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INTRODUCTION�

u The	  problem	  of	  the	  detec9on	  of	  weak	  signals	  is	  of	  high	  importance	  in	  high	  
energy	  physics.	  The	  method	  used	  should	  have	  high	  sensi9vity	  and	  reliability.	  

	  

u In	  this	  thesis,	  a	  mul9resolu9on	  analysis	  method	  has	  been	  applied	  to	  the	  
search	  of	  resonances	  in	  	  invariant	  mass	  spectra.	  

Ø  The	  method	  we	  have	  inves9gated	  (wavelet	  analysis)	  has	  never	  been	  
used	  in	  high	  energy	  physics,	  although	  it	  has	  been	  applied	  for	  analysis	  in	  
various	  fields.	  

Ø  This	  is	  an	  explora9ve	  work	  s9ll	  evolving.	  

	  

u We	  analyzed	  the	  invariant	  mass	  of	  jet	  pairs	  produced	  in	  associa9on	  with	  a	  
leptonically	  decaying	  W	  (from	  p-‐p	  collisions	  in	  ATLAS	  at	  √s=7	  TeV).	  
Ø  This	  channel	  is	  sensi9ve	  to	  Standard	  Model	  signals	  of	  interest	  (W/Z	  and	  

Higgs	  boson	  decays)	  and	  also	  to	  hypothe9cal	  par9cles	  from	  
unconven9onal	  theories.	  



and gluon fields exits: therefore gluons remain massless.
Similarly, when passing from the SUp2qL b Up1q gauge fields to the physical elec-
troweak fields via a liner combination, the Higgs field result to have zero coupling
with the electromagnetic field Aµ (i.e. zero electric charge), justifying the fact that
the photon is massless.
The fermions’ mass is also determined in terms of v, by adding opportune Higgs-
fermion interaction terms to the SM Lagrangian.
From this construction, it results that the couplings between Higgs and massive
particles are proportional to the particle mass; this is fundamental in the determi-
nation of Higgs production mechanisms and decay rates.
The potential term in equation (1.4) also determines the Higgs boson mass (mh “
�v): as it depends on both the unknown parameters � and v, the Higgs mass is not
predicted by the SM theory. Many more considerations about Higgs mechanism
can be found at [3].

The detection and study of the Higgs boson [4] are one of the main purposes
of the Large Hadron Collider (chapter 2).
An Higgs boson can be generated from the hard interaction between two partons.
Di↵erent processes are involved, the most relevant ones (at the actual LHC ener-
gies) are represented in figure 1.2.

Figure 1.2: Feynman diagrams of main Higgs boson production mechanisms at
leading order. The V particle can be a W or a Z boson.The production of an
Higgs boson associated with QQ (bottom-right of the figure) is dominated by the tt
channel, since the Higgs-quark coupling is directly proportional to quark mass.
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STANDARD MODEL EXPECTED SIGNALS�

u WW/WZ	  (diboson).	  

Ø  Measured	  in	  this	  channel	  by	  the	  ATLAS	  collabora9on.	  

q ` q1 Ñ W˘Z (1.6)

Diboson contribute to the l⌫jj final state with its semileptonic channel in which a
W decays into a lepton (electron, muon or ⌧) and a neutrino and the other W {Z
into a pair of quarks.
The measurement of WW {WZ production cross section in the semileptonic chan-
nel3 has been performed by the ATLAS collaboration [9]. The result is �WW {WZ “
72˘ 9 (stat.) ˘15 (syst.) ˘13 (MC stat.) pb, in good agreement with the predic-
tion of 63.4 ˘ 2.6 pb from the SM.

Higgs boson

As observed in section 1.1.1, one of the main channels of Higgs boson production
is the WH associated production (or Higgs-strahlung4), represented in figure 1.2
at the LO.
In this process, a virtual o↵-shell W (usually indicated as W ˚) is generated by a
qq interaction; the virtual W ˚ can then produce an on-shell W and a Higgs boson.
This process can contribute to the l⌫jj final state when W decays leptonically5

and H decays into two jets.
W leptonic branching ratios are summarized in table 1.3.

W`{W´ decay modes BR (�i{�)
e`⌫{e´⌫ p10.75 ˘ 0.13q%
µ`⌫{µ´⌫ p10.57 ˘ 0.15q%

Table 1.3: Branching ratios for leptonic W decays [10].

Main Higgs boson decays contributing to H Ñ jj channel can be extracted from
table 1.2.
At mH » 126 GeV, the dijet Higgs decay is dominated by H Ñ bb. H Ñ gg and
H Ñ ⌧⌧ BR are both one order of magnitude smaller than bb, while only a few

3Due to the jet energy resolution, it is impossible to separate the W and Z resonances in
the jet-jet invariant mass distribution. Therefore only the global WW {WZ cross section can be
measured in semileptonic channel.

4The name derives from the bremsstrahlung phenomenon, in which an electron looses it’s
energy by emitting a photon. Here, an o↵-shell W looses energy by emitting an Higgs boson:
despite the two processes are quite di↵erent, the name Higgs-strahlung is used to remind this
similarity.

5In this analysis, only muon and electron channels are considered, excluding W Ñ ⌧⌫ decay
because of the di�culties in ⌧ detection and analysis.
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u Higgs	  boson	  contributes	  via	  specific	  channels	  of	  
produc9on	  and	  decay:	  

Ø  Produced	  via	  WH	  associated	  produc9on.	  	  

Ø  W	  decays	  leptonically	  and	  H	  decays	  into	  two	  jets	  
(mostly	   	   	  	  	  ).	  

Ø  	   	   	  	  	  	  	  	  was	  recently	  observed	  by	  CMS,	  no	  signal	  
has	  yet	  been	  observed	  by	  ATLAS.	  

	  
u  	  The	  analized	  dataset	  has	  an	  integrated	  luminosity	  of	  	  

L=4702	  pb-‐1.	  Considering	  the	  W	  decay	  rates,	  the	  number	  
of	  produced	  events	  in	  this	  channel	  is	  expected	  to	  be:	  

Higgs total width: � “ 4.18 ¨ 10´3 GeV

Higgs decay BR (�i{�)
H Ñ bb 5.61 ¨ 10´1`3.3%

´3.4%

H Ñ ⌧⌧ 6.16 ¨ 10´2`5.6%
´5.6%

H Ñ cc 2.83 ¨ 10´2`12.2%
´12.2%

H Ñ gg 8.48 ¨ 10´2`10.1%
´9.9%

H Ñ �� 2.28 ¨ 10´3`4.9%
´4.8%

H Ñ WW 2.31 ¨ 10´1`4.1%
´4.1%

H Ñ ZZ 2.89 ¨ 10´2`4.1%
´4.1%

Table 1.2: Branching ratios of main Higgs decays at
?
s “ 7 TeV and mH “ 126

GeV [5].

1.2 The l⌫-jet-jet final state

In this thesis, a multiresolution analysis method is applied to the detection of
small peaks in invariant mass spectrum. Such a technique could be useful for an
improvement of Higgs studies, allowing to measure Higgs decay channels which
have not been detected with conventional tools.
Another application is to use a multiresolution analysis tool for the search of new
resonances in invariant mass spectrum.
This analysis concentrates on the l⌫jj final state, applying multiresolution analysis
to the dijet invariant mass. Expected Standard Model signals are the semileptonic
decay ofWW orWZ (diboson) and associated production ofHW , with H decaying
into two jets. This channel is also sensitive to eventual evidence of physics beyond
the Standard Model.

1.2.1 Expected Standard Model signals

Diboson

A WW or WZ pair is produced by the hard interaction of two partons: the
processes involved are reported in expression (1.5) for WW and (1.6) for WZ.

q ` q Ñ W`W´ g ` g Ñ W`W´ (1.5)

12
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q ` q1 Ñ W˘Z (1.6)

Diboson contribute to the l⌫jj final state with its semileptonic channel in which a
W decays into a lepton (electron, muon or ⌧) and a neutrino and the other W {Z
into a pair of quarks.
The measurement of WW {WZ production cross section in the semileptonic chan-
nel3 has been performed by the ATLAS collaboration [9]. The result is �WW {WZ “
72˘ 9 (stat.) ˘15 (syst.) ˘13 (MC stat.) pb, in good agreement with the predic-
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Higgs boson

As observed in section 1.1.1, one of the main channels of Higgs boson production
is the WH associated production (or Higgs-strahlung4), represented in figure 1.2
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because of the di�culties in ⌧ detection and analysis.
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NWH ⇠ 200 events

Cross	  sec9on	  at	  √s=7	  TeV	  
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EVENT SELECTION�

u The	  analysis	  is	  performed	  on	  data	  acquired	  by	  the	  ATLAS	  experiment	  in	  2011:	  √s=7	  TeV	  
and	  integrated	  luminosity	  	  L=4.702	  X-‐1.	  

u Dijets	  events	  are	  selected	  by	  requiring	  a	  W	  ⟶	  lν	  decay.	  

Ø  Select	  one	  single	  charged	  lepton	  (muon	  or	  electron)	  passing	  the	  
lepton	  selec9on:	  
•  Lepton	  trigger	  +	  pT	  >	  25	  GeV	  
•  |η|	  <	  2.4	  	  
•  Cut	  on	  impact	  parameter	  with	  respect	  to	  primary	  vertex.	  
•  Track	  and	  calorimeter	  isola9on.	  

Ø  Events	  must	  have	  a	  neutrino:	  Etmiss	  >25	  GeV	  

Ø  Select	  W	  events:	  MT	  >	  40	  GeV	  

u  Jet	  selec9on	  to	  reduce	  background:	  
•  pT	  >	  25	  GeV	  
•  |η|	  <	  2.8	  
•  Jet	  Vertex	  Frac9on	  >	  0.75	  (to	  reject	  pile-‐up)	  
•  ΔR(j,l)	  >	  0.5	  	  

Ø  The	  two	  jets	  of	  highest	  pT	  are	  used	  to	  build	  the	  invariant	  mass	  
spectrum.	  

htemp
Entries  522804

Mean   1.494e+05

RMS    1.23e+05

Mjj (GeV)
0 500 1000 1500 2000 2500 3000

310×1

10

210

310

410

510

htemp
Entries  522804

Mean   1.494e+05

RMS    1.23e+05jet-jet invariant mass distribution

Muon	  channel.	  
Inclusive	  selec9on.	  
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INVARIANT	  MASS	  SPECTRUM	  
Muon	  channel.	  
Inclusive	  selec9on.	  

Electron	  channel.	  
Inclusive	  selec9on.	  

•  The	  mass	  spectrum	  has	  a	  maximum	  at	  
around	  80	  GeV.	  

•  At	  higher	  mass	  it	  decreases	  
exponen9ally	  

•  It	  reaches	  values	  of	  Mjj	  >	  2	  TeV	  in	  
both	  channels.	  	  
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WAVELET ANALYSIS: AN INTRODUCTION�

u A	  mul9resolu9on	  method	  allows	  to	  separate	  structures	  of	  different	  dimensions	  in	  mass.	  

u The	  wavelet	  analysis	  is	  a	  mul9scale	  method	  based	  on	  wavelet	  transform.	  
Ø  It	  was	  developed	  for	  the	  detec9on	  of	  local	  structures	  in	  9me	  series.	  
Ø  It	  can	  be	  applied	  to	  the	  analysis	  of	  any	  random	  variable	  m	  of	  density	  f(m).	  

u Wavelet	  transform	  (con9nuous	  case):	  
Ø  Here,	  ψ	  is	  the	  Mexican	  Hat	  (DoG)	  

func9on.	  
Ø  It	  can	  be	  any	  local	  func9on	  with	  zero	  

mean.	  

4.1 The wavelet transform

As previously stated, the wavelet transform can be interpreted as a sort of local
Fourier transform, where the complex exponential is replaced by a local function
of variable scale.
If  0p⇠q is a complex function satisfying the wavelet function “admissibility” re-
quirements, then the wavelet transform of a function fpmq is defined in equation
(4.2), where  ˚p⇠q is the wavelet complex conjugate.

W pm, sq “
ª
fpm1q ¨  ˚

ˆ
m1 ´ m

s

˙
dm1 (4.2)

The wavelet function  
`
m1´m

s

˘
is named a daughter of the mother wavelet  0,

centered in m and scaled by the wavelet scale s.
The scale s changes the ‘size’ of the wavelet. In practice, W pm, sq explores fpmq
at the mass m with a resolution s (this can be particularly evident in the case  0

is the DoG wavelet, reported in the third line of table 4.1). By varying m through
the whole mass range and s through all resolvable scales, fpmq is represented in
two dimensions: the mass and the resolution.
This is a convenient tool for the search of hidden structures in the case fpmq is an
experimental quantity. W pm, sq gives a global picture of fpmq features: at large
scales, only very large structures will appear, while at smaller scale the wavelet
transform is sensitive to very small details that can confuse the pattern. Some
intermidiate scale could reveal interesting structures.
The discrete case is equivalent. The function fpmq is replaced by the discrete
quantity xn; if N is the total number of bins, the wavelet transform is defined in
equation (4.3).

W pm, sq “ Wnpsq “
N´1ÿ

n1“0

xn1 ¨  ˚
ˆpn1 ´ nq�m

s

˙
being : m “ n ¨ �m (4.3)

In literature, many types of wavelet functions are considered, figure 4.1 lists a few
of the more common ones.
In this thesis, the Mexican Hat wavelet function (also named DoG as reported
in figure 4.1) is used as mother wavelet for the entire analysis, because its bell-
shaped profile is similar to that of the searched resonances. The wavelet transform
is therefore expected to be sensitive to the intensity of data structures and their
position in mass4.
Wavelet analysis is then performed by representing and quantitatively analyzing
the wavelet transform W pm, sq as a function of both the mass and the scale.

4Oscillating  0 are used for other purposes, e.g. searching for a localized periodicity in data.

39
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(4.2), where  ˚p⇠q is the wavelet complex conjugate.

