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The Electroweak Theory

Spin one mediators are “hard” to describe in QFT
Require local symmetry (just a technical issue?)
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The Electroweak Theory

Local symmetry forbids mass

QED: m?yA2 not invariant. Indeed, m~ =0

EW: m%/V2 not invariant. BUT { 77771‘;/ :: gggee\\//
We can incorporate masses, but at a very high price:
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S \ QPJP; . EWSB scale:
P v =mw/gw =~ 246GeV

Theory becomes inconsistent at £ 2 4mv ~ 3 TeV
(formally, probability > 1)



The Electroweak Theory

Local symmetry forbids mass

A new sector must arise below 3 TeV
The EWSB sector:

“Set of particles and interactions
that solve the strong coupling issue”

OR

“The mechanism responsible for Spontaneous
Symmetry Breaking, giving mass toVW and Z
\ (and fermions)”

Theory becomes inconsistent at £ 2 4mv ~ 3 TeV
(formally, probability > 1)



The Electroweak Theory

Local symmetry forbids mass

4 )

A new sector must arise below 3 TeV
The EWSB sector:

4
LHC:
proton-proton collisions
E=8—-13TeV

Must discover EWSB
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Standard Higgs Model or Not !
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/~ quantum gravity )

10107 GeV

Perfectly explain what we see
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+— Y HH + ——p* + ... d >4
Auv AUV
7 suppression (F /Ay )", small effects
AUV — . » L = explain what we do not see (p-dec, extra FV, ...)
and maybe what we see is small (v-masses)
SM: SU)XU(I) provided we assume Ayy > TeV
matt. + gauge + H 5 5 5 5
1 TeV why mpyg < Auv ?

“naturalness” requires: Ayy ~ TeV
Hierarchy Problem
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Standard Higgs Model or Not ?

Fine Tuning:
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Standard Higgs Model or Not ?

Fine Tuning:

A:55Mm?f~< Auy )2

m2, 400GeV

A <100 === Ayy <4TeV

Question for the LHC:

Is Tuning a problem of Nature or just a problem of theory ?

To answer, search natural BSM!
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Composite Higgs scenario:

|. Higgs is hadron of new strong force @:[ l
H

Corrections tom g7 screened above 1/l g
The Hierarchy Problem is solved

2. Higgs is a Goldstone Boson, this is why it is light
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Composite Higgs scenario:

Corrections tom g7 screened above 1/l g
The Hierarchy Problem is solved

2. Higgs is ajGoldstone Boson|this is why it is light

r

|. Higgs is hadron of new strong force @:[ l
H

Indirect effects from sigma-model couplings

A) Corrections to SM: B) Non-ren. Couplings:
(O(W/f?) S20%]
<4 Higgs Br. Ratios 4 InWW — hh
4 Higgs Production 4 Ihgg — hh

Interesting, and extensively discussed,
but not easy to see with present data
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Composite Higgs scenario:

Corrections tom g7 screened above 1/l g
The Hierarchy Problem is solved

|. Higgs is hadron of new strong force @:[ l
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2. Higgs is a Goldstone Boson, this is why it is light

3. SM fermions and gauge coupled linearly to the strong sector
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gauge couplings:  Liny X gw p, W

fermion couplings: L;int X quL\IfL —+ quR\IfR



Composite Higgs scenario:
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Composite Higgs scenario:

Corrections tom g7 screened above 1/l g
The Hierarchy Problem is solved

|. Higgs is hadron of new strong force @:[ l
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2. Higgs is a Goldstone Boson, this is why it is light

3. SM fermions and gauge coupled linearly to the strong sector

Linear coupling = partial compositeness:

|.SM,,) =cos ¢, |elementary,) + sin ¢, |composite,,)

PC generates Yukawas ...
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Composite Higgs scenario:

Corrections tom g7 screened above 1/l g
The Hierarchy Problem is solved

|. Higgs is hadron of new strong force @:[ l
H

2. Higgs is a Goldstone Boson, this is why it is light

3. SM fermions and gauge coupled linearly to the strong sector
Linear coupling = partial compositeness:
|SM,,) =cos ¢, |elementary,) + sin ¢, |composite,,)

PC generates Yukawas ...
top loops dominate because

..and the Higgs potential the top is largely composite



Connection among top partners, Higgs mass and VEV
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light stops light top partners




Striking Example:

MCHM4,5,10

& = 0.1: (larger tuning)

mpy € [115,130]

Light Higgs plus Low Tuning need Light Partners

Natural SUSY: Natural CH:

light stops light top partners
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Couplings:

X
W< ~ Mx/f
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because Goldstones are derivatively coupled
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Spectrum:
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Case #2, singlet of custodial SO(4) ]’
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|44
sizable coupling to bottom quark
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Three possible production mechanisms
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QCD pair prod.
model indep.,
L relevant at low mass
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single prod. with t
== X model dep. coupling
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single prod. with b
== X favored by small b mass
) b dominant when allowed




Three possible production mechanisms
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comparing production rates:

(7 TeV LHC)

single prod. with t
model dep. coupling
pdf-favored at high m:
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Three possible production mechanisms

X

>

QCD pair prod.
model indep.\
relevant at low mas

—
single prod. with t

model dep. coupling
pdf-favored at high m:

/

single prod. with b
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Summary of production/decay:

Production: QCD or single+t,comparable at M~ 700 GeV
Decay: BR(Wt) =1

W in QCD prod.

Final states: {1}/ +

fwd jet in sing. prod.

Good channel is same-=signh di-(tri-)leptons plus jets



Bounds:

Searches sensitive to X5/3 pair and single, though not optimised for the latter one
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Significant improvement of the bound from single production



Summary of production/decay:

=
b

1000

100 -

10 -

Production: sing.+b typically dominant

\\ bands from varying param.

single+b

pair

single+t

Decay: BR(tZ)~BR(ht)~0.5BR(Wb)
Plenty of possible final states, rich phenomenology




Current searches not sensitive to single + bottom

Present Bound
(from pair)

M > 670 GeV

By exploiting single production, it could improve



Impact on a concrete model (roughly):
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Conclusions

4 LHC has started probing EWSB, it is time to test theoretical ideas,
particularly compelling are the Natural scenarios

4 Even a negative result will have a strong impact on our understanding
of Fund. Int. Alternative to Naturalness is Anthropic Principle.
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4 LHC has started probing EWSB, it is time to test theoretical ideas,
particularly compelling are the Natural scenarios

4 Even a negative result will have a strong impact on our understanding
of Fund. Int. Alternative to Naturalness is Anthropic Principle.

4 A Composite Higgs with P.C. might work. possible manifestations:
* Higgs couplings modifications (hard)
* Direct observation of Top Partners (easy)
* Spin one resonances (good for 14 TeV, m, > 2.5 TeV)
Present data are already probing part of the natural par. space.
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* Spin one resonances (good for 14 TeV, m, > 2.5 TeV)
Present data are already probing part of the natural par. space.




Conclusions

4 LHC has started probing EWSB, it is time to test theoretical ideas,
particularly compelling are the Natural scenarios

4 Even a negative result will have a strong impact on our understanding
of Fund. Int. Alternative to Naturalness is Anthropic Principle.

4 A Composite Higgs with P.C. might work. possible manifestations:
* Higgs couplings modifications (hard)
* Direct observation of Top Partners (easy)
* Spin one resonances (good for 14 TeV, m, > 2.5 TeV)
Present data are already probing part of the natural par. space.

4 LHC search program is still at a preliminary stage
much is left to be done !!



