A Composite Higgs: Why and How

Andrea Wulzer

Università degli Studi di Padova

Particle accelerators are **Microscopes**

E

 10^{-1}GeV

Particle accelerators are **Microscopes**

E

Particle accelerators are **Microscopes**

Particle accelerators are **Microscopes**

Particle Content:

Spin 1/2 "Matter": Quarks and Leptons

Spin 1/2 "Matter": Quarks and Leptons

 Spin one Force Mediators: in QFT forces from quanta exchange

Particle Content:

- ✦ Spin 1/2 "Matter": Quarks and Leptons
- Spin one Force Mediators: in QFT forces from quanta exchange

Electromagnetism from γ exchange

Particle Content:

- ♦ Spin 1/2 "Matter": Quarks and Leptons
- Spin one Force Mediators: in QFT forces from quanta exchange

Electromagnetism from γ exchange Weak force from W/Z exchange

Spin one mediators are "hard" to describe in QFT Require **local symmetry** (just a technical issue?)

Spin one mediators are "hard" to describe in QFT Require **local symmetry** (just a technical issue?)

QED:
$$U(1)$$
 $\begin{cases} e^- \rightarrow e^{-i\alpha(x)}e^-\\ A_\mu \rightarrow A_\mu + \partial_\mu \alpha \end{cases}$ symmetry fixes e.m. interactions
EW = e.m. + Weak : $SU(2) \times U(1)$ $\begin{cases} f \rightarrow e^{-i\alpha_V(x)}f\\ V_\mu \rightarrow V_\mu + \partial_\mu \alpha_V \end{cases}$
time v_{w} successful prediction of matter Weak interactions
neutron β decay

Local symmetry forbids mass

QED:
$$m_{\gamma}^2 A^2$$
 not invariant. Indeed, $m_{\gamma} = 0$
EW: $m_V^2 V^2$ not invariant. **BUT** $\begin{cases} m_W = 80 \text{ GeV} \\ m_Z = 92 \text{ GeV} \end{cases}$
We can incorporate masses, but at a very high price:
 $\mathcal{A}(LL \to LL) \simeq \frac{E^2}{v^2}$
EVVSB scale:
 $v = m_W/g_W \simeq 246 \text{GeV}$

Theory becomes **inconsistent at** $E \gtrsim 4\pi v \simeq 3 \,\mathrm{TeV}$ (formally, probability > 1)

Local symmetry forbids mass

A new sector must arise below $3\,\mathrm{TeV}$

The **EWSB** sector:

"Set of particles and interactions that solve the strong coupling issue"

OR

"The mechanism responsible for **Spontaneous Symmetry Breaking**, giving mass to W and Z (and fermions)"

Theory becomes inconsistent at $E \gtrsim 4\pi v \simeq 3 \,\mathrm{TeV}$

(formally, probability > 1)

Local symmetry forbids mass

A new sector must arise below $3\,\mathrm{TeV}$

The **EWSB** sector:

LHC:

proton-proton collisions $E = 8 - 13 \,\mathrm{TeV}$

 $9\,\mathrm{Km}$

Must discover EWSB

The Higgs Model

The Higgs Model

The Higgs Model

 $F^2 + \overline{\psi} D \psi + \overline{\psi} H \psi$

d = 4

Perfectly explain what we see

$$F^{2} + \overline{\psi} D \psi + \overline{\psi} H \psi \qquad d = 4$$
Perfectly explain what we see
$$+ \frac{c}{\Lambda_{\rm UV}} \psi \psi H H + \frac{c'}{\Lambda_{\rm UV}^{2}} \psi^{4} + \dots \quad d > 4$$
suppression $(E/\Lambda_{UV})^{n}$, small effects
explain what we **do not see** (p-dec, extra FV, ...)
and maybe what we **see is small** (v-masses)
provided we assume $\Lambda_{\rm UV} \gg {\rm TeV}$

$$F^{2} + \overline{\psi} D \psi + \overline{\psi} H \psi \qquad d = 4$$
Perfectly explain what we see
$$+ \frac{c}{\Lambda_{\rm UV}} \psi \psi H H + \frac{c'}{\Lambda_{\rm UV}^{2}} \psi^{4} + \dots \qquad d > 4$$
suppression $(E/\Lambda_{UV})^{n}$, small effects
explain what we do not see (p-dec, extra FV, ...)
and maybe what we see is small (v-masses)
provided we assume $\Lambda_{\rm UV} \gg {\rm TeV}$

$$c\Lambda_{\rm UV}^2 H^2 = m_H^2 H^2$$
 $d < 4$
why $m_H \ll \Lambda_{\rm UV}$?
"naturalness" requires: $\Lambda_{\rm UV} \sim {
m TeV}$
Hierarchy Problem

$$(m_H^2)_{Phys.} = \int_0^\infty F_{true}(E; g_{true})$$
$$= \int_0^{\Lambda_{\rm UV}} (\ldots) + \int_{\Lambda_{\rm UV}}^\infty (\ldots)$$

Fine Tuning:

$$\Delta = \frac{\delta_{SM} m_H^2}{m_H^2} \simeq \left(\frac{\Lambda_{\rm UV}}{400 {\rm GeV}}\right)^2$$

$$\Delta < 100 \longrightarrow \Lambda_{\rm UV} < 4 \,{\rm TeV}$$

Question for the LHC:

Is Tuning a problem of Nature or just a problem of theory ?