W pm, sq “
ª
fpm1q ¨  ˚

ˆ
m1 ´ m

s

˙
dm1 (4.2)

The wavelet function  
`
m1´m

s

˘
is named a daughter of the mother wavelet  0,

centered in m and scaled by the wavelet scale s.
The scale s changes the ‘size’ of the wavelet. In practice, W pm, sq explores fpmq
at the mass m with a resolution s (this can be particularly evident in the case  0

is the DoG wavelet, reported in the third line of table 4.1). By varying m through
the whole mass range and s through all resolvable scales, fpmq is represented in
two dimensions: the mass and the resolution.
This is a convenient tool for the search of hidden structures in the case fpmq is an
experimental quantity. W pm, sq gives a global picture of fpmq features: at large
scales, only very large structures will appear, while at smaller scale the wavelet
transform is sensitive to very small details that can confuse the pattern. Some
intermidiate scale could reveal interesting structures.
The discrete case is equivalent. The function fpmq is replaced by the discrete
quantity xn; if N is the total number of bins, the wavelet transform is defined in
equation (4.3).

W pm, sq “ Wnpsq “
N´1ÿ

n1“0

xn1 ¨  ˚
ˆpn1 ´ nq�m

s

˙
being : m “ n ¨ �m (4.3)

In literature, many types of wavelet functions are considered, figure 4.1 lists a few
of the more common ones.
In this thesis, the Mexican Hat wavelet function (also named DoG as reported
in figure 4.1) is used as mother wavelet for the entire analysis, because its bell-
shaped profile is similar to that of the searched resonances. The wavelet transform
is therefore expected to be sensitive to the intensity of data structures and their
position in mass4.
Wavelet analysis is then performed by representing and quantitatively analyzing
the wavelet transform W pm, sq as a function of both the mass and the scale.

4Oscillating  0 are used for other purposes, e.g. searching for a localized periodicity in data.
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4.2 Wavelet transform calculation

In this section, some aspects of practical wavelet transform calculation are pre-
sented.
Although it is possible to calculate the wavelet transform of a discrete sequence xn

using equation (4.3), it is considerably faster to do the calculation in Fourier space
[1]. To apply equation (4.3), it would be necessary to calculate the convolution as
many times as the number of bins (for each scale), while the convolution theorem
allows to do all the convolutions simultaneously for each scale.
The discrete Fourier transform of xn is given by equation (4.4), where k “ 0...N´1
is the frequency index, while the Fourier transform of a (continous) function
 pm{sq is  ̂ps!q.

x̂k “ 1

N

N´1ÿ

n“0

xne
´i2⇡kn{N (4.4)

By the convolution theorem, the wavelet transform is the inverse Fourier transform
of the product x̂k ¨  ̂ps!kq, as in the equation (4.5), where !k is defined as in
equation (4.6).

W pm, sq “ Wnpsq “
N´1ÿ

k“0

x̂k ̂
˚ps!kqei!k

n�m (4.5)

!k “
"

2⇡k
N�m

if k § N
2

´ 2⇡k
N�m

if k ° N
2

(4.6)

Using equation (4.5) and a Fourier transform routines, the wavelet transform can
be calculated at all n simultaneously and e�ciently for any given s [1].

4.2.1 Choice of scales

W pm, sq, as a continuos function of s, can be approximated by computing the
wavelet transform for a set of scales.
In many cases6 a suitable set of scales must be chosen to build up a more complete
picture.
In literature, it is proposed as the most convenient choice to write the scales as
fractional powers of two (as given by expression (4.7)). This solution will be
adopted here too.

sj “ s02
j�j , j “ 0, 1, ..., J (4.7)

6Wavelet functions  form a set of functions that can be orthogonal or non-orthogonal. In
the orthogonal case the set is discrete and therefore the choice is limited to a discrete set of
scales. Here, nonorthogonal wavelets are considered and one can use an arbitrary set of scales.
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WAVELET ANALYSIS: AN EXAMPLE�

Flat	  background:	  
6000	  events.	  
	  
Gaussian	  signal:	  
100	  events,	  	  
mean	  μ=100	  GeV,	  
width	  σ=15	  GeV.	  
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EXPECTED SIGNAL�

4.3.3 Signal shape

In wavelet analysis, the intensity and width of a signal peak must be extracted
from the shape of the W pm, sq peak.
The wavelet transform (using the DoG wavelet) of a gaussian shape can be com-
puted explicitly by continuos wavelet transformation. Equation (4.14) shows the
result for a gaussian of mean µ and variance �2. It has been used m “ n dm where
m is the mass, n the bin number and dm the bin width.

W pm, sq “ Aps, �q ¨ �m ¨ Nev ¨
ˆ
1 ´ pn�m ´ µq2

�2 ` s2

˙
e

´ pn�m´µq2
2p�2`s

2q (4.14)

W pm, sq is therefore expected to peak at the signal mass and the peak intensity
to be proportional to the number of signal events Nev.
As a consequence of wavelet transform definition, the values of W at di↵erent
masses (and scales) are hightly correlated, so that a fit of W pmq at fixed s (or
vice-versa) should be avoided.
In literature [34] it is suggested that the best reconstruction of signal properties
should be done by measuring W pm, sq peak in scale and mass.
In next sections, various methods to define a calibration relation between W peak
and signal intensity and standard deviation will be shown. AlthoughW pm, sq peak
resulted to be proportional to the number of signal events Nev, the calibration is
complicated by the presence of a varying background in wavelet transform.
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Wavelet	  transform	  of	  a	  gaussian	  signal.	  

u W(m,s)	  has	  a	  DoG-‐like	  shape,	  with	  mean	  
corresponding	  to	  the	  signal	  mean.	  

	  

u W(m,s)	  depends	  linearly	  on	  the	  number	  of	  
events.	  

	  

u W(m,s)	  depends	  also	  on	  the	  signal	  standard	  
devia9on.	  

Ø  It	  is	  not	  expected	  to	  be	  highly	  sensi9ve	  
to	  signal	  width,	  due	  to	  the	  DoG	  shape.	  	  
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DEPENDENCE ON SIGNAL PARAMETERS: CHECK WITH TOY MONTECARLO �

scales. At these scales, the wavelet function is larger than the signal: for this rea-
son the signal width is not expected to have large e↵ects on the wavelet transform
shape.
In any case, the dependence of wavelet transform on signal standard deviation (�)
has been evaluated.
For the study of signal standard deviation, the scale position and the width in
mass of the peak of the wavelet transform should both be considered.
Due to the DoG-like shape of the wavelet transform, the easiest way to define the
peak width is to evaluate the intercept of the wavelet transform with the W “ 0
line. The half width at zero is defined at fixed scale, as shown in figure 5.12: given
the peak mass m0, the first zero at m ° m0 and m † m0 are found. The half
width at zero is the distance between the two zeroes (in red in figure 5.12) divided
by 2.
This observable is expected to depend both on signal � and on the scale at which
the width is calculated.

Figure 5.12: Graphic example to clarify how the half width at zero is defined. The
shape of W pm, sq is of the same kind as the one obtained from a real wavelet
transform, but it should not be considered as significative example.

A method similar to the one proposed for the number of events is followed to
evaluate the dependence on signal standard deviation. The signal half width at
zero can is computed for the maxima found by the contour algorithm. In previous
section, three definitions of the wavelet transform maximum are provided. Refer-
ring to each of these three maxima, a correspondent definition of the half width
at zero is provided.

64

u We	  use	  maximum	  of	  W(m,s)	  to	  
es9mate	  the	  number	  of	  signal	  events.	  

Ø  The	  maximum	  has	  been	  defined	  
both	  at	  fixed	  scale	  (red,	  green)	  
and	  variable	  scale	  (blue).	  

Ø  All	  linear	  in	  Nev	  with	  zero	  
intercept.	  

u We	  use	  the	  half	  width	  at	  zero	  as	  a	  
func9on	  of	  signal	  width.	  

Signal:	  100	  events	  
No	  background	  added.	  

No	  background	  added.	  

Ø  Signal	  σ	  will	  not	  
be	  evaluated	  
from	  wavelet	  
analysis.	  	  
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BACKGROUND EFFECTS, UNIFORM BACKGROUND �

u Flat	  background	  is	  the	  condi9on	  in	  which	  wavelet	  analysis	  applied	  in	  most	  of	  
literature.	  	  
Ø  W(m,s)	  is	  computed	  with	  respect	  to	  arithme9c	  mean	  of	  the	  data.	  	  

u At	  lower	  scale	  the	  wavelet	  transform	  is	  dominated	  by	  sta9s9cal	  fluctua9on:	  only	  
the	  scale	  region	  js	  ≥	  25	  is	  used	  for	  the	  analysis.	  
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Figure 5.3: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed mass m “ 100 GeV.
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Figure 5.4: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events): projection at
fixed scale. (a): scale index=35. (b): scale index=30. (c): scale index=25. (d):
scale index=20.
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Figure 5.3: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed mass m “ 100 GeV.
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Figure 5.4: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events): projection at
fixed scale. (a): scale index=35. (b): scale index=30. (c): scale index=25. (d):
scale index=20.
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Figure 6.5: Wavelet transform with an exponential background as a function of
mass and scale. Gaussian signal: 100 events, mean µ “ 100 GeV, standard devia-
tion � “ 15 GeV. Exponential background: 6000 events. In the plot (a) background
shape from the data fit has been subtracted. In the plot (b) no subtraction is done.

6.3 E�ciency and fakes rate

The e�ciency in case of background subtraction has been evaluated using the same
method of section 5.2.2. The contour algorithm (described in section 5.2.2) has
been used for the search of peaks.
The e�ciency has been evaluated using samples of 6000 exponential background
events, with a gaussian signal of standard deviation � “ 15 GeV and mean µ “ 100
GeV (figure 6.7 (a)), µ “ 40 GeV (figure 6.7 (b)) and µ “ 160 GeV (figure 6.7
(c)).
The method appears to be less e�cient than it was in the case of uniform back-
ground and data presents greater fluctuations. Also, comparing the case of µ “ 160
GeV (figure 6.7 (c)) with the other two, it can be observed the e�ciency increases
more, as a function of the number of events, for signals situated in the upper part
of the mass interval. This is easily explained by the fast decreasing of the back-
ground as a function of the mass. Fluctuations are smaller at higher mass1 and
this a↵ects signal detection e�ciency. This e↵ect can be seen in the plot (b) of
figure 6.4, showing the invariant mass plot after background subtraction.

Due to fit problems, the background subtraction can enhance the problem of fake
peaks.

1This because the bin contents are Poisson variables: as the mean decreases, the standard
deviation (i.e. the amplitude of the fluctuation) decreases consequently.
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Figure 6.3: Wavelet transform with an exponential background as a function of
mass and scale. Gaussian signal: 100 events, mean µ “ 140 GeV, standard devi-
ation � “ 15 GeV. Exponential background: 6000 events.

6.1.1 Background subtraction

In order to more easily distinguish the signal in the case of an exponentially
decreasing background, background subtraction is performed before the wavelet
transform is computed.
The background shape has been determined directly by fitting the data histogram.
Figure 6.4 (a) shows an example: the sample is composed by 6000 events of back-
ground, exponentially distributed, plus 100 signal events with mass µ “ 100 GeV
and standard deviation � “ 15 GeV. An exponential fit is superimposed. To pro-
vide a more clear plot, the bin width of mass histograms in figure 6.4 has been
enlarged with respect to that used for wavelet analysis.
The fit of background shape is of high importance in this analysis, since the wavelet
transform is sensitive to any structures a poor fit could produce. For this reason,
the fit function should be carefully chosen for any data sample and fit quality
should be checked properly.
Figure 6.4 shows an example of how fit quality is checked. Plot (b) shows the
invariant mass plot after background subtraction, fitted by a constant function.
Figure 6.4 (c) shows the distribution of pulls. If xn is the content of the bin at
mass mn and fpmnq is the fit function evaluated at mn, the pull ✏n is then defined
as in equation (6.2). �n is the standard deviation of the variable xn: being the bin
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 / ndf 2χ  309.1 / 248
Prob   0.005036
Constant  0.022± 4.006 
Slope     0.00026± -0.01121 
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Figure 6.4: Fit of invariant mass shape (a), the invariant mass histogram after
background subtraction fitted with a constant function (b) and the pull distribution
(c). Gaussian signal: 100 events, mean µ “ 100 GeV, standard deviation � “ 15
GeV. Exponential background: 6000 events. Invariant mass histogram have been
rebinned to provide a more clear picture.
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Figure 6.5: Wavelet transform with an exponential background as a function of
mass and scale. Gaussian signal: 100 events, mean µ “ 100 GeV, standard devia-
tion � “ 15 GeV. Exponential background: 6000 events. In the plot (a) background
shape from the data fit has been subtracted. In the plot (b) no subtraction is done.

6.3 E�ciency and fakes rate

The e�ciency in case of background subtraction has been evaluated using the same
method of section 5.2.2. The contour algorithm (described in section 5.2.2) has
been used for the search of peaks.
The e�ciency has been evaluated using samples of 6000 exponential background
events, with a gaussian signal of standard deviation � “ 15 GeV and mean µ “ 100
GeV (figure 6.7 (a)), µ “ 40 GeV (figure 6.7 (b)) and µ “ 160 GeV (figure 6.7
(c)).
The method appears to be less e�cient than it was in the case of uniform back-
ground and data presents greater fluctuations. Also, comparing the case of µ “ 160
GeV (figure 6.7 (c)) with the other two, it can be observed the e�ciency increases
more, as a function of the number of events, for signals situated in the upper part
of the mass interval. This is easily explained by the fast decreasing of the back-
ground as a function of the mass. Fluctuations are smaller at higher mass1 and
this a↵ects signal detection e�ciency. This e↵ect can be seen in the plot (b) of
figure 6.4, showing the invariant mass plot after background subtraction.

Due to fit problems, the background subtraction can enhance the problem of fake
peaks.

1This because the bin contents are Poisson variables: as the mean decreases, the standard
deviation (i.e. the amplitude of the fluctuation) decreases consequently.
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EXPONENTIAL BACKGROUND �

u Exponen9al	  background	  affects	  W(m,s).	  
	  
u The	  adopted	  strategy	  is	  background	  subtrac9on.	  	  

u A	  qualita9ve	  check	  on	  a	  signal	  can	  be	  done	  performing	  
wavelet	  transform	  without	  background	  subtrac9on.	  	  

Background	  subtracted	  

Background	  not	  subtracted	  

Ø  Background	  shape	  is	  
fised	  to	  data.	  

