at m ° m0 and m † m0 are found. The half
width at zero is the distance between the two zeroes (in red in figure 5.12) divided
by 2.
This observable is expected to depend both on signal � and on the scale at which
the width is calculated.

Figure 5.12: Graphic example to clarify how the half width at zero is defined. The
shape of W pm, sq is of the same kind as the one obtained from a real wavelet
transform, but it should not be considered as significative example.

A method similar to the one proposed for the number of events is followed to
evaluate the dependence on signal standard deviation. The signal half width at
zero can is computed for the maxima found by the contour algorithm. In previous
section, three definitions of the wavelet transform maximum are provided. Refer-
ring to each of these three maxima, a correspondent definition of the half width
at zero is provided.

64

Defini9on	
  of	
  variables	
  used	
  to	
  evaluate	
  W(m,s)	
  
dependence	
  on	
  signal	
  parameters.	
  

u  Variable	
  scale:	
  the	
  contour	
  algorithm	
  finds	
  
the	
  maximum	
  Wmax	
  over	
  a	
  certain	
  contour,	
  
at	
  (mmax,smax).	
  	
  
Ø  The	
  half	
  width	
  at	
  zero	
  (HWmax)	
  is	
  

found	
  taking	
  the	
  W(m,s)	
  projec9on	
  at	
  
fixed	
  s	
  =	
  smax	
  :	
  the	
  first	
  two	
  zeros	
  at	
  
m>mmax	
  and	
  m<mmax	
  are	
  found,	
  
HWmax	
  is	
  the	
  half	
  difference	
  between	
  
them.	
  

u  Fixed	
  scale.	
  
	
  
1.  Consider	
  Wmax(mmax,smax):	
  fixed	
  a	
  scale	
  s0,	
  the	
  variable	
  

used	
  to	
  evaluate	
  Nev	
  is	
  W(mmax,s0).	
  The	
  corresponding	
  
half	
  width	
  HWs0	
  is	
  found	
  as	
  before,	
  taking	
  the	
  projec9on	
  
at	
  s	
  =	
  s0.	
  

2.  An	
  alterna9ve	
  variable	
  is	
  found	
  searching	
  for	
  the	
  
maximum	
  of	
  W(m,s)	
  inside	
  the	
  contour	
  at	
  the	
  fixed	
  scale	
  
s0.	
  If	
  the	
  found	
  maximum	
  is:	
  Wm

fixedS(mfixedS,s0)	
  the	
  half	
  
width	
  (HWm

fixedS)	
  is	
  found	
  considering	
  the	
  projec9on	
  at	
  s	
  
=	
  s0	
  and	
  referring	
  to	
  mfixedS	
  instead	
  of	
  mmax	
  .	
  

u  We	
  use	
  js0=29	
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Signal	
  only:	
  scale	
  index	
  of	
  wavelet	
  transform	
  maxima	
  as	
  a	
  
func9on	
  of	
  the	
  signal	
  standard	
  devia9on	
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W peak position in scale vs signal standard deviation: signal only. Nev=100.

Figure 5.13: Scale position of the wavelet transform peak for a signal of 100 events,
mean µ “ 100 GeV and varying it’s standard deviation. No background is present.

Figure 5.14: Half width at zero of peaks of mean 100 events, µ “ 100 GeV and
varying signal standard deviation. No background is added. HWmax (in blue),
HWs0 (in green) and HW fixedS

max (in red) are plotted together.
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Flat	
  background:	
  scale	
  index	
  of	
  wavelet	
  transform	
  maxima	
  as	
  a	
  
func9on	
  of	
  the	
  number	
  of	
  signal	
  events	
  

Number of signal events
0 20 40 60 80 100 120 140 160 180 200

sc
al

e 
of

 W
 p

ea
k

28.8

29

29.2

29.4

29.6

29.8

30

W peak scale position vs number of signal events

(a)

Number of signal events
0 20 40 60 80 100 120 140 160 180 200

sc
al

e 
of

 W
 p

ea
k

27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

W peak scale position vs number of signal events

(b)

Figure 5.9: Scale index of wavelet transform maxima for varying number of signal
events. (a): no background is added. (b): 6000 events of uniform background are
added. To show the mean value over the whole intensity range, the two plots have
been fitted with a constant, the result is shown by the black line.