To answer, search **natural BSM!**

Imagine the Higgs is **Composite**

Imagine the Higgs is **Composite**

Corrections to m_H screened above $1/l_H$. m_H is **IR-saturated**

Natural Higgs mass if $1/l_H = \Lambda_{\rm UV} \sim {\rm TeV}$

Composite Higgs scenario:

I. Higgs is hadron of new strong force

Corrections to m_H screened above $1/l_H$ The **Hierarchy Problem is solved**

2. Higgs is a **Goldstone Boson**, this is why it is light

Composite Higgs scenario:

I. Higgs is hadron of new strong force

Corrections to m_H screened above $1/l_H$ The **Hierarchy Problem is solved**

2. Higgs is a **Goldstone Boson** this is why it is light

Indirect effects from sigma-model couplings

- A) Corrections to SM: $\left[\mathcal{O}(v^2/f^2) \lesssim 20\%\right]$
 - Higgs Br. Ratios
 - Higgs Production

B) Non-ren. Couplings:

Interesting, and extensively discussed, but **not easy** to see with present data

Composite Higgs scenario:

I. Higgs is hadron of new strong force

Corrections to m_H screened above $1/l_H$ The **Hierarchy Problem is solved**

- 2. Higgs is a **Goldstone Boson**, this is why it is light
- 3. SM fermions and gauge coupled linearly to the strong sector

Composite Higgs scenario:

I. Higgs is hadron of new strong force

Corrections to m_H screened above $1/l_H$ The **Hierarchy Problem is solved**

- 2. Higgs is a **Goldstone Boson**, this is why it is light
- 3. SM fermions and gauge coupled linearly to the strong sector

Composite Higgs scenario:

I. Higgs is hadron of new strong force

Corrections to m_H screened above $1/l_H$ The **Hierarchy Problem is solved**

- 2. Higgs is a **Goldstone Boson**, this is why it is light
- 3. SM fermions and gauge coupled linearly to the strong sector
 - Linear coupling = **partial compositeness**:

 $|SM_n\rangle = \cos \phi_n |elementary_n\rangle + \sin \phi_n |composite_n\rangle$

PC generates Yukawas ...

Composite Higgs scenario:

I. Higgs is hadron of new strong force

Corrections to m_H screened above $1/l_H$ The **Hierarchy Problem is solved**

- 2. Higgs is a **Goldstone Boson**, this is why it is light
- 3. SM fermions and gauge coupled **linearly** to the strong sector

Linear coupling = **partial compositeness**:

 $|SM_n\rangle = \cos \phi_n |elementary_n\rangle + \sin \phi_n |composite_n\rangle$

PC generates Yukawas ...

... and the Higgs potential

top loops dominate because the top is largely composite
Connection among **top partners**, Higgs mass and VEV

$$\Delta \geq \frac{\delta m_{H}^{2}}{m_{H|_{pole}}^{2}} \simeq \left(\frac{125 \text{ GeV}}{m_{H}}\right)^{2} \left(\frac{\Lambda_{\text{UV}}}{400 \text{ GeV}}\right)^{2}$$
Fop partners cancel top quark divergence $\Rightarrow \Lambda_{\text{UV}} \geq M_{T}$
Light Higgs plus Low Tuning need Light Partners

Connection among **top partners**, Higgs mass and VEV

Light Higgs plus Low Tuning need Light Partners

Natural SUSY: Natural CH: light stops light top partners

Three possible production mechanisms

QCD pair prod.

model indep., relevant at low mass

single prod. with t

model dep. coupling pdf-favored at high mass

single prod. with **b** favored by small b mass

dominant when allowed

Three possible production mechanisms

Three possible production mechanisms

Production:QCD or single+t, comparable at $M \sim 700 \, \text{GeV}$ Decay:BR(Wt) = 1Final states: $t\bar{t}W + \begin{cases} W \text{ in QCD prod.} \\ \text{fwd jet in sing. prod.} \end{cases}$

Good channel is **same-sign di-(tri-)leptons** plus jets

Bounds:

Searches sensitive to $X_{5/3}$ pair and single, though not optimised for the latter one

Decay: $BR(tZ) \simeq BR(ht) \simeq 0.5BR(Wb)$ Plenty of possible final states, **rich phenomenology**

Current searches **not sensitive** to single + bottom

Present Bound (from pair)

 $M>670~{\rm GeV}$

By exploiting single production, it could improve

LHC has started probing EWSB, it is time to test theoretical ideas, particularly compelling are the **Natural** scenarios

Even a negative result will have a strong impact on our understanding of Fund. Int. Alternative to Naturalness is Anthropic Principle.

LHC has started probing EWSB, it is time to test theoretical ideas, particularly compelling are the **Natural** scenarios

Even a negative result will have a strong impact on our understanding of Fund. Int. Alternative to Naturalness is Anthropic Principle.

A Composite Higgs with P.C. might work. possible manifestations:

- Higgs couplings modifications (hard)
- Direct observation of Top Partners (easy)
- Spin one resonances (good for 14 TeV, $m_{
 ho} \gtrsim 2.5 \, {
 m TeV}$)

Present data are already probing part of the natural par. space.

• Spin one resonances (good for 14 TeV, $m_{\rho} \gtrsim 2.5 \text{ TeV}$) Present data are already probing part of the natural par. space.

LHC has started probing EWSB, it is time to test theoretical ideas, particularly compelling are the **Natural** scenarios

Even a negative result will have a strong impact on our understanding of Fund. Int. Alternative to Naturalness is Anthropic Principle.

A Composite Higgs with P.C. might work. possible manifestations:

- Higgs couplings modifications (hard)
- Direct observation of Top Partners (easy)
- Spin one resonances (good for 14 TeV, $m_{
 ho} \gtrsim 2.5 \,\,{
 m TeV}$)

Present data are already probing part of the natural par. space.

LHC search program is still at a preliminary stage much is left to be done !!