Ø  Fit	  problems	  may	  
generate	  fakes.	  

Ø  Proper	  subtrac9on	  
retains	  a	  good	  
sensi9vity	  to	  the	  signal.	  
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FLAT BACKGROUND: DEPENDENCE ON NUMBER OF SIGNAL EVENTS�

Uniform	  background:	  
6000	  events.	  

u Maximum	  of	  W(m,s):	  
Ø  Nonzero	  intercept,	  due	  to	  the	  inclusion	  

of	  background	  events	  in	  the	  wavelet	  
convolu9on.	  	  

Blue:	  Wmax(N)	  at	  variable	  scale	  
Green	  and	  red:	  Wmax(N)	  at	  fixed	  scale	  

(a)

(b)

Figure 5.10: Wmax (blue), W fixedS
max (red) and W pmmax, s0q (green) for varying num-

ber of signal events (the fixed scale is js0 “ 29). The signal standard deviation is
� “ 15 GeV. (a): no background is added. (b): 6000 events of uniform background
are added. The three variables have bin fitted with a linear function: fit results are
also shown.

61
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u Dependence	  on	  number	  of	  signal	  events	  ater	  background	  subtrac9on.	  
Ø  Condi9ons	  are	  similar	  to	  that	  with	  flat	  background.	  

Exponen9al	  background:	  
6000	  events.	  
Signal:	  μ=100	  GeV,	  σ=15	  GeV	  

Wmax(N)	  
Variable	  scale	  

Wmax(N)	  
Fixed	  scale	  

Wmax(N)	  
Fixed	  scale	  

EXPONENTIAL BACKGROUND: DEPENDENCE ON NUMBER OF SIGNAL EVENTS�
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UNIFORM BACKGROUND: EFFICIENCY�
u For	  each	  toy	  MonteCarlo	  sample,	  we	  looked	  for	  a	  W(m,s)	  local	  maximum:	  

Ø within	  the	  region	  js≥25	  
Ø  compa9ble	  with	  the	  inserted	  signal.	  
	  

u  The	  efficiency	  is	  defined	  as	  the	  frac9on	  of	  cases	  in	  which	  a	  compa9ble	  W(m,s)	  
peak	  is	  found.	  
Ø  It	  is	  large	  even	  for	  very	  small	  signals.	  

Flat	  background:	  	  
6000	  events.	  
Signal:	  	  
μ=100	  GeV,	  σ=15	  GeV	  

u Efficiency	  has	  been	  
compared	  to	  what	  found	  
with	  simple	  fit	  methods	  
(gaussian	  +	  constant).	  This	  
method	  is	  definitely	  more	  
efficient.	  
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EXPONENTIAL BACKGROUND: EFFICIENCY AND FAKE RATE�

u The	  efficiency	  is	  similar	  to	  what	  
computed	  for	  flat	  background.	  
Ø  A	  bit	  smaller	  and	  affected	  by	  

greater	  fluctua9ons.	  

W pNevq: exponential background, subtracted.
slope constant term

Wmax 0.037 ˘ 0.0021 2.4 ˘ 0.23

W fixedS
max 0.036 ˘ 0.0025 1.6 ˘ 0.25

W pmmax, s0q 0.038 ˘ 0.0026 1.3 ˘ 0.28

Table 6.1: Results of the linear fit of the three variables used as wavelet trans-
form peak height as a function of the number of signal events. Results with 6000
background events and a gaussian signal of µ “ 100 GeV and standard deviation
� “ 15 GeV are presented.

The definition of the fake rate is not simple: the bell-shape of the wavelet tends
to simulate peaks also in absence of signal.
On the other hand, in the scale region of acceptable signals (js • 25), the wavelet
width is large (10-100 GeV): this means that independent maxima are rare at this
scale and the fluctuations of W pm, sq that could result in a fake peak are in fact
eated up by the signal. If the fakes become less, the signal is corrupted by the
background fluctuations.
These are qualitative considerations, but they impliy that the fake rate measured
by counting the peaks found in absence of signal is not a good estimation of the
background when a signal is really there.
However, the amount of fake peaks found in background-only samples, is a param-
eter of interest when applying the wavelet analysis to the search of new structures
in data.
This ‘background-only fake rate’ has been evaluated with an exponentially de-
creasing toy MonteCarlo sample, composed by 6000 events of background and no
signals added. The sample has been analyzed via the contour algorithm2 and using
a mass µ “ 100 GeV to define the center of the acceptance region.
The result is the percentage of fake peaks reported in (6.3).

Rfakes “ 0.567 ˘ 0.0082 (6.3)

The simple counting is a poor way to define the fakes: a confidence level must
then be defined to evaluate the significance of found peaks.
Before moving to confidence level definition, we have considered the maximum

2The contour algorithm is the same as was described is section 5.2.1, but in this case no
check on the acceptance region is done (i.e. point (4.) of description in section 5.2.1 should be
ignored.
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u A	  confidence	  level	  must	  be	  defined	  to	  evaluate	  the	  significance	  of	  found	  peaks.	  
Ø  We	  use	  the	  W(m,s)	  maximum	  height	  as	  sta9s9c.	  

	  
u The	  fake	  rate	  is	  possibly	  increased	  by	  fit	  problems:	  

Ø  	  evaluated	  applying	  the	  efficiency	  algorithm	  to	  background-‐only	  MonteCarlo	  
samples	  (6000	  events).	  
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u The	  significance	  level	  is	  computed	  locally,	  evalua9ng	  W(m,s)	  distribu9on,	  fixed	  m,s.	  
Ø  xn	  are	  Poisson	  variables:	  we	  assume	  gaussian	  approxima9on	  to	  be	  valid	  	  
	  

	   	   	  	   	  ⇒	  	  W(m,s)	  ～	  N(0,σ(m,s))	  	  
	  

	  
	  

Ø  The	  α	  confidence	  level	  should	  be	  compared	  to	  W(m,s)/σ(m,s).	  

u The	  frac9on	  of	  false	  posi9ve	  is	  large	  since	  in	  W(m,s)	  plot	  the	  number	  of	  independent	  
channels	  is	  large	  and	  difficult	  to	  quan9fy	  because	  high	  and	  not	  uniform	  correla9on	  
between	  m×s	  bins.	  

Ø  To	  reduce	  the	  fake	  rate,	  a	  global	  confidence	  level	  should	  be	  defined.	  

Ø  The	  defini9on	  is	  made	  difficult	  by	  correla9on	  effects.	  

4.1 The wavelet transform

As previously stated, the wavelet transform can be interpreted as a sort of local
Fourier transform, where the complex exponential is replaced by a local function
of variable scale.
If  0p⇠q is a complex function satisfying the wavelet function “admissibility” re-
quirements, then the wavelet transform of a function fpmq is defined in equation
(4.2), where  ˚p⇠q is the wavelet complex conjugate.

W pm, sq “
ª
fpm1q ¨  ˚

ˆ
m1 ´ m

s

˙
dm1 (4.2)

The wavelet function  
`
m1´m

s

˘
is named a daughter of the mother wavelet  0,

centered in m and scaled by the wavelet scale s.
The scale s changes the ‘size’ of the wavelet. In practice, W pm, sq explores fpmq
at the mass m with a resolution s (this can be particularly evident in the case  0

is the DoG wavelet, reported in the third line of table 4.1). By varying m through
the whole mass range and s through all resolvable scales, fpmq is represented in
two dimensions: the mass and the resolution.
This is a convenient tool for the search of hidden structures in the case fpmq is an
experimental quantity. W pm, sq gives a global picture of fpmq features: at large
scales, only very large structures will appear, while at smaller scale the wavelet
transform is sensitive to very small details that can confuse the pattern. Some
intermidiate scale could reveal interesting structures.
The discrete case is equivalent. The function fpmq is replaced by the discrete
quantity xn; if N is the total number of bins, the wavelet transform is defined in
equation (4.3).

W pm, sq “ Wnpsq “
N´1ÿ

n1“0

xn1 ¨  ˚
ˆpn1 ´ nq�m

s

˙
being : m “ n ¨ �m (4.3)

In literature, many types of wavelet functions are considered, figure 4.1 lists a few
of the more common ones.
In this thesis, the Mexican Hat wavelet function (also named DoG as reported
in figure 4.1) is used as mother wavelet for the entire analysis, because its bell-
shaped profile is similar to that of the searched resonances. The wavelet transform
is therefore expected to be sensitive to the intensity of data structures and their
position in mass4.
Wavelet analysis is then performed by representing and quantitatively analyzing
the wavelet transform W pm, sq as a function of both the mass and the scale.

4Oscillating  0 are used for other purposes, e.g. searching for a localized periodicity in data.
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equation (4.11).

W pm, sq “
N´1ÿ

n1“0

xn1 ¨  ˚
ˆpn1 ´ nq�m

s

˙
“

N´1ÿ

n1“0

xn1 ¨ cn1pm, sq (4.11)

W pm, sq distribution has been simplified by assuming gaussian approximation to
be valid for xn distribution. Furthermore, significance level calculation is done,
here, after background subtraction (see section 4.3.1), so that the bin contents are
distributed as gaussian variables with µb “ 0 and �b “ xn, where xn is the bin
content mean before background subtraction.
W pm, sq is thus distributed as a gaussian of zero mean and variance �2

pm,sq given
by equation (4.12).

�2
pm,sq “ V arpW pm, sqq “

N´1ÿ

n1“0

xn1 ¨ |cn1pm, sq|2 (4.12)

The ↵ confidence level is computed for a standard normal distribution Np0, 1q, as
in equation (4.13). Since we are interested in detecting only positive peaks, the
confidence level is calculated only for the upper tail of the gaussian distribution.

↵ “
ª 8

x
CL

Np0, 1qdx (4.13)

The obtained level is then compared to W pm, sq{�pm,sq („ Np0, 1q if H0), i.e. the
wavelet transform scaled by the standard deviation �pm,sq, dependent on the mass
and scale values.
This method have been tested on background samples obtained with toy Monte-
Carlo; a detailed description will be presented in section 6.7.
In this thesis has been used ↵ “ 5%. This is a local confidence level, computed
for each single bin.
The global significance (i.e. the probability of having more than one signal any-
where in the mass region) should also be computed in case of claim of a new signal.
However, gaussian signals as those expected for this thesis (NpµS, �

2 » p15GeVqq2)
are mainly detected at large scales (see chapter 5). At these scales the DoG wavelet
is almost as wide as the considered mass interval. This limits the number of pos-
sible independent fake signals.
Also, the values of the wavelet transform at varying mass and scale are all corre-
lated and this complicates the definition of a global confidence level.
These fine details won’t be further discussed in this thesis.
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level has been averaged over 100 events, it is reported in equation 6.4.

RoverCL
fakes “ 0.46 (6.4)

The fake rate is not negligible, a global confidence level should be calculated to
have more stringent results on the significance of W pm, sq maxima. However, the
definition of a global confidence level for wavelet transform is not simple, due to
the large and not uniform correlation e↵ects a↵ecting the value of W pm, sq at
di↵erent masses and scales.
In this thesis, only statistical considerations based on the local confidence level
will be presented, the statistical calculation of a global confidence level is left to
further work.
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CONFIDENCE LEVEL�
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= 5%

u We	  evaluated	  the	  mean	  number	  of	  peaks	  exceeding	  the	  95%	  confidence	  level	  via	  toy	  
MonteCarlo.	  
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WAVELET ANALYSIS OF JET-JET MASS SPECTRUM �

W/Z	  mass.	  

W/Z	  SIGNAL	  

u The	  detec9on	  of	  W/Z	  boson	  is	  
complicated	  because	  the	  background	  
peaks	  at	  about	  80	  GeV.	  

Ø  The	  wavelet	  transform	  detects	  a	  
huge	  peak,	  but	  it	  is	  impossible	  to	  
correctly	  separate	  signal	  and	  
background	  effects.	  

u The	  problem	  could	  be	  fixed	  by	  refining	  
the	  sample	  selec9on.	  	  

[100,200]	  GeV	  MASS	  REGION	  

u The	  decreasing	  background	  have	  been	  fised	  with	  an	  exponen9al	  and	  subtracted.	  

Ø  Fit	  quality	  appeared	  to	  be	  sa9sfactory	  

u Wavelet	  transform	  has	  then	  been	  computed.	  

Muon	  channel.	  
Inclusive	  selec9on.	  
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FIT QUALITY: EXAMPLE OF ELECTRON CHANNEL�
(a)
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pulls
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pull distribution

(c)

Figure 7.2: Fit quality for jet-jet invariant mass spectrum in the region mjj P
r100, 200s GeV, electron channel. (a): fit of invariant mass shape. (b): the invari-
ant mass histogram after background subtraction fitted with a constant function.
(c): and the pull distribution. Fit results are reported.
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content a Poisson variable, the standard deviation of xn is �n “ ?
xn.

✏n “ xn ´ fpmnq
�n

(6.2)

If the fit is correct, the pull distribution is expected to be a standard normal
Np0, 1q. A gaussian fit is performed in figure 6.4 (c): the results (reported in the
figure) are compatible with a normal distribution with zero mass and standard
deviation equal to one.
The result of background subtraction is shown in figure 6.5. The same data sample
presented in figure 6.4 has been processed via the wavelet transform: plot (a) shows
the wavelet transform after background has been subtracted, plot (b) shows the
wavelet transform without any background subtraction.
The signal peak appears now to be much more evident and larger structures due
to background have been removed.
Details of the method performances when background subtraction is applied are
presented in the following.

6.2 Dependence on signal intensity

The dependence of wavelet peak maximum on number of signal events has been
evaluated after background subtraction.
To evaluate the peak height we have used the maximum of W pm, sq, Wmax, and
the two definitions of maximum at fixed scale W fixedS

max and W pmmax, s0q, as defined
in section 5.2.2.
For consistence with the previous results, the fixed scale index used is js0 “ 29.
Figure 6.6 shows the result for a signal of mean µ “ 100 GeV and standard
deviation � “ 15 GeV over an exponential background of 6000 events. Wmax

(blue), W fixedS
max (red) and W pmmax, s0q (green) are plotted together.