Wmax, W fixedS
max and W pmmax, s0q behave the same and they are all clearly linear

in Nev with zero intercept. The results of a linear fit of the di↵erent variables are
shown in figure 5.10 (a).
Figure 5.10 (b) shows the same variables when a uniform background of 6000
events is added.
There is now an o↵set between the maximum calculated at variable scale and those
calculated at fixed scale, while the two solution at fixed scale remain very similar.
The o↵set is due to the inclusion of background events in the wavelet convolution.
The e↵ect is reduced in W fixedS

max and W pmmax, s0q with respect to Wmax.
Both Wmax and the fixed scale maxima still depend linearly on the number of
signal events. The linear fits results are reported in figure 5.10.
From the fit, the three variables have the same slope, but the constant term of
the fit is larger for Wmax. The slope is also a bit smaller than in the case of zero
background. The dependence of wavelet maximum on signal intensity is a↵ected
by background and wavelet transform needs a specific calibration for every data
sample, based on the shape and the amount of the particular background present
in the data.
The results of figure 5.10 are for a gaussian signal of standard deviation � “ 15
GeV.
A check has been done to verify if the linear fit slope depends on the signal width:
figure 5.11 shows Wmax, W fixedS

max and W pmmax, s0q for gaussian signals of � “ 7
GeV (a) and � “ 20 GeV (b), with a uniform background of 6000 events.
The linearity is conserved and the slope has only a slight variation: this calibra-

60
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The	
  linear	
  dependence	
  has	
  been	
  checked	
  using	
  signals	
  of	
  σ=7	
  GeV	
  and	
  σ=20	
  GeV:	
  the	
  
linearity	
  is	
  conserved	
  and	
  the	
  slope	
  has	
  only	
  a	
  slight	
  varia9on.	
  This	
  calibra9on	
  will	
  be	
  considered	
  
independent	
  of	
  signal	
  standard	
  devia9on.	
  

Wmax:	
  blue.	
  	
  W(mmax,s0):	
  green.	
  	
  Wm
fixedS:	
  red	
  

(a)

(b)

Figure 5.11: Wmax (blue), W fixedS
max (red) and W pmmax, s0q (green) for varying

number of signal events (tha fixed scale is js0 “ 29). The signal standard deviation
is � “ 7 GeV (a) and � “ 20 GeV (b). 6000 events of uniform background are
added. The three variables have bin fitted with a linear function: fit results are also
shown.
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(a)

(b)

Figure 5.11: Wmax (blue), W fixedS
max (red) and W pmmax, s0q (green) for varying

number of signal events (tha fixed scale is js0 “ 29). The signal standard deviation
is � “ 7 GeV (a) and � “ 20 GeV (b). 6000 events of uniform background are
added. The three variables have bin fitted with a linear function: fit results are also
shown.
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tion will then be considered independent of signal standard deviation. The small
variations due to di↵erent � could eventually be considered when studying the
sistematics.
Table 5.1 summarizes the fit results in previous cases.
The choice between Wmax, W fixedS

max and W pmmax, s0q needs further considerations
and is left to next sections.
The linearity of both the three variables has been verified also for small number of
signal events: this confirms the high e�ciency of the method (reported in figure
5.8). The linear fit has a nonzero constant term. It indicates the presence of a
background, probably due to fakes. This background component should be evalu-
ated to better define variables estimating the number of events.

W pNevq: slope
no background flat background flat background flat background
� “ 15 GeV � “ 15 GeV � “ 7 GeV � “ 20 GeV

Wmax 0.0495 ˘ 0.00027 0.028 ˘ 0.0024 0.026 ˘ 0.0025 0.023 ˘ 0.0024

W fixedS
max 0.0505 ˘ 0.0002 0.028 ˘ 0.0029 0.022 ˘ 0.0028 0.021 ˘ 0.0027

W pmmax, s0q 0.0505 ˘ 0.0002 0.029 ˘ 0.0030 0.022 ˘ 0.0030 0.021 ˘ 0.0027

W pNevq: constant term
no background flat background flat background flat background
� “ 15 GeV � “ 15 GeV � “ 7 GeV � “ 20 GeV

Wmax 0.008 ˘ 0.019 3.1 ˘ 0.24 2.4 ˘ 0.25 2.8 ˘ 0.25

W fixedS
max 0.02 ˘ 0.015 1.70 ˘ 0.27 1.4 ˘ 0.28 1.6 ˘ 0.26

W pmmax, s0q 0.02 ˘ 0.015 1.70 ˘ 0.31 1.5 ˘ 0.33 1.8 ˘ 0.26

Table 5.1: Results of the linear fit of the three variables used as wavelet transform
peak height as a function of the number of signal events. All the cases presented
in section 5.2.2 are presented.

