Testing PMTs R7600 and R10551

Luca Scotto Lavina on behalf of the Subatech and KEK groups

Based on the work by Ryo Hamanishi (KEK) in Subatech

Dec 10th 2013, Napoli

Why those tests? XEMIS2 for medical imaging

- An array of 35 x 8 PMTs
- Used as **trigger** for the charge signal readout (by determining the interaction volume)
- PMT that will be used :
 Hamamatsu R7600 1" PMT
- 50 PMTs purchased already
- PMTs must be characterized
 - Absence of defects
 - Gain calibration
 - Pulse shape
 - Linearity
 - Temperature dependency
 - .
 - → Need a PMT test station

The new PMT test station in Subatech

- Built inside the **XEMIS1** cryostat
- Very compact design to store many PMTs (potentially up to 16 at same time)
- **LED** light generated outside (we can easily replace it)
- Light enters through 200 µm thick **optical fibers**

C

Vacuum ↔ air flange

LXe ↔ vacuum flange

Feedthrough

Dec 10th 2013, Napoli

Feedthrough test

- Feedthrough test by using liquid nitrogen
- Put it into low temperature conditions and checked possible presence of vacuum leaks
- No issues found

Components cleaning

• Before assembling, cleaned parts of PMT test station by using an ultrasonic cleaner and a drying oven

Ultrasonic cleaner

Drying oven

The PMTs used

Hamamatsu R7600

- Size : 1"
- Purchased 50 exemplars

PMT setup

Dec 10th 2013, Napoli

Other equipment used

- Waveform generator : Agilent 33250A

- ADC : From oscilloscope LeCroy

- Amplifier : Ortec (not used with current setup)

 Single
 Single
 Ramp
 Pube
 Mode
 Arb

 Hod
 Sweep
 Burst
 Store?
 Utility
 Help

(+1.

0

Trigger

Characteristics	Values
High level	5.0 V
Low level	750 mV
Frequency	1.000 kHz
Pulse width	20.0 ns
Edge time	5.00 ns

Characteristics	Values					
Sampling frequency	2 GHz					
Channels	4					

Charasteristic	Value					
Amplification	12 times					

DAQ setup

Analyses performed

- Integrated pulse
 - With fixed integration interval
 - With variable integration interval (peak finding)
 - $\rightarrow\,$ Choice on down and up time edges
- Gain vs HV
- Stability studies. Checked dependency from:
 - → Trigger rate
 - → LXe temperature

Gain measurement

Dec 10th 2013, Napoli

Dependency on integration interval

Integrated pulse

- With fixed integration interval
- With variable integration interval (peak finding)
- \rightarrow Choice on down and up time edges
- Conclusion : flat dependency
 - On the lower edge down to 2.5 ns
 - On the higher edge down to 10 ns

1p = 0.5ns

Dec 10th 2013, Napoli

Gain vs HV

- Gain vs HV
- **Conclusion** : regular trend in the 760 900 V range

Dependency on temperature

- Stability studies. Checked dependency from:
 → LXe temperature
- Conclusion : Gain independent from temperature in the T = [-110, -106] °C range

Dec 10th 2013, Napoli

Dependency on trigger rate

- Stability studies. Checked dependency from:
 → Trigger rate
- **Conclusion** : Gain independent from trigger rate in the 50 Hz 1 MHz range

Next step : the light source

Simply a "yellow" light LED

Next step: using an high reliability gallium nitride (GaN) laser source

- UV at 406 nm (well inside the PMT spectral response range: 160-650 nm)
- Low output power (20 mW)
- Linear response

Testing new PMT R10551

Hamamatsu R10551

- Size : 2" \rightarrow covers area 4 times bigger
- Very compact
- 50% of quantum efficiency higher
- Made by 64 independent channels (fed by one unique HV source)

- Provided by the KEK group to Subatech
- **KEK** : R&D on flat 2" PMTs for Hamamatsu
- **Subatech** : interested for a future upgrade for XEMIS2

Dec 10th 2013, Napoli

Measurements with PMT R10551

- We initially grouped the channels in 4 groups
- Each group is the sum of 16 independent channels

Measurements with PMT R10551

- Acquisition has been done in the same time with the 1" PMTs
- We repeated exactly the same analyses
- Integrated pulse
 - With fixed integration interval
 - With variable integration interval (peak finding)
 - \rightarrow Choice on down and up time edges
- Gain vs HV
- Stability studies. Checked dependency from:
 - → Trigger rate
 - → LXe temperature

- Conclusions :
 - → Same level of stability
 - → We measured so far 2 models, one with lower and one with higher gains (compatibly with what expected from Hamamatsu)

These shows the intensities of each channels.

Serial number : ZB0022

Serial number : ZB0020

1229	(tota	l nur	nbei	r)			116	53	1314							108	30
79	100	100	88	84	80	75	77		71	87	90	87	91	88	79	83	
74	75	78	75	74	72	70	70		73	80	88	85	90	77	64	71	
71	69	73	70	72	72	67	68		76	79	87	85	81	59	49	54	
66	65	72	74	76	71	65	66		77	77	89	83	72	47	38	37	
75	72	79	81	78	74	68	69		84	85	92	87	69	45	37	35	
86	80	85	81	83	77	72	71		88	86	91	87	77	46	37	39	
91	89	87	85	90	82	77	76		89	91	95	95	97	66	55	60	
82	84	85	85	88	83	76	70		84	85	87	90	100	89	75	61	
1327							123	34	1415							98	38
SUPPLY VOLTAGE 1000V																	
GAIN(ZB0022) : 3.63 × 10 ⁶ GAIN(ZB0020) : 2.53 × 10 ⁶																	

High potentiality for future detectors (Medical Imaging and Dark Matter)

- Size : 2"
 - \rightarrow covers area 4 times bigger at lower cost than 4 PMT 1"
- Very compact
 - \rightarrow we save a lot of LXe
- 50% of quantum efficiency higher
 - \rightarrow higher performances in the result
- Made by 64 independent channels fed by one unique HV source
 - \rightarrow less cabling inside the detector
 - \rightarrow If needed, higher position resolutions
- Hamamatsu interested for future collaborations for Dark Matter detectors
 - \rightarrow they are available to build a low-radioactivity version

Subatech, in a very fruitful collaboration with KEK, is proceeding very quickly in the characterization of the PMT for XEMIS2 :

- Good results compatible with expectations
- High stability on the performances
- Unique occasion to perform in parallel R&D on new experimental PMTs

Next :

- We will complete the characterization of all 50 PMTs R7600 1"
- New studies (noise, dark current rate, linearity, ...)
- We will study new models of the new PMT R10551 2"