The linearity is still evident also after background subtraction. A linear fit has
been performed and the three variables resulted to have compatible slopes, a bit
larger than in the case of flat background. The constant term of the fit is bigger
for Wmax, which then seems to be more sensitive to the presence of background.
Table 6.1 summarizes the fit results in the three cases.
The three variables, Wmax, W fixedS

max and W pmmax, s0q, are both acceptable for
the extraction of the number of signal events. In section 7.2.2 the calibration
for the data sample background conditions is discussed: the calibration method
introduced here will be tested using MonteCarlo simulation that reproduce the
data sample shape, using low signal over background ratios.
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Expected	  to	  be	  a	  standard	  normal	  
distribu9on.	  
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RESULTS IN [100,200] GeV MASS REGION�

u The	  peak	  mass	  have	  been	  computed,	  its	  
uncertainty	  is	  given	  by	  the	  scale	  at	  which	  the	  
maximum	  have	  been	  found.	  

Higgs’ boson mass from ATLAS: 

The contour algorithm finds the wavelet maximum Wmaxpmmax, smaxq in the scale
region js • 25: the mass mmax at which the maximum in found is used to estimate
the peak mass.

Figure 7.5: Wavelet transform (W pm, sq) of the invariant mass spectrum of two
jets associated with a W decaying leptonically in W Ñ µ⌫ (muon channel): tridi-
mensional view. The wavelet transform has been computed in the mass region
mjj P r100, 200s GeV, after background subtraction. It is represented as a function
of mass and scale.

The uncertainty on mmax is given by the scale of the maximum smax: in section
5.2.2 it has been shown that standard deviation of signals only weakly e↵ects the
wavelet transform width, which mostly depends on the scale. For this reason the
scale smax is the better estimator for mass uncertainty3.
The peak masses found in this way for the two channels are listed in table 7.1.
The peak masses in the two channels are compatible to each other. Also they are
compatible with the Higgs boson mass as measured by the CERN experiments AT-
LAS (mH “ 126˘ 0.4 pstatq ˘ 0.4psysq GeV) and CMS (mH “ 125.3˘ 0.4 pstatq ˘
0.5psysq GeV) [7],[8].

3This choice is consistent with definition of the acceptance region for the calculation of
e�ciency proposed in section 5.2.1.
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Detected peak mass (GeV)

Muon channel 131 ˘ 14

Electron channel 125 ˘ 10

Table 7.1: Mass of the peak detected in dijet invariant mass spectrum via the
wavelet analysis in electron and muon channel. The mass range mjj P r100, 200s
has been used. The mass is the mass of the wavelet transform maximum, while its
uncertainty is given by the scale of the wavelet transform maximum.

Due to the jet energy resolution, the width of any resonance in dijet invariant mass
spectrum is expected to be of the order of 15 GeV. The uncertainties on the mass
value, are therefore of the expected order of magnitude, but a bit smaller than jet
energy resolution. However, here the purpose is to evaluate the results of wavelet
analysis method applied to real data: in the case this method is used to provide
a measure of any particle mass, uncertainties should be more carefully evaluated
considering the e↵ects of systematics.
Finally it must be pointed out that here the scale smax is not an estimator of signal
standard deviation (as described in section 5.2.2). Therefore, no considerations on
the signal width will be done via this method.
The conclusions on the evidence of a mass peak at mjj „ 126 GeV has been vali-
dated by repeating the analysis changing the mass range used for wavelet transform
calculation. In this way we have more evidence that the structures are not a by-
product of the boundaries.
The wavelet analysis has been applied to data moving the mass range to bigger
and smaller values. To avoid the background peak, it is impossible to check the
method result with strong variations of the mass range: checks have been done
using ranges mjj P r90, 190s GeV and mjj P r110, 210s GeV, results are reported
in table 7.2, while figure 7.7 shows the contour plots in the four cases.

The masses found in the three ranges are compatible. The maximum scale smax is
smaller in the mjj P r110, 210s GeV, while it slightly increase when mjj P r90, 190s
GeV. The reason is that when the peak is close to the range edge, a larger wavelet
is more influenced by edge e↵ects (see section 4.2.3) which tends to reduce its
height. For this reason, the peak is found at a smaller scale when the interesting
mass region is closer to the edge.
For the same reason, it can be seen (figure 7.7) that the peak of the wavelet trans-
form also tends to be higher when located in a more central region of the mass
interval. This is not always possible, because a good fit quality is also needed and
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u W(m,s)	  shows	  a	  signal	  at	  a	  mass	  compa9ble	  to	  Higgs	  mass	  in	  both	  e	  and	  mu	  channels	  
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RESULTS IN [100,200] GeV MASS REGION: �
CONFIDENCE LEVEL�

u The	  95%	  local	  confidence	  level	  computed	  for	  a	  standard	  normal	  distribu9on	  has	  been	  
compared	  to	  W(m,s)/σ(m,s)	  of	  the	  peak.	  

	  
u Both	  peaks	  in	  muon	  and	  electron	  channel	  resulted	  to	  be	  significa9ve.	  

u Beser	  considera9ons	  could	  be	  done	  via	  a	  global	  confidence	  level	  	  
Ø  Due	  to	  the	  difficul9es	  in	  defining	  a	  global	  confidence	  level	  for	  W(m,s),	  this	  topic	  

has	  not	  been	  developed	  in	  this	  thesis.	  	  

Detected peak mass (GeV): muon channel

Subsample A 138 ˘ 17

Subsample B 128 ˘ 12

Table 7.3: Mass of the peak detected in dijet invariant mass spectrum via the
wavelet analysis in muon channel. The analysis has been repeated independently
using the subsamples A and B, each containing half of the original muon chan-
nel sample. The mass is the mass of the wavelet transform maximum, while its
uncertainty is given by the scale of the wavelet transform maximum.

The 95% confidence level is computed and compared to the wavelet transform
maximum divided by it’s standard deviation Wmaxpmmax, smaxq{�pm

max

,s
max

q.
Figure 7.10 shows the ratio W pm, sq{�m,s at fixed scale s “ smax, a red line has
been drawn to indicate the 5% significance level. Both muon channel (plot (a))
and electron channel (plot (b)) are significative at 95% confidence level.

(a) (b)

Figure 7.10: Wavelet transform of the jet-jet invariant mass spectrum for di↵erent
mass ranges divided by its standard deviation (W pm, sq{�m,s): projection at the
scale s “ smax where the peak maximum have been found. The wavelet transform
has been computed after background subtraction. (a): Muon channel. (b): Electron
channel. The 95% confidence level is indicated by the red line.

The confidence level can also be represented in the m ˆ s plane. Figure 7.11
shows the ratio W pm, sq{�m,s as a function of mass and scale index js for electron
and muon channel. A black contour has been fixed to the 5% confidence level.
As already pointed out in section 6.3.1 the confidence level considered here is a
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Electron	  channel.	  
W (m, s)

�(m,s)

Mjj	  (GeV)	  

Detected peak mass (GeV): muon channel

Subsample A 138 ˘ 17

Subsample B 128 ˘ 12

Table 7.3: Mass of the peak detected in dijet invariant mass spectrum via the
wavelet analysis in muon channel. The analysis has been repeated independently
using the subsamples A and B, each containing half of the original muon chan-
nel sample. The mass is the mass of the wavelet transform maximum, while its
uncertainty is given by the scale of the wavelet transform maximum.

The 95% confidence level is computed and compared to the wavelet transform
maximum divided by it’s standard deviation Wmaxpmmax, smaxq{�pm

max

,s
max

q.
Figure 7.10 shows the ratio W pm, sq{�m,s at fixed scale s “ smax, a red line has
been drawn to indicate the 5% significance level. Both muon channel (plot (a))
and electron channel (plot (b)) are significative at 95% confidence level.

(a) (b)

Figure 7.10: Wavelet transform of the jet-jet invariant mass spectrum for di↵erent
mass ranges divided by its standard deviation (W pm, sq{�m,s): projection at the
scale s “ smax where the peak maximum have been found. The wavelet transform
has been computed after background subtraction. (a): Muon channel. (b): Electron
channel. The 95% confidence level is indicated by the red line.

The confidence level can also be represented in the m ˆ s plane. Figure 7.11
shows the ratio W pm, sq{�m,s as a function of mass and scale index js for electron
and muon channel. A black contour has been fixed to the 5% confidence level.
As already pointed out in section 6.3.1 the confidence level considered here is a
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Muon	  channel.	  
W (m, s)

�(m,s)

Mjj	  (GeV)	  

Slice	  at	  the	  scale	  s	  =	  smax	  where	  the	  
peak	  maximum	  have	  been	  found.	  
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Figure 7.9: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
for di↵erent mass ranges without background subtraction. It is represented as a
function of mass and scale, mass range mjj P r100, 200s GeV have been used. (a):
Muon channel. (b): Electron channel.
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Figure 7.9: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
for di↵erent mass ranges without background subtraction. It is represented as a
function of mass and scale, mass range mjj P r100, 200s GeV have been used. (a):
Muon channel. (b): Electron channel.
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RESULTS IN [100,200] GeV MASS REGION: �
QUALITATIVE CHECKS�

u Check	  1:	  the	  analysis	  was	  repeated	  moving	  the	  
mass	  interval	  of	  ±10	  GeV.	  

mass range (GeV) Detected peak mass (GeV)

Muon channel Electron channel

r90, 190s 129 ˘ 17 129 ˘ 21

r110, 210s 132 ˘ 10 126 ˘ 7.5

Table 7.2: Mass of the peak detected in dijet invariant mass spectrum via the
wavelet analysis in electron and muon channel for di↵erent mjj ranges. The mass
is the mass of the wavelet transform maximum, while its uncertainty is given by
the scale of the wavelet transform maximum.

therefore the background peak must be excluded from the mass range used in the
analysis.
For this analysis, we keep the mass interval mjj P r100, 200s GeV, because the
peak of the background is completely outside the fit range and the interesting
mass region is not too close to the edges.
Another check of the obtained results have been done by dividing the muon sample
into two subsamples, each composed by half of the muon sample statistics, and
repeating the analysis for each subsample separately. The same check has not been
done with electron channel because in this case the statistic is much smaller4 and
a further division would compromise the quality of the result.

Figure 7.8 shows the wavelet transform computed for the two subsamples of muon
channel in the mass range mjj P r100, 200s GeV, a peak is visible in both the
plots. The masses (mmax) of the two maxima in figure 7.8 have been found via
the contour algorithm, as applied previously in this section; they are listed in table
7.3. As has been done in the case of the full data sample, the uncertainties over
measured masses are the scales smax at which the maximum has been found.
The results obtained with the two subsamples are compatible with both the results
from the whole sample and the Higgs’ mass reported in literature.

Signal peak without background subtraction

In section 6.1, it was observed that a signal over a decreasing background could
also be visible without background subtraction if the mass range is moved to put
the signal in the upper side of the interval (an example wa given in figure 6.3). In
this way, the negative valley that appears in the upper side of the range reduces

4247086 events are recorded in the electron channel sample and 522804 events in muon
channel sample
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u Check	  2:	  the	  muon	  sample	  was	  divided	  in	  two	  
subsample	  and	  the	  analysis	  repeated	  for	  each	  
one.	   Detected peak mass (GeV): muon channel

Subsample A 138 ˘ 17

Subsample B 128 ˘ 12

Table 7.3: Mass of the peak detected in dijet invariant mass spectrum via the
wavelet analysis in muon channel. The analysis has been repeated independently
using the subsamples A and B, each containing half of the original muon chan-
nel sample. The mass is the mass of the wavelet transform maximum, while its
uncertainty is given by the scale of the wavelet transform maximum.

GeV.
The 95% confidence level is computed and compared to the wavelet transform
maximum divided by it’s standard deviation Wmaxpmmax, smaxq{�pm

max

,s
max

q.
Figure 7.10 shows the ratio W pm, sq{�m,s at fixed scale s “ smax, a red line has
been drawn to indicate the 5% significance level. Both muon channel (plot (a))
and electron channel (plot (b)) are significative at 95% confidence level.

(a) (b)

Figure 7.10: Wavelet transform of the jet-jet invariant mass spectrum for di↵erent
mass ranges divided by its standard deviation (W pm, sq{�m,s): projection at the
scale s “ smax where the peak maximum have been found. The wavelet transform
has been computed after background subtraction. (a): Muon channel. (b): Electron
channel. The 95% confidence level is indicated by the red line.

The confidence level can also be represented in the m ˆ s plane. Figure 7.11
shows the ratio W pm, sq{�m,s as a function of mass and scale index js for electron
and muon channel. A black contour has been fixed to the 5% confidence level.
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u Check	  3,	  only	  qualita9ve:	  W(m,s)	  has	  been	  computed	  
without	  background	  subtrac9on.	  The	  bump	  at	  126	  GeV	  
is	  s9ll	  visible	  
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DETERMINATION OF SIGNAL INTENSITY: CALIBRATION �

u The	  number	  of	  background	  events	  is	  much	  larger	  in	  real	  data	  than	  in	  sample	  used	  for	  
calibra9on.	  

Ø  Ater	  subtrac9on,	  residual	  background	  has	  larger	  fluctua9ons.	  

u The	  direct	  determina9on	  of	  the	  signal	  intensity	  via	  the	  maximum	  of	  W(m,s)	  becomes	  
badly	  condi9oned	  by	  the	  strong	  fluctua9on	  of	  the	  background.	  

Muon	  channel:	  	  
522804	  events	  
Electron	  channel:	  	  
247086	  events	  

u The	  W(m,s)	  maximum,	  as	  a	  func9on	  of	  the	  
number	  of	  signal	  events,	  has	  a	  large	  
constant	  term	  and	  a	  small	  slope.	  

Ø  In	  this	  way	  we	  cannot	  provide	  an	  
adequate	  calibra9on.	  

Ø  The	  precision	  in	  background	  modelling	  
and	  the	  search	  algorithm	  should	  be	  
refined	  

fixed scale s0can be far from the wavelet peak and thus insensitive to the presence
of the signals. The maximum Wmax plotted in figure 7.12 is then the one found
by the contour algorithm (section 5.2.2) over the bi-dimensional contour.
To reduce the contamination of fake peaks in calibration, the contour algorithm
has been slightly modified with respect to the definition of section 5.2.2. A loop
is done over all the contours: if more than one is found in the acceptance region
(mmax P rµ ´ smax, µ ` smaxs) the one closest to the added signal mass (µ “ 126
GeV) is taken and used for calibration. From figure 7.12, Wmax appears to still
have a linear dependence on the number of signal events, the slope is about one
order of magnitude smaller than that obtained in section. Wmax is therefore only
slightly dependent on the number of events.