Standard deviation of the signal

In general, the wavelet analysis is not expected to be highly sensitive to signal
width. It has been observed that physical peaks are located in a specific range of

62
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(a) (b)

(c) (d)

Figure 5.8: Detection e�ciencies of the wavelet analysis algorithm described in
section 5.2.1 as a function of the number of signal events. The correspondent signal
to background ratio is reported in the upper axis of each figure. The e�ciency is
calculated for di↵erent signal mean (µ) and standard deviation (�). (a): µ “ 100
GeV � “ 15 GeV. (b): µ “ 100 GeV � “ 7 GeV. (c): µ “ 40 GeV � “ 15 GeV.
(d): µ “ 160 GeV � “ 15 GeV.
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(a) (b)

(c) (d)

Figure 5.8: Detection e�ciencies of the wavelet analysis algorithm described in
section 5.2.1 as a function of the number of signal events. The correspondent signal
to background ratio is reported in the upper axis of each figure. The e�ciency is
calculated for di↵erent signal mean (µ) and standard deviation (�). (a): µ “ 100
GeV � “ 15 GeV. (b): µ “ 100 GeV � “ 7 GeV. (c): µ “ 40 GeV � “ 15 GeV.
(d): µ “ 160 GeV � “ 15 GeV.
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Exponen9al	
  background:	
  
6000	
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  100	
  events.	
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EXPONENTIAL	
  
BACKGROUND	
  

(a)

(b) (c)

Figure 6.7: Detection e�ciencies of the wavelet analysis algorithm (the contour
algorithm, described in section 5.2.1) as a function of the number of signal events.
The correspondent signal to background ratio is reported in the upper axis of each
figure. The e�ciency is calculated for di↵erent signal mean (µ). (a): µ “ 100
GeV (b): µ “ 40 GeV. (c): µ “ 160 GeV. The standard deviation is � “ 15 GeV.
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(a)

(b) (c)

Figure 6.7: Detection e�ciencies of the wavelet analysis algorithm (the contour
algorithm, described in section 5.2.1) as a function of the number of signal events.
The correspondent signal to background ratio is reported in the upper axis of each
figure. The e�ciency is calculated for di↵erent signal mean (µ). (a): µ “ 100
GeV (b): µ “ 40 GeV. (c): µ “ 160 GeV. The standard deviation is � “ 15 GeV.
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of W pm, sq: figure 6.8 shows the wavelet transform maximum Wmax (a) and the
maximum moved to fixed scale W pmmax, s0q (b) (the definition is in section 5.2.1):
the height of peaks found in presence of signal (red) and in absence of signal (blue)
is compared.
Expecially in the case of W pmmax, s0q, the peak height in case of signals reach
higher values than that of fake peaks: this means that it is reasonable to fix a
confidence level on the peak height to evaluate the significance of a peak with
respect to background fluctuation.

(a)

(b)

Figure 6.8: Wavelet transform maximum in the case of a background only sample
(blue) and background plus signal sample (red). Plot (a) shows Wmax, plot (b)
shows W pmmax, s0q. Exponential background: 6000 events. Gaussian signal: 100
events, mean µ “ 100 GeV, standard deviation � “ 15 GeV.
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Figure 6.8: Wavelet transform maximum in the case of a background only sample
(blue) and background plus signal sample (red). Plot (a) shows Wmax, plot (b)
shows W pmmax, s0q. Exponential background: 6000 events. Gaussian signal: 100
events, mean µ “ 100 GeV, standard deviation � “ 15 GeV.
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Expecially in the case of W pmmax, s0q, the peak height in case of signals reach
higher values than that of fake peaks: this means that it is reasonable to fix a
confidence level on the peak height to evaluate the significance of a peak with
respect to background fluctuation.