Number of signal events
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W peak height vs number of signal events: exponential background fitted to real data.

Figure 7.12: Wmax for varying number of signal events. The signal mean is µ “ 126
GeV and the standard deviation is � “ 15 GeV. The exponential distribution of
background reproduces the actual data in shape and number of events, background
subtraction has been performed.

In these conditions, the precision in background modelling provided by fit and toy
MonteCarlos, that was acceptable for applications described previously, could not
be su�cient to perform an adequate calibration of the dependence on the signal
intensity.
As already mentioned, the huge background a↵ects the signal detection, increasing

100
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DETERMINATION OF SIGNAL INTENSITY: AN ALTERNATIVE SOLUTION�

u Since	  background	  varia9ons	  are	  difficult	  to	  control,	  fix	  the	  background	  distribu9on	  and	  
vary	  only	  the	  signal	  intensity.	  	  

Ø  	  A	  simple	  way:	  subtract	  a	  gaussian	  signal	  (μ	  =	  126	  GeV,	  σ	  =	  15	  GeV)	  from	  the	  data.	  	  

Ø  When	  the	  wavelet	  transform	  is	  not	  able	  to	  detect	  a	  peak	  any	  more,	  the	  number	  of	  
subtracted	  events	  is	  an	  es9ma9on	  of	  the	  number	  of	  signal	  events.	  	  

evaluate how the wavelet transform is ‘flat’.7

A useful feature for this task is the definition of entropy introduced by Shannon
in the theory of communication and transmission of information. The Shannon
entropy quantifies the unevenness of a probability distribution [36].
Given a random variable Z with a finite set of possible values tz1, ...., znu, the
Shannon entropy is defined as reported in equation 7.1, where p is the probability
distribution of variable Z.

HpZq “ ´
z
nÿ

z
i

“z1

ppziq log2pppziqq “ ´ 1

ln2

z
nÿ

z
i

“z1

ppziq lnpppziqq • 0 (7.1)

In particular, the minimum HpZq “ 0 corresponds to a variable with a determined
outcome i.e. with a fully localized probability distribution ppz´0q “ 1 and ppzq “ 0
for z ‰ z0. At the opposite, HpZq is maximal for a uniform distribution. Also,
the Shannon entropy is dependent only on the probability distribution and not on
the random variable itself [36].
To use this variable for the evaluation of wavelet transform, W pm, sq must be
adapted to respect the conditions of a probability distribution, i.e. having unitary
integral and being non-negative.
Starting from W pm, sq, a few passages are followed to build the Shannon entropy
H.

1. It is assumed that the wavelet transform W pm, sq has a peak at the mass
mmax and scale smax: the analysis is restricted to a small region in mass and
scale, centered on pmmax, smaxq. The dimension of this region are not strictly
fixed, they can be variated to include the whole signal peak, excluding other
structures8.

2. The integral I` of the wavelet transform is computed by summing up all the
positive values of W pm, sq inside the region previously fixed.

3. The distribution pW is defined as in equation 7.2. The Shannon entropy
is computed following definition 7.1, this results in the entropy HpW q of
equation 7.3.

pW pm, sq “
"

W pm, sq{I` if W pm, sq ° 0
0 if W pm, sq § 0

(7.2)

7Negative valleys are not considered as signal features: the used index should be sensitive
only to the wavelet transform positive peaks.

8The usual dimensions are 15 or 20 GeV in mass and ˘10 in scale index. Only small variation
around these values have been made.
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HpW q “ ´ 1

ln2

ÿ

m,s

pW pm, sq lnppW pm, sqq (7.3)

It must be pointed out that the m ˆ s region where the entropy is computed can
be chosen among the whole scale interval, i.e. it can cover also the region js † 25.
For this first trial, the choice of the scale region is made simply by centering it on
the wavelet peak position.
Therefore, the analysis is performed starting from signal plus background sample:
a well defined gaussian signal is subtracted to the invariant mass histogram. Fixed
the invariant mass sample, a m ˆ s region is chosen and the entropy HpW q is
computed over this region for varying number of subtracted signal events. HpW q
is then plotted as a function of the number of subtracted events.
If a maximum, or a sharp variation of the trend of entropy as a function of number
of subtracted events is found, than the corresponding number of subtracted events
is an estimation of the number of signal events.
The method has to be validated using MonteCarlo simulated experiments to ver-
ify that no bias is present in the evaluation of signal events and to measure the
expected resolution of the method. Figure 7.13 shows an example obtained with a
MonteCarlo background distribution simulating slope and number of events of real
data, a gaussian signal of 500 events, mean µ “ 126 GeV and standard deviation
� “ 15 GeV has been added. The entropy plot has a peak compatible with 500
signal events.
This method is not expected to provide high precision measurements, but it can
be used to provide a first estimation of the number of signal events.
The resolution of the method have been evaluated using MonteCarlo simulation as
the one used for figure 7.13. An important point is that now MonteCarlo is used
only for the evaluation of method resolution: no calibration constant are extracted
from toy MonteCarlo.
The procedure used for figure 7.13 has been repeated simulating several exper-
iments. In each experiment 500,1000,1500 signal events have been injected to
simulate the signal. In each experiment the signal has been ‘eroded’ by precise
steps (50 events each step); entropy is computed at each step. When the slope
of the entropy versus the events subtracted suddenly variate, the number of sub-
tracted events corresponding to the point where the slope variates is taken as an
estimation of the number of signal events. Results obtained with this method are
reported in table 7.4.
The uncertainties reported in table 7.4 are statistical uncertainties obtained from
averaging over a number of trials.
However, in some cases the identification of entropy maximum was not unambigu-
ous and the number of events was found with an uncertainty sometimes larger
than statistical uncertainties of table 7.4. Also, the subtraction method has been
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u The	  index	  used	  for	  this	  evalua9on	  is	  the	  Shannon	  entropy	  (H(W)).	  

Ø  It	  quan9fies	  the	  unevenness	  of	  a	  probability	  distribu9on.	  

I+	  is	  the	  integral	  of	  W(m,s),	  
computed	  by	  summing	  up	  the	  
posi9ve	  values	  of	  W(m,s).	  	  
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u The	  method	  has	  to	  be	  validated	  using	  toy	  MonteCarlo.	  
Ø  A	  systema9c	  uncertainty	  of	  ̆200	  events	  has	  been	  added	  to	  the	  sta9s9cal	  

uncertain9es.	  

Figure 7.13: (a): wavelet transform (W pm, sq) of a gaussian signal of 500 events
mean µ “ 126 GeV and standard deviation � “ 15 GeV over an exponentially
decreasing background fitted to real data. W pm, sq is computed in the mass re-
gion mjj P r100, 200s GeV after background subtraction. (b): Shannon entropy
computed for the wavelet transform of the sample of plot (a), in the m ˆ s region
marked by a rectangle in plot (a), after the subtraction of a gaussian signal of mean
µ “ 126 GeV, standard deviation � “ 15 GeV and varying number of event. It is
represented as a function of the number of subtracted events.
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Number	  of	  subtracted	  events	  

H(W)	  

Mjj	  (GeV)	  

Number of signal inserted events Average number of events
measured with subtraction method

500 522 ˘ 40

1000 1025 ˘ 40

1500 1490 ˘ 30

Table 7.4: Number of events measured with the signal subtraction method for dif-
ferent intensity of MonteCarlo signals. Average over 10 trials. Statistical uncer-
tainties are reported.

only preliminary defined to fix the problem of ine�ciency of standard calibration
method: it seems to provide consistent results, but needs a more accurate opti-
mization. To be conservative, a systematic uncertainty of ˘200 events has to be
added to the statistical uncertainties reported in table 7.4.
The method of signal subtraction has been applied to real data in both electron and
muon channels: figure 7.14 shows the wavelet transform and the entropy HpW q
plotted as a function of the number of events subtracted at mass µ “ 126 GeV.
In both electron and muon channel the entropy shows a clear maximum, the cor-
responding number of events are reported in table 7.5, the systematic uncertainty
˘200 has been used as uncertainty of these measures.

Number of signal events
measured with the signal subtraction method

Muon channel 1250 ˘ 200

Electron channel 1100 ˘ 200

Table 7.5: Number of events measured with the signal subtraction method for real
data sample in muon and electron channel. Systematic uncertainties are reported.

These results provide a quantitative evaluation of the number of signal events. It
has therefore been possible to obtain a quantitative result based on wavelet anal-
ysis in the real data background conditions.
Improvements on these methods are left to further work.
The number of signal events Nev allows to calculate the H Ñ jj decay branching
ratio (BR), via the formula of equation 7.4, in which �prod is the HW associated
production cross section (details are reported in section 1.1.1), L is the integrated
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SIGNAL SUBTRACTION: FIRST CHECKS�

u The	  subtrac9on	  method	  has	  been	  preliminary	  defined	  to	  fix	  the	  problem	  of	  calibra9on.	  
Ø  It	  seems	  to	  provide	  consistent	  results,	  but	  needs	  a	  more	  accurate	  op9miza9on.	  	  

Example	  with	  500	  events	  

u  If	  the	  distribu9on	  was	  not	  perfectly	  
exponen9al,	  eventual	  background	  
structures	  could	  be	  included	  in	  the	  
signal	  peak.	  	  

Ø  The	  number	  of	  
events	  could	  be	  
overes9mated.	  
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SIGNAL SUBTRACTION: RESULTS�
Muon channel

Electron channel

Figure 7.14: (a): wavelet transform (W pm, sq) of the invariant mass spectrum
of two jets associated with a W decaying leptonically in W Ñ e⌫ (on the top,
muon channel, on the bottom, electron channel), computed in the mass region
mjj P r100, 200s GeV after background subtraction. (b): Shannon entropy com-
puted for the wavelet transform of muon channel data, in the mˆ s region marked
by a rectangle in plot (a), after the subtraction of a gaussian signal of mean µ “ 126
GeV, standard deviation � “ 15 GeV and varying number of event. It is repre-
sented as a function of the number of subtracted events.
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Muon channel

Electron channel

Figure 7.14: (a): wavelet transform (W pm, sq) of the invariant mass spectrum
of two jets associated with a W decaying leptonically in W Ñ e⌫ (on the top,
muon channel, on the bottom, electron channel), computed in the mass region
mjj P r100, 200s GeV after background subtraction. (b): Shannon entropy com-
puted for the wavelet transform of muon channel data, in the mˆ s region marked
by a rectangle in plot (a), after the subtraction of a gaussian signal of mean µ “ 126
GeV, standard deviation � “ 15 GeV and varying number of event. It is repre-
sented as a function of the number of subtracted events.
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Table 7.5: Number of events measured with the signal subtraction method for real
data sample in muon and electron channel. Systematic uncertainties are reported.

These results provide a quantitative evaluation of the number of signal events. It
has therefore been possible to obtain a quantitative result based on wavelet anal-
ysis in the real data background conditions.
Improvements on these methods are left to further work.
The number of signal events Nev allows to calculate the H Ñ jj decay branching
ratio (BR), via the formula of equation 7.4, in which �prod is the HW associated
production cross section (details are reported in section 1.1.1), L is the integrated
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u These	  results	  are	  not	  in	  
agreement	  with	  what	  expected	  
from	  Standard	  Model.	  
Ø  The	  number	  of	  produced	  

events	  was:	  
	  
	  
u W(m,s)	  peak	  could	  include	  

eventual	  underlying	  
background	  structures.	  
Ø  Signal	  subtrac9on	  may	  

overes9mate	  the	  number	  
of	  events.	  

	  
u Further	  work	  is	  needed	  to	  have	  

a	  beser	  separa9on	  of	  signal	  
and	  background	  effects.	  

NWH ⇠ 200 events
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WAVELET ANALYSIS: RESULTS IN THE HIGH MASS REGION �
�

u Wavelet	  transform	  has	  been	  computed	  in	  [150,500]	  GeV	  mass	  region.	  
Ø  At	  higher	  masses	  the	  fit	  quality	  is	  not	  sufficiently	  good	  to	  obtain	  reliable	  results.	  	  
	  

u The	  wavelet	  transform	  is	  computed	  in	  a	  mass	  range	  of	  100	  GeV,	  which	  has	  been	  moved	  
upwards	  in	  steps	  of	  50	  GeV.	  	  
Ø  This	  avoids	  that	  part	  of	  the	  mass	  range	  is	  analyzed	  only	  in	  the	  edges	  of	  mass	  intervals.	  

Ø  Only	  structures	  appearing	  at	  compa9ble	  masses	  in	  overlapping	  mass	  intervals	  have	  
been	  considered.	  

Ø  Muon	  channel:	  
•  mpeak=	  385	  GeV	  

Ø  Electron	  channel:	  
•  mpeak	  =	  360	  GeV	  
•  mpeak	  =	  424	  GeV	    / ndf = 67.81 / 462χ
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Figure 8.3: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r350, 450s GeV. (b):r400, 500s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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u Further	  work	  is	  needed:	  we	  then	  avoid	  any	  
further	  comments.	  

u The	  nature	  of	  these	  peaks	  s9ll	  has	  to	  
be	  inves9gated:	  
Ø  The	  fit	  quality	  is	  poor,	  fit	  needs	  

to	  be	  improved.	  
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CONCLUSIONS �
�

u From	  tests	  with	  toy	  MonteCarlo,	  the	  wavelet	  analysis	  resulted	  to	  be	  able	  to	  detect	  small	  
signals,	  invisible	  to	  simple	  observa9on.	  

u The	  quan9ta9ve	  treatment	  (significance	  and	  determina9on	  of	  signal	  intensity)	  needs	  further	  
work	  to	  be	  refined.	  
Ø  It	  is	  influenced	  by	  background,	  especially	  if	  the	  background	  is	  very	  large.	  

u By	  applying	  wavelet	  analysis	  to	  real	  data,	  a	  signal	  evidence	  has	  been	  found	  at	  mjj	  ≈	  126	  GeV.	  
Ø  It	  is	  above	  the	  95%	  local	  confidence	  level.	  
Ø  It	  it	  confirmed	  by	  two	  independent	  channels.	  
Ø  Its	  intensity	  could	  not	  be	  completely	  es9mated.	  