(a)

(b)

Figure 6.8: Wavelet transform maximum in the case of a background only sample
(blue) and background plus signal sample (red). Plot (a) shows Wmax, plot (b)
shows W pmmax, s0q. Exponential background: 6000 events. Gaussian signal: 100
events, mean µ “ 100 GeV, standard deviation � “ 15 GeV.
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Figure 7.6: Wavelet transform (W pm, sq) of the invariant mass spectrum of two
jets associated with a W decaying leptonically in W Ñ e⌫ (electron channel):
tridimensionalview. The wavelet transform has been computed in the mass region
mjj P r100, 200s GeV, after background subtraction. It is represented as a function
of mass and scale.
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RESULTS IN [100,200] GeV MASS REGION: TRIDIMENSIONAL VIEW �

The contour algorithm finds the wavelet maximum Wmaxpmmax, smaxq in the scale
region js • 25: the mass mmax at which the maximum in found is used to estimate
the peak mass.

Figure 7.5: Wavelet transform (W pm, sq) of the invariant mass spectrum of two
jets associated with a W decaying leptonically in W Ñ µ⌫ (muon channel): tridi-
mensional view. The wavelet transform has been computed in the mass region
mjj P r100, 200s GeV, after background subtraction. It is represented as a function
of mass and scale.

The uncertainty on mmax is given by the scale of the maximum smax: in section
5.2.2 it has been shown that standard deviation of signals only weakly e↵ects the
wavelet transform width, which mostly depends on the scale. For this reason the
scale smax is the better estimator for mass uncertainty3.
The peak masses found in this way for the two channels are listed in table 7.1.
The peak masses in the two channels are compatible to each other. Also they are
compatible with the Higgs boson mass as measured by the CERN experiments AT-
LAS (mH “ 126˘ 0.4 pstatq ˘ 0.4psysq GeV) and CMS (mH “ 125.3˘ 0.4 pstatq ˘
0.5psysq GeV) [7],[8].

3This choice is consistent with definition of the acceptance region for the calculation of
e�ciency proposed in section 5.2.1.
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RESULTS IN [100,200] GeV MASS REGION: �
CONFIDENCE LEVEL, BI-DIMENSIONAL PLOT �

local confidence level, computed bin-by-bin. This explains the peaks exceeding the
confidence level at small scale in figure 7.11: if the scale is small, the number of
independent channels in mˆs plane is large, consequently the number of channels
exceeding the 5% local confidence level is expected to be large too.
In any case, it must be pointed out that the significance level has been defined
and tested only in the region js • 25, any structures passing the confidence level
in the excluded region js † 25 should not be considered as a physical e↵ects.
The results presented here are based on the local confidence level: more precise
considerations on the significance of the signal peak could be done via a global con-
fidence level. Due to the di�culties in defining a global confidence level for wavelet
transform (the values ofW pm, sq at di↵erent masses and scales are correlated), this
topic has not been developed in this thesis.
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Figure 7.11: Wavelet transform of the jet-jet invariant mass spectrum for di↵erent
mass ranges divided by its standard deviation (W pm, sq{�m,s) as a function of mass
and scale. The wavelet transform has been computed after background subtraction.
(a): Muon channel. (b): Electron channel. The 95% confidence level is indicated
by a black contour.

7.2.2 Determination of signal parameters: calibration

In chapter 5 it has been shown that the maximum of wavelet transform Wmax de-
pends linearly on the number of signal events. Also, it has been observed that this
dependency must be appropriately calibrated depending on the particular back-
ground (slope and intensity) of the sample.
The calibration of chapter 5 was done using background samples of 6000 events
and showed a clear linear dependence. In real data, the background is much larger
than the one used in the first calibration: the muon data sample is composed by
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RESULTS IN [100,200] GeV MASS REGION: �
MOVED MASS INTERVAL�

u  At	
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transform	
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  affected	
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  edge	
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u  At	
  [90,190]	
  GeV	
  the	
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region	
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  effects	
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Figure 7.7: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum for
di↵erent mass ranges. The wavelet transform has been computed after background
subtraction, it is represented as a function of mass and scale. (a): Muon channel,
mass range mjj P r90, 190s GeV. (b): Electron channel, mass range mjj P r90, 190s
GeV. (c): Muon channel, mass range mjj P r110, 210s GeV. (b): Electron channel,
mass range mjj P r110, 210s GeV.
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Figure 7.7: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum for
di↵erent mass ranges. The wavelet transform has been computed after background
subtraction, it is represented as a function of mass and scale. (a): Muon channel,
mass range mjj P r90, 190s GeV. (b): Electron channel, mass range mjj P r90, 190s
GeV. (c): Muon channel, mass range mjj P r110, 210s GeV. (b): Electron channel,
mass range mjj P r110, 210s GeV.
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RESULTS IN [100,200] GeV MASS REGION: �
SUBSAMPLES OF MUON CHANNEL�
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Figure 7.8: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum for
di↵erent mass ranges: muon channel. The wavelet transform has been computed
after background subtraction, it is represented as a function of mass and scale.
The analysis has been repeated independently using the subsamples A and B, each
containing half of the original muon channel sample.

peak.
This method has not been developed in a quantitative way, but has been applied
to data as a further qualitative check on the detected structures before moving to
quantitative signal significance.
The mass range has been moved to the region mjj P r60, 160s GeV and wavelet
transform W pm, sq has been computed without subtracting the background. Fig-
ure 7.9 shows the result for muon (plot (a)) and electron (plot (b)) channel.
The structure in the mass region mjj “ 120 - 130 GeV is still clearly visible; in
both channels it appears to have a wider shape than other background peaks and
to have a good isolation. The quantitative analysis of unsubtracted data is more
di�cult than with subtracted ones. For this thesis we will use unsubtracted data
to prove that the structures persist and are not produced by subtraction.
Due to the lack of quantitative development with unsubtracted data, no further
statements can be done about the plots in figure 7.9.

7.2.1 Significance of the peak

The method used for the calculation of confidence level has been described in sec-
tion 6.3.1. The same method is now applied to the peaks found in electron and
muon channel after background subtraction, using the mass range mjj P r100, 200s
GeV.

95



W
(m

,s
)

-30

-20

-10

0

10

20

30

40

50

60

70

Mjj (GeV)

100 110 120 130 140 150

sc
al

e 
in

de
x

26

28

30

32

34

36

38

40

W
(m

,s
)

-30

-20

-10

0

10

20

30

40

50

60

70

Events: subtracted 2000

Mjj (GeV)

100
110 120

130
140

150

scale index

26
28

30
32

34
36

38
40

W
(m

,s
)

-20

0

20

40

60

W
(m

,s
)

-30

-20

-10

0

10

20

30

40

50

60

70

W
(m

,s
)

-30

-20

-10

0

10

20

30

40

50

60

70

Events: subtracted 2000

Mjj (GeV)
100 110 120 130 140 150

W
(m

,s
)

-40

-20

0

20

40

W at sJ=26

W at sJ=27

W at sJ=28

W at sJ=29

W at sJ=30

W at sJ=31

W at sJ=32

Events: signal 0, bkgnd 0, subtracted 2000

23/10/13	
   Margherita	
  Spalla	
   54	
  

SIGNAL SUBTRACTION: MUON CHANNEL�
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SIGNAL SUBTRACTION: ELECTRON CHANNEL�
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SIGNAL SUBTRACTION WITHOUT BACKGROUND SUBTRACTION�
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SEARCH OF NEW PHYSICS VIA THE WAVELET ANALYSIS: MUON CHANNEL 1 �
�
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Figure 8.1: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r150, 250s GeV. (b):r200, 300s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.1: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r150, 250s GeV. (b):r200, 300s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.2: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r250, 350s GeV. (b):r300, 400s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.2: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r250, 350s GeV. (b):r300, 400s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.4: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r450, 550s GeV. (b):r500, 600s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.4: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r450, 550s GeV. (b):r500, 600s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.3: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r350, 450s GeV. (b):r400, 500s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.3: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r350, 450s GeV. (b):r400, 500s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.5: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r150, 250s GeV. (b):r200, 300s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.6: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r250, 350s GeV. (b):r300, 400s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.6: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r250, 350s GeV. (b):r300, 400s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.5: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r150, 250s GeV. (b):r200, 300s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.7: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r350, 450s GeV. (b):r400, 500s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.8: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r450, 550s GeV. (b):r500, 600s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.8: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r450, 550s GeV. (b):r500, 600s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.7: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r350, 450s GeV. (b):r400, 500s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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