	  
	  
SOME	  POSSIBLE	  DEVELOPMENTS	  

u Refine	  the	  peak	  search	  algorithm	  in	  wavelet	  analysis	  and	  the	  calibra9on	  method:	  other	  
variables	  could	  be	  used	  instead	  of	  W(m,s)	  maximum.	  

u Define	  a	  quan9ta9ve	  treatment	  of	  wavelet	  analysis	  performed	  without	  background	  
subtrac9on.	  

u Try	  to	  use	  other	  wavelet	  func9ons	  instead	  of	  the	  DoG.	  
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THE ATLAS DETECTOR�
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DATA PREPARATION: PHYSICAL OBJECTS RECONSTRUCTION�

Reconstruc9on	  of	  physical	  objects	   in	  ATLAS	   is	  performed	  via	  different	  algorithms	  depending	  on	  the	  
par9cular	  object.	  
In	  this	  thesis,	  we	  used	  muons,	  electrons,	  jets	  and	  Etmiss.	  	  

Muons	  

•  We	   used	   combined	   muons:	   muon	   tracks	   are	   reconstructed	   independently	   in	   the	   muon	  
spectrometer	  (MS)	  and	  inner	  detector	  (ID),	  the	  (MS)	  and	  (ID)	  tracks	  are	  then	  matched.	  

Electrons	  

•  The	   reconstruc9on	   starts	   from	   a	   seed	   cluster	   (an	   η-‐φ	   window	   of	   predefined	   dimension)	   in	  
electromagne9c	   calorimeter	   with	   ET>2.5	   GeV.	   Seed	   clusters	   matching	   an	   ID	   track	   are	   taken	   as	  
electron	  candidates.	  

•  Electron	  candidates	  are	  then	  iden9fied	  to	  reject	  photons	  and	  hadrons.	  Three	  levels	  are	  provided:	  
loose,	  medium,	  Ught.	  We	  used	  the	  9ghter	  iden9fica9on	  level.	  

Jets	  

•  Jets	   are	   reconstructed	   from	   calorimeters:	   neighboring	   cells	  with	   significant	   signal-‐to-‐noise	   ra9o	  
are	  collected	  in	  topoclusters,	  topoclusters	  are	  processed	  with	  the	  AnU-‐kt	  algorithm	  to	  form	  jets.	  

•  The	   four-‐momentum	   must	   be	   corrected	   for	   energy	   losses	   in	   uninstrumented	   material	   or	  
calorimeter	  non-‐compensa9on:	  a	  calibra9on	  scale	  factor	  has	  been	  applied	  before	  the	  analysis.	  	  

ETmiss	  
•  It	  is	  defined	  as	  the	  sum	  of	  the	  measured	  energy	  of	  all	  physics	  objects	  changed	  by	  sign.	  
•  Due	  to	  jets	  momentum	  correc9on,	  it	  has	  been	  rebuilt	  at	  the	  beginning	  of	  the	  selec9on.	  
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SELECTION APPLIED TO DATA: OBJECT SELECTION�
Objects passing the selection are defined as good objects. �

�
MUON	  SELECTION.	  
•  Combined	  muons	  are	  used.	  	  
•  Trigger:	  EF_mu18_MG,	  EF_mu18_MG_medium.	  

pT>25	  GeV	  is	  required	  to	  restrict	  to	  the	  trigger	  
efficiency	  plateau.	  

•  Track	  quality	  cuts.	  
•  |η|	  <	  2.4	  
•  Impact	  parameter:	  |d0/√σ(d0)|	  <	  3	  and	  z0<1	  mm.	  
•  Isola9on.	  	  

Track:	  Σ(pTtrack)/pT	  <	  0.15	  in	  a	  cone	  of	  radius	  
R=0.3	  
Calorimeter:	  Σ(ETcorr)/pT	  <	  0.14	  in	  a	  cone	  of	  
radius	  R=0.3	  

ELECTRON	  SELECTION.	  
•  Candidates	  sa9sfying	  the	  Ught++	  iden9fica9on	  

criteria.	  	  
•  Trigger:	  EF_e20_medium,	  EF_e22_medium,	  

EF_e22vh_medium1.	  pT>25	  GeV	  is	  required	  to	  
restrict	  to	  the	  trigger	  efficiency	  plateau.	  

•  |η|	  <	  2.47,	  excluding	  1.37	  <	  |η|	  <	  1.52.	  
•  Impact	  parameter:	  |d0/√σ(d0)|	  <	  10	  and	  z0<1	  

mm.	  
•  Isola9on.	  	  

Track:	  Σ(pTtrack)/pT	  <	  0.14	  in	  a	  cone	  of	  	  R=0.3	  
Calorimeter:	  Σ(ETcorr)/pT	  <	  0.13	  in	  a	  cone	  of	  	  
R=0.3	  

JET	  SELECTION.	  
•  Jets	  reconstructed	  with	  AnU-‐kt	  algorithm,	  passing	  looser	  quality	  criteria.	  
•  pT	  >	  25	  GeV	  
•  |η|	  <	  2.8	  
•  Jet	  Vertex	  Frac9on	  >	  0.75	  to	  reject	  jets	  from	  pile-‐up	  interac9ons.	  
•  ΔR(j,l)	  >	  0.5	  ,	  l	  is	  the	  selected	  lepton.	  This	  to	  remove	  overlap	  between	  jets	  and	  energy	  deposits	  due	  to	  

leptons.	  
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EVENT SELECTION�

Dijets	  events	  are	  triggered	  by	  requiring	  a	  W	  ⟶	  lν	  decay.	  
	  
Ø  	  Events	  are	  firstly	  pre-‐selected	  applying	  cuts	  on	  event	  quality:	  	  

•  Stable	  beam	  condi9ons,	  absence	  of	  large	  noise	  bursts	  or	  data	  integrity	  errors	  in	  the	  
LAr,	  no	  jets	  of	  pT>20	  GeV	  poin9ng	  to	  the	  Lar	  non-‐sensi9ve	  area	  (Lar	  hole).	  

•  A	  reconstructed	  primary	  vertex	  with	  at	  least	  three	  associated	  tracks	  of	  pT>0.5	  GeV	  

Ø  Events	  with	  one	  charged	  lepton	  passing	  
the	  object	  selec9on.	  
•  Events	  are	  discarded	  if	  a	  second	  

lepton	  passes	  the	  object	  selec9on.	  
•  Trigger-‐matching:	  a	  check	  to	  verify	  

that	  the	  selected	  lepton	  is	  the	  one	  
that	  fired	  the	  trigger	  in	  the	  event.	  

Ø  Events	  containing	  also	  a	  neutrino:	  	  	  Etmiss	  >25	  GeV	  
•  Cleaning	  cuts	  are	  applied	  to	  the	  jets	  before	  ETmiss	  cut	  to	  avoid	  non-‐physical	  ETmiss	  

due	  to	  jet	  reconstruc9on	  errors.	  
	  
Ø  Cut	  on	  the	  lepton-‐neutrino	  transverse	  mass:	  MT	  >	  40	  GeV	  
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nel (b) has been applied.
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EVENT SELECTION�

Once	  W	  ⟶	  lν	  events	  are	  selected,	  further	  cuts	  are	  applied	  to	  jets.	  
➙ with	  respect	  to	  the	  selec9on	  used	  in	  Standard	  Model	  diboson	  measurement,	  fewer	  

cuts	  are	  applied	  to	  apply	  wavelet	  analysis	  at	  a	  more	  inclusive	  level.	  
Ø  At	  least	  two	  jets	  passing	  the	  object	  selec9on	  
Ø  Δφ(Etmiss,	  j1)	  >	  0.8.	  Where	  j1	  is	  the	  jet	  of	  highest	  pT	  
Ø  The	  dijet	  invariant	  mass	  is	  built	  using	  the	  two	  selected	  jets	  of	  highest	  pT	  
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the first and second jet in order of pT (black), with the second and the third (red)
and with the first and third (blue) are compared.
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Figure 3.6: Jet-Jet invariant mass (logarithmic scale), obtained with Lint “
4702 pb´1. The inclusive selection in the muon channel (a) and electron chan-
nel (b) has been applied.
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Table 4.1: Three wavelet mother functions and their Fourier transform [1]. Con-
stant factors for  0 and  ̂0 are for normalisation. The plots on the right give the
real part (solid) and imaginery part (dashed) for the wavelets as functions of the
parameter ⌘ (the same as ⇠ in the text).
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u  W(m,s),	  as	  a	  con9nuous	  func9on	  of	  s,	  can	  be	  approximated	  by	  compu9ng	  the	  wavelet	  transform	  for	  a	  
set	  of	  scales.	  	  	  
•  s0	  is	  the	  smallest	  resolvable	  scale:	  s0	  =	  δm	  
•  δj	  sets	  the	  smallest	  wavelet	  resolu9on:	  δj	  =	  0.25	  
•  J	  sets	  the	  value	  of	  the	  largest	  scale:	  J	  =	  44	  
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DETAILS ON WAVELET TRANSFORM CALCULATION�

u  It	  is	  considerably	  faster	  to	  compute	  the	  wavelet	  transform	  
in	  Fourier	  space.	  
•  The	  discrete	  Fourier	  transform	  of	  xn	  is:	  	  

•  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  the	  Fourier	  transform	  of	  a	  (con9nuous)	  func9on	  
ψ(m/s).	  

4.2 Wavelet transform calculation

In this section, some aspects of practical wavelet transform calculation are pre-
sented.
Although it is possible to calculate the wavelet transform of a discrete sequence xn

using equation (4.3), it is considerably faster to do the calculation in Fourier space
[1]. To apply equation (4.3), it would be necessary to calculate the convolution as
many times as the number of bins (for each scale), while the convolution theorem
allows to do all the convolutions simultaneously for each scale.
The discrete Fourier transform of xn is given by equation (4.4), where k “ 0...N´1
is the frequency index, while the Fourier transform of a (continous) function
 pm{sq is  ̂ps!q.

x̂k “ 1

N

N´1ÿ

n“0

xne
´i2⇡kn{N (4.4)

By the convolution theorem, the wavelet transform is the inverse Fourier transform
of the product x̂k ¨  ̂ps!kq, as in the equation (4.5), where !k is defined as in
equation (4.6).

W pm, sq “ Wnpsq “
N´1ÿ

k“0

x̂k ̂
˚ps!kqei!k

n�m (4.5)

!k “
"

2⇡k
N�m

if k § N
2

´ 2⇡k
N�m

if k ° N
2

(4.6)

Using equation (4.5) and a Fourier transform routines, the wavelet transform can
be calculated at all n simultaneously and e�ciently for any given s [1].

4.2.1 Choice of scales

W pm, sq, as a continuos function of s, can be approximated by computing the
wavelet transform for a set of scales.
In many cases6 a suitable set of scales must be chosen to build up a more complete
picture.
In literature, it is proposed as the most convenient choice to write the scales as
fractional powers of two (as given by expression (4.7)). This solution will be
adopted here too.

sj “ s02
j�j , j “ 0, 1, ..., J (4.7)

6Wavelet functions  form a set of functions that can be orthogonal or non-orthogonal. In
the orthogonal case the set is discrete and therefore the choice is limited to a discrete set of
scales. Here, nonorthogonal wavelets are considered and one can use an arbitrary set of scales.
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The scale index j has been often used in plotting wavelet transform, instead of the
scale itself. The meaning of other parameters in equation (4.7) and how they have
been fixed in this work is listed below.

• s0 is the smallest resolvable scale: in this work, s0 “ �m has been used (�m
is the bin size of the histogram).

• The choice of �j sets the smallest wavelet resolution: the smaller is the value
of �j, the finer is the resolution. Here �j “ 0.25 is used.

• J is defined from the value of the largest scale J “ �j´1log2psmax{s0q. To
follow [1], J “ 44 has been adopted.
It is quite evident that the maximum wavelet resolution should be approx-
imately as large as the whole mass range, i.e. smax » N�m. Having fixed
smax “ s02J�j, it follows that a range in mass of the order of 102 GeV has to
be used to perform the analysis.

4.2.2 Normalization

Wavelet transform normalization changes according to each analysis purposes. In
many cases, W pm, sq at di↵erent scales must be directly compared, therefore the
wavelet normalization at each scale is important.
For this thesis, the choice adopted in [1] was followed. Since the wavelet transform
is computed using the method in equation 4.5, the normalization is fixed for the
Fourier transform of the mother wavelet function  ̂0.  ̂0 is normalized to have
unit energy, as expressed in equation 4.87.

ª `8

´8
| ̂0ps!q|2d! “ 1 (4.8)

To compare the the wavelet at di↵erent scales, it is necessary that they all have
the same normalization. Therefore, for consistency all the daughter wavelets are
normalized in the same wav as  ̂0.
This normalization condition is satisfied adding a normalization constant as in
equation 4.9. Finally, this requirements imply that the wavelet daughters have the
property expressed by equation (4.10), where N is the number of points.

 ̂ps!kq “
ˆ
2⇡s

�m

˙1{2
 ̂0ps!kq (4.9)

N´1ÿ

k“0

| ̂ps!kq|2 “ N (4.10)

7The mother wavelets in table 4.1 are already normalized to satisfy the condition in equation
4.8
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u  Fourier	  transform	  is	  computed	  padding	  with	  zeroes	  the	  end	  of	  the	  mass	  range:	  this	  influence	  W(m,s)	  
in	  the	  region	  close	  to	  the	  edges.	  
Ø  The	  Cone	  of	  Influence	  (COI)	  is	  the	  region	  in	  	  m	  ×	  s	  plane	  where	  edge	  effects	  are	  important.	  

Discon9nui9es	  at	  the	  edges	  decrease	  exponen9ally:	  at	  each	  scale,	  COI	  is	  defined	  by	  the	  ‘characteris9c	  length’	  
of	  this	  decrease.	  
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Figure 5.2: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed scale. (a): scale index=35. (b):
scale index=30. (c): scale index=25. (d): scale index=20. (e): scale index=15.
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Figure 5.2: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed scale. (a): scale index=35. (b):
scale index=30. (c): scale index=25. (d): scale index=20. (e): scale index=15.
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Figure 5.2: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed scale. (a): scale index=35. (b):
scale index=30. (c): scale index=25. (d): scale index=20. (e): scale index=15.
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WAVELET	  TRANSFORM	  OF	  A	  GAUSSIAN	  
SIGNAL:	  PROJECTIONS	  AT	  FIXED	  SCALE.	  

u  At	  larger	  scale	  W(m,s)	  has	  a	  DoG-‐like	  
shape,	  with	  mean	  corresponding	  to	  the	  
signal	  mean.	  

	  
	  
u  at	  low	  scale	  the	  DoG	  shape	  is	  lost	  and	  W	  

presents	  various	  narrower	  peaks,	  
corresponding	  to	  sta9s9cal	  fluctua9ons	  of	  
groups	  of	  bins.	  
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Figure 5.3: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed mass m “ 100 GeV.
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Figure 5.4: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events): projection at
fixed scale. (a): scale index=35. (b): scale index=30. (c): scale index=25. (d):
scale index=20.
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Figure 5.3: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV): projection at fixed mass m “ 100 GeV.
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Figure 5.4: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events): projection at
fixed scale. (a): scale index=35. (b): scale index=30. (c): scale index=25. (d):
scale index=20.
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BACKGROUND EFFECTS, UNIFORM BACKGROUND �

u  A	  flat	  background	  is	  the	  condi9on	  in	  which	  wavelet	  analysis	  has	  been	  applied	  in	  most	  of	  literature.	  
W(m,s)	  is	  computed	  considering	  varia9ons	  with	  respect	  to	  arithme9c	  mean	  of	  the	  data.	  	  

u  Wavelet	  transform	  of	  a	  gaussian	  signal	  
over	  a	  uniform	  background	  at	  fixed	  scale	  
(from	  the	  example	  of	  slide	  11-‐16).	  
Ø  At	  scale	  index	  js	  =	  30,	  the	  wavelet	  

transform	  has	  a	  DoG	  shape	  in	  the	  region	  
of	  the	  signal.	  

Ø  At	  higher	  scale,	  W(m,s)	  is	  hardly	  sensi9ve	  
to	  the	  signal.	  

Ø  At	  lower	  scale	  it	  is	  dominated	  by	  
sta9s9cal	  fluctua9on:	  only	  the	  scale	  
region	  js	  ≥	  25	  is	  used	  for	  the	  analysis.	  

	  
	  

u  The	  signal	  is	  not	  always	  detected	  as	  
clearly	  as	  in	  this	  example.	  
Ø  The	  wavelet	  transform	  peak	  can	  be	  

moved	  in	  mass	  and	  scale,	  change	  in	  
shape	  or	  eventually	  not	  be	  detected	  
at	  all.	  
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(e)

Figure 5.5: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events). In example
(a), the peak appears displaced at the lower mass. Examples (b),(c),(d) shows how
the peak shape and position in scale varies. In example (e) the peak has not been
found.
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(e)

Figure 5.5: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events). In example
(a), the peak appears displaced at the lower mass. Examples (b),(c),(d) shows how
the peak shape and position in scale varies. In example (e) the peak has not been
found.
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(e)

Figure 5.5: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events). In example
(a), the peak appears displaced at the lower mass. Examples (b),(c),(d) shows how
the peak shape and position in scale varies. In example (e) the peak has not been
found.
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(e)

Figure 5.5: Wavelet transform of a gaussian signal (100 events, mean=100 GeV,
standard deviation = 15 GeV) over a flat background (6000 events). In example
(a), the peak appears displaced at the lower mass. Examples (b),(c),(d) shows how
the peak shape and position in scale varies. In example (e) the peak has not been
found.
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Wavelet	  transform	  of	  a	  gaussian	  signal	  (100	  events,	  mean=100	  GeV,	  standard	  
devia9on=15	  GeV)	  over	  a	  flat	  background	  (6000	  events):	  	  
EXAMPLES	  OF	  HOW	  THE	  PEAK	  CAN	  VARY.	  



23/10/13	   Margherita	  Spalla	   40	  

THE CONTOUR ALGORITHM �

u  To	  develop	  a	  quan9ta9ve	  analysis,	  the	  efficiency	  of	  wavelet	  analysis	  and	  the	  dependence	  of	  wavelet	  
transform	  on	  signal	  intensity	  should	  be	  evaluated.	  

u  To	  do	  this	  we	  must	  define	  an	  appropriate	  algorithm	  to	  find	  a	  peak	  in	  the	  W(m,s)	  plot.	  
Ø  The	  contour	  algorithm	  is	  the	  basic	  strategy	  for	  the	  search	  of	  a	  signal	  in	  a	  W(m,s)	  plot.	  
Ø  It	  starts	  from	  the	  contour	  level	  representa9on	  of	  the	  wavelet	  transform.	  

(a) (b)

Figure 5.6: Invariant mass histograms obtained with a toy MonteCarlo. Signal
and background have been marked with di↵erent colors to be distinguishable. The
background (blue) if uniformly distributed, 6000 events have been simulated. A
gaussian signal (red) of 100 events and mean=100 GeV is superimposed. The
standard deviation is � “ 7 GeV (a) and � “ 15 GeV (b).

Figure 5.7: Graphic example to clarify how the contour algorithm works. The
contours are of the same kind as those obtained from a real wavelet transform plot,
but the position of the maximum and the contour level have a purely explicative
meaning and no numerical significance.
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1.  Fixed	  a	  single	  contour	  level	  W0,	  the	  
algorithm	  searches	  for	  contours	  at	  W0.	  

	  
2.  Loop	  on	  the	  contours:	  given	  a	  contour,	  

check	  if	  at	  least	  a	  part	  of	  it	  is	  contained	  
in	  the	  scale	  region	  js	  ≥	  25.	  If	  not,	  the	  
contour	  is	  discarded.	  

	  
3.  The	  maximum	  value	  of	  W	  is	  searched.	  

The	  search	  is	  limited	  to	  the	  region	  of	  
m×js	  plane	  which	  is	  both	  inside	  the	  
contour	  and	  contained	  in	  the	  scale	  
region	  js	  ≥	  25.	  

4.  Assume	  the	  maximum	  Wmax	  has	  been	  
found	  in	  a	  certain	  point	  (mmax,	  Jsmax):	  smax	  
is	  used	  to	  define	  the	  acceptance	  region	  
for	  the	  calcula9on	  of	  efficiency,	  if	   	  	  
	  the	  signal	  have	  been	  found	  and	  the	  
loop	  is	  interrupted.	  
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(a) (b)

Figure 5.6: Invariant mass histograms obtained with a toy MonteCarlo. Signal
and background have been marked with di↵erent colors to be distinguishable. The
background (blue) if uniformly distributed, 6000 events have been simulated. A
gaussian signal (red) of 100 events and mean=100 GeV is superimposed. The
standard deviation is � “ 7 GeV (a) and � “ 15 GeV (b).

Figure 5.7: Graphic example to clarify how the contour algorithm works. The
contours are of the same kind as those obtained from a real wavelet transform plot,
but the position of the maximum and the contour level have a purely explicative
meaning and no numerical significance.
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scales. At these scales, the wavelet function is larger than the signal: for this rea-
son the signal width is not expected to have large e↵ects on the wavelet transform
shape.
In any case, the dependence of wavelet transform on signal standard deviation (�)
has been evaluated.
For the study of signal standard deviation, the scale position and the width in
mass of the peak of the wavelet transform should both be considered.
Due to the DoG-like shape of the wavelet transform, the easiest way to define the
peak width is to evaluate the intercept of the wavelet transform with the W “ 0
line. The half width at zero is defined at fixed scale, as shown in figure 5.12: given
the peak mass m0, the first zero at m ° m0 and m † m0 are found. The half
width at zero is the distance between the two zeroes (in red in figure 5.12) divided
by 2.
This observable is expected to depend both on signal � and on the scale at which
the width is calculated.

Figure 5.12: Graphic example to clarify how the half width at zero is defined. The
shape of W pm, sq is of the same kind as the one obtained from a real wavelet
transform, but it should not be considered as significative example.

A method similar to the one proposed for the number of events is followed to
evaluate the dependence on signal standard deviation. The signal half width at
zero can is computed for the maxima found by the contour algorithm. In previous
section, three definitions of the wavelet transform maximum are provided. Refer-
ring to each of these three maxima, a correspondent definition of the half width
at zero is provided.

64

Defini9on	  of	  variables	  used	  to	  evaluate	  W(m,s)	  
dependence	  on	  signal	  parameters.	  

u  Variable	  scale:	  the	  contour	  algorithm	  finds	  
the	  maximum	  Wmax	  over	  a	  certain	  contour,	  
at	  (mmax,smax).	  	  
Ø  The	  half	  width	  at	  zero	  (HWmax)	  is	  

found	  taking	  the	  W(m,s)	  projec9on	  at	  
fixed	  s	  =	  smax	  :	  the	  first	  two	  zeros	  at	  
m>mmax	  and	  m<mmax	  are	  found,	  
HWmax	  is	  the	  half	  difference	  between	  
them.	  

u  Fixed	  scale.	  
	  
1.  Consider	  Wmax(mmax,smax):	  fixed	  a	  scale	  s0,	  the	  variable	  

used	  to	  evaluate	  Nev	  is	  W(mmax,s0).	  The	  corresponding	  
half	  width	  HWs0	  is	  found	  as	  before,	  taking	  the	  projec9on	  
at	  s	  =	  s0.	  

2.  An	  alterna9ve	  variable	  is	  found	  searching	  for	  the	  
maximum	  of	  W(m,s)	  inside	  the	  contour	  at	  the	  fixed	  scale	  
s0.	  If	  the	  found	  maximum	  is:	  Wm

fixedS(mfixedS,s0)	  the	  half	  
width	  (HWm

fixedS)	  is	  found	  considering	  the	  projec9on	  at	  s	  
=	  s0	  and	  referring	  to	  mfixedS	  instead	  of	  mmax	  .	  

u  We	  use	  js0=29	  
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Signal	  only:	  scale	  index	  of	  wavelet	  transform	  maxima	  as	  a	  
func9on	  of	  the	  signal	  standard	  devia9on	  
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W peak position in scale vs signal standard deviation: signal only. Nev=100.

Figure 5.13: Scale position of the wavelet transform peak for a signal of 100 events,
mean µ “ 100 GeV and varying it’s standard deviation. No background is present.

Figure 5.14: Half width at zero of peaks of mean 100 events, µ “ 100 GeV and
varying signal standard deviation. No background is added. HWmax (in blue),
HWs0 (in green) and HW fixedS

max (in red) are plotted together.

66
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Flat	  background:	  scale	  index	  of	  wavelet	  transform	  maxima	  as	  a	  
func9on	  of	  the	  number	  of	  signal	  events	  

Number of signal events
0 20 40 60 80 100 120 140 160 180 200

sc
al

e 
of

 W
 p

ea
k

28.8

29

29.2

29.4

29.6

29.8

30

W peak scale position vs number of signal events

(a)

Number of signal events
0 20 40 60 80 100 120 140 160 180 200

sc
al

e 
of

 W
 p

ea
k

27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

W peak scale position vs number of signal events

(b)

Figure 5.9: Scale index of wavelet transform maxima for varying number of signal
events. (a): no background is added. (b): 6000 events of uniform background are
added. To show the mean value over the whole intensity range, the two plots have
been fitted with a constant, the result is shown by the black line.

Wmax, W fixedS
max and W pmmax, s0q behave the same and they are all clearly linear

in Nev with zero intercept. The results of a linear fit of the di↵erent variables are
shown in figure 5.10 (a).
Figure 5.10 (b) shows the same variables when a uniform background of 6000
events is added.
There is now an o↵set between the maximum calculated at variable scale and those
calculated at fixed scale, while the two solution at fixed scale remain very similar.
The o↵set is due to the inclusion of background events in the wavelet convolution.
The e↵ect is reduced in W fixedS

max and W pmmax, s0q with respect to Wmax.
Both Wmax and the fixed scale maxima still depend linearly on the number of
signal events. The linear fits results are reported in figure 5.10.
From the fit, the three variables have the same slope, but the constant term of
the fit is larger for Wmax. The slope is also a bit smaller than in the case of zero
background. The dependence of wavelet maximum on signal intensity is a↵ected
by background and wavelet transform needs a specific calibration for every data
sample, based on the shape and the amount of the particular background present
in the data.
The results of figure 5.10 are for a gaussian signal of standard deviation � “ 15
GeV.
A check has been done to verify if the linear fit slope depends on the signal width:
figure 5.11 shows Wmax, W fixedS

max and W pmmax, s0q for gaussian signals of � “ 7
GeV (a) and � “ 20 GeV (b), with a uniform background of 6000 events.
The linearity is conserved and the slope has only a slight variation: this calibra-

60
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The	  linear	  dependence	  has	  been	  checked	  using	  signals	  of	  σ=7	  GeV	  and	  σ=20	  GeV:	  the	  
linearity	  is	  conserved	  and	  the	  slope	  has	  only	  a	  slight	  varia9on.	  This	  calibra9on	  will	  be	  considered	  
independent	  of	  signal	  standard	  devia9on.	  

Wmax:	  blue.	  	  W(mmax,s0):	  green.	  	  Wm
fixedS:	  red	  

(a)

(b)

Figure 5.11: Wmax (blue), W fixedS
max (red) and W pmmax, s0q (green) for varying

number of signal events (tha fixed scale is js0 “ 29). The signal standard deviation
is � “ 7 GeV (a) and � “ 20 GeV (b). 6000 events of uniform background are
added. The three variables have bin fitted with a linear function: fit results are also
shown.
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(a)

(b)

Figure 5.11: Wmax (blue), W fixedS
max (red) and W pmmax, s0q (green) for varying

number of signal events (tha fixed scale is js0 “ 29). The signal standard deviation
is � “ 7 GeV (a) and � “ 20 GeV (b). 6000 events of uniform background are
added. The three variables have bin fitted with a linear function: fit results are also
shown.
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tion will then be considered independent of signal standard deviation. The small
variations due to di↵erent � could eventually be considered when studying the
sistematics.
Table 5.1 summarizes the fit results in previous cases.
The choice between Wmax, W fixedS

max and W pmmax, s0q needs further considerations
and is left to next sections.
The linearity of both the three variables has been verified also for small number of
signal events: this confirms the high e�ciency of the method (reported in figure
5.8). The linear fit has a nonzero constant term. It indicates the presence of a
background, probably due to fakes. This background component should be evalu-
ated to better define variables estimating the number of events.

W pNevq: slope
no background flat background flat background flat background
� “ 15 GeV � “ 15 GeV � “ 7 GeV � “ 20 GeV

Wmax 0.0495 ˘ 0.00027 0.028 ˘ 0.0024 0.026 ˘ 0.0025 0.023 ˘ 0.0024

W fixedS
max 0.0505 ˘ 0.0002 0.028 ˘ 0.0029 0.022 ˘ 0.0028 0.021 ˘ 0.0027

W pmmax, s0q 0.0505 ˘ 0.0002 0.029 ˘ 0.0030 0.022 ˘ 0.0030 0.021 ˘ 0.0027

W pNevq: constant term
no background flat background flat background flat background
� “ 15 GeV � “ 15 GeV � “ 7 GeV � “ 20 GeV

Wmax 0.008 ˘ 0.019 3.1 ˘ 0.24 2.4 ˘ 0.25 2.8 ˘ 0.25

W fixedS
max 0.02 ˘ 0.015 1.70 ˘ 0.27 1.4 ˘ 0.28 1.6 ˘ 0.26

W pmmax, s0q 0.02 ˘ 0.015 1.70 ˘ 0.31 1.5 ˘ 0.33 1.8 ˘ 0.26

Table 5.1: Results of the linear fit of the three variables used as wavelet transform
peak height as a function of the number of signal events. All the cases presented
in section 5.2.2 are presented.

Standard deviation of the signal

In general, the wavelet analysis is not expected to be highly sensitive to signal
width. It has been observed that physical peaks are located in a specific range of

62
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(a) (b)

(c) (d)

Figure 5.8: Detection e�ciencies of the wavelet analysis algorithm described in
section 5.2.1 as a function of the number of signal events. The correspondent signal
to background ratio is reported in the upper axis of each figure. The e�ciency is
calculated for di↵erent signal mean (µ) and standard deviation (�). (a): µ “ 100
GeV � “ 15 GeV. (b): µ “ 100 GeV � “ 7 GeV. (c): µ “ 40 GeV � “ 15 GeV.
(d): µ “ 160 GeV � “ 15 GeV.
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(c) (d)

Figure 5.8: Detection e�ciencies of the wavelet analysis algorithm described in
section 5.2.1 as a function of the number of signal events. The correspondent signal
to background ratio is reported in the upper axis of each figure. The e�ciency is
calculated for di↵erent signal mean (µ) and standard deviation (�). (a): µ “ 100
GeV � “ 15 GeV. (b): µ “ 100 GeV � “ 7 GeV. (c): µ “ 40 GeV � “ 15 GeV.
(d): µ “ 160 GeV � “ 15 GeV.
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Flat	  background:	  
6000	  events.	  	  
Signal:	  100	  events.	  

EFFICIENCY:	  
FLAT	  BACKGROUND	  
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Exponen9al	  background:	  
6000	  events.	  	  
Signal:	  100	  events.	  

EFFICIENCY:	  
EXPONENTIAL	  
BACKGROUND	  

(a)

(b) (c)

Figure 6.7: Detection e�ciencies of the wavelet analysis algorithm (the contour
algorithm, described in section 5.2.1) as a function of the number of signal events.
The correspondent signal to background ratio is reported in the upper axis of each
figure. The e�ciency is calculated for di↵erent signal mean (µ). (a): µ “ 100
GeV (b): µ “ 40 GeV. (c): µ “ 160 GeV. The standard deviation is � “ 15 GeV.
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Figure 6.7: Detection e�ciencies of the wavelet analysis algorithm (the contour
algorithm, described in section 5.2.1) as a function of the number of signal events.
The correspondent signal to background ratio is reported in the upper axis of each
figure. The e�ciency is calculated for di↵erent signal mean (µ). (a): µ “ 100
GeV (b): µ “ 40 GeV. (c): µ “ 160 GeV. The standard deviation is � “ 15 GeV.
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Signal:	  100	  events,	  μ=100	  GeV,	  
σ=15	  GeV.	  

The	  signal	  width	  have	  been	  fixed	  
to	  15	  GeV	  in	  the	  fit.	  
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of W pm, sq: figure 6.8 shows the wavelet transform maximum Wmax (a) and the
maximum moved to fixed scale W pmmax, s0q (b) (the definition is in section 5.2.1):
the height of peaks found in presence of signal (red) and in absence of signal (blue)
is compared.
Expecially in the case of W pmmax, s0q, the peak height in case of signals reach
higher values than that of fake peaks: this means that it is reasonable to fix a
confidence level on the peak height to evaluate the significance of a peak with
respect to background fluctuation.

(a)

(b)

Figure 6.8: Wavelet transform maximum in the case of a background only sample
(blue) and background plus signal sample (red). Plot (a) shows Wmax, plot (b)
shows W pmmax, s0q. Exponential background: 6000 events. Gaussian signal: 100
events, mean µ “ 100 GeV, standard deviation � “ 15 GeV.
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is compared.
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higher values than that of fake peaks: this means that it is reasonable to fix a
confidence level on the peak height to evaluate the significance of a peak with
respect to background fluctuation.
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Figure 6.8: Wavelet transform maximum in the case of a background only sample
(blue) and background plus signal sample (red). Plot (a) shows Wmax, plot (b)
shows W pmmax, s0q. Exponential background: 6000 events. Gaussian signal: 100
events, mean µ “ 100 GeV, standard deviation � “ 15 GeV.
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higher values than that of fake peaks: this means that it is reasonable to fix a
confidence level on the peak height to evaluate the significance of a peak with
respect to background fluctuation.

(a)

(b)

Figure 6.8: Wavelet transform maximum in the case of a background only sample
(blue) and background plus signal sample (red). Plot (a) shows Wmax, plot (b)
shows W pmmax, s0q. Exponential background: 6000 events. Gaussian signal: 100
events, mean µ “ 100 GeV, standard deviation � “ 15 GeV.
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Background	  only:	  blue.	  
Background	  plus	  signal:	  red.	  
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Figure 7.6: Wavelet transform (W pm, sq) of the invariant mass spectrum of two
jets associated with a W decaying leptonically in W Ñ e⌫ (electron channel):
tridimensionalview. The wavelet transform has been computed in the mass region
mjj P r100, 200s GeV, after background subtraction. It is represented as a function
of mass and scale.
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RESULTS IN [100,200] GeV MASS REGION: TRIDIMENSIONAL VIEW �

The contour algorithm finds the wavelet maximum Wmaxpmmax, smaxq in the scale
region js • 25: the mass mmax at which the maximum in found is used to estimate
the peak mass.

Figure 7.5: Wavelet transform (W pm, sq) of the invariant mass spectrum of two
jets associated with a W decaying leptonically in W Ñ µ⌫ (muon channel): tridi-
mensional view. The wavelet transform has been computed in the mass region
mjj P r100, 200s GeV, after background subtraction. It is represented as a function
of mass and scale.

The uncertainty on mmax is given by the scale of the maximum smax: in section
5.2.2 it has been shown that standard deviation of signals only weakly e↵ects the
wavelet transform width, which mostly depends on the scale. For this reason the
scale smax is the better estimator for mass uncertainty3.
The peak masses found in this way for the two channels are listed in table 7.1.
The peak masses in the two channels are compatible to each other. Also they are
compatible with the Higgs boson mass as measured by the CERN experiments AT-
LAS (mH “ 126˘ 0.4 pstatq ˘ 0.4psysq GeV) and CMS (mH “ 125.3˘ 0.4 pstatq ˘
0.5psysq GeV) [7],[8].

3This choice is consistent with definition of the acceptance region for the calculation of
e�ciency proposed in section 5.2.1.
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RESULTS IN [100,200] GeV MASS REGION: �
CONFIDENCE LEVEL, BI-DIMENSIONAL PLOT �

local confidence level, computed bin-by-bin. This explains the peaks exceeding the
confidence level at small scale in figure 7.11: if the scale is small, the number of
independent channels in mˆs plane is large, consequently the number of channels
exceeding the 5% local confidence level is expected to be large too.
In any case, it must be pointed out that the significance level has been defined
and tested only in the region js • 25, any structures passing the confidence level
in the excluded region js † 25 should not be considered as a physical e↵ects.
The results presented here are based on the local confidence level: more precise
considerations on the significance of the signal peak could be done via a global con-
fidence level. Due to the di�culties in defining a global confidence level for wavelet
transform (the values ofW pm, sq at di↵erent masses and scales are correlated), this
topic has not been developed in this thesis.
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Figure 7.11: Wavelet transform of the jet-jet invariant mass spectrum for di↵erent
mass ranges divided by its standard deviation (W pm, sq{�m,s) as a function of mass
and scale. The wavelet transform has been computed after background subtraction.
(a): Muon channel. (b): Electron channel. The 95% confidence level is indicated
by a black contour.

7.2.2 Determination of signal parameters: calibration

In chapter 5 it has been shown that the maximum of wavelet transform Wmax de-
pends linearly on the number of signal events. Also, it has been observed that this
dependency must be appropriately calibrated depending on the particular back-
ground (slope and intensity) of the sample.
The calibration of chapter 5 was done using background samples of 6000 events
and showed a clear linear dependence. In real data, the background is much larger
than the one used in the first calibration: the muon data sample is composed by
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RESULTS IN [100,200] GeV MASS REGION: �
MOVED MASS INTERVAL�

u  At	  [110,210]	  GeV	  the	  wavelet	  
transform	  peak	  is	  affected	  by	  
the	  edge	  effects.	  

	  
u  At	  [90,190]	  GeV	  the	  fised	  mass	  

region	  is	  closer	  to	  the	  
background	  peak:	  slight	  effects	  
on	  the	  fit	  quality	  are	  possible.	  
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Figure 7.7: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum for
di↵erent mass ranges. The wavelet transform has been computed after background
subtraction, it is represented as a function of mass and scale. (a): Muon channel,
mass range mjj P r90, 190s GeV. (b): Electron channel, mass range mjj P r90, 190s
GeV. (c): Muon channel, mass range mjj P r110, 210s GeV. (b): Electron channel,
mass range mjj P r110, 210s GeV.
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Figure 7.7: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum for
di↵erent mass ranges. The wavelet transform has been computed after background
subtraction, it is represented as a function of mass and scale. (a): Muon channel,
mass range mjj P r90, 190s GeV. (b): Electron channel, mass range mjj P r90, 190s
GeV. (c): Muon channel, mass range mjj P r110, 210s GeV. (b): Electron channel,
mass range mjj P r110, 210s GeV.
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RESULTS IN [100,200] GeV MASS REGION: �
SUBSAMPLES OF MUON CHANNEL�
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Figure 7.8: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum for
di↵erent mass ranges: muon channel. The wavelet transform has been computed
after background subtraction, it is represented as a function of mass and scale.
The analysis has been repeated independently using the subsamples A and B, each
containing half of the original muon channel sample.

peak.
This method has not been developed in a quantitative way, but has been applied
to data as a further qualitative check on the detected structures before moving to
quantitative signal significance.
The mass range has been moved to the region mjj P r60, 160s GeV and wavelet
transform W pm, sq has been computed without subtracting the background. Fig-
ure 7.9 shows the result for muon (plot (a)) and electron (plot (b)) channel.
The structure in the mass region mjj “ 120 - 130 GeV is still clearly visible; in
both channels it appears to have a wider shape than other background peaks and
to have a good isolation. The quantitative analysis of unsubtracted data is more
di�cult than with subtracted ones. For this thesis we will use unsubtracted data
to prove that the structures persist and are not produced by subtraction.
Due to the lack of quantitative development with unsubtracted data, no further
statements can be done about the plots in figure 7.9.

7.2.1 Significance of the peak

The method used for the calculation of confidence level has been described in sec-
tion 6.3.1. The same method is now applied to the peaks found in electron and
muon channel after background subtraction, using the mass range mjj P r100, 200s
GeV.
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SIGNAL SUBTRACTION: MUON CHANNEL�
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No	  signal	  subtracted	  

1100	  events	  subtracted	  

2000	  events	  subtracted	  

SIGNAL SUBTRACTION: ELECTRON CHANNEL�
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SIGNAL SUBTRACTION WITHOUT BACKGROUND SUBTRACTION�
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SEARCH OF NEW PHYSICS VIA THE WAVELET ANALYSIS: MUON CHANNEL 1 �
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Figure 8.1: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r150, 250s GeV. (b):r200, 300s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.1: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r150, 250s GeV. (b):r200, 300s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.2: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r250, 350s GeV. (b):r300, 400s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.2: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r250, 350s GeV. (b):r300, 400s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.4: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r450, 550s GeV. (b):r500, 600s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.4: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r450, 550s GeV. (b):r500, 600s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.3: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r350, 450s GeV. (b):r400, 500s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.3: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(muon channel) for di↵erent mass ranges. (a):r350, 450s GeV. (b):r400, 500s GeV.
The wavelet transform has been computed after background subtraction, it is rep-
resented as a function of mass and scale (plot on the right). On the left, the mjj

spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.5: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r150, 250s GeV. (b):r200, 300s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.6: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r250, 350s GeV. (b):r300, 400s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.6: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r250, 350s GeV. (b):r300, 400s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.5: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r150, 250s GeV. (b):r200, 300s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.7: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r350, 450s GeV. (b):r400, 500s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.8: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r450, 550s GeV. (b):r500, 600s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.8: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r450, 550s GeV. (b):r500, 600s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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Figure 8.7: Wavelet transform (W pm, sq) of the jet-jet invariant mass spectrum
(electron channel) for di↵erent mass ranges. (a):r350, 450s GeV. (b):r400, 500s
GeV. The wavelet transform has been computed after background subtraction, it is
represented as a function of mass and scale (plot on the right). On the left, the
mjj spectrum fitted with an exponential and the pull distribution of the fit.
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