

Dark matter, 0vββ-decay, and neutrino physics with DARWIN

arXiv:1309.7024

Neutrino physics with multi-ton scale liquid xenon detectors L. Baudis, A. Ferella, A. Kish, A. Manalaysay, T. Marrodan Undagoitia, M. Schumann

Alex Kish Physics Institute, University of Zürich • Solar neutrinos can be detected via elastic neutrino-electron scattering reaction: $v + e^- \rightarrow v + e^-$ (W or Z exchange for v_e , and only neutral current reactions for other flavours)

 \rightarrow test the main energy production mechanism in the Sun

• pp-neutrinos are produced in the proton fusion reaction:

$$p + p \rightarrow {}^{2}H + e^{+} + v_{e}$$

(endpoint at 420 keV)

• ⁷Be-neutrinos are born in electroncapture:

```
^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + v_{e}
```

(10% 383 keV, 90% 862 keV)

Expected solar neutrino rates: Assumptions

- LXe target 18t; fiducial volume 14t \rightarrow 3.47×10³⁰ target electrons
- Scintillation light yield 46 photons/keV \rightarrow energy threshold 2 keV_{ee}
- Mean cross-sections for elastic neutrino-electron scattering: pp: $\sigma(v_e) = 11.6 \times 10^{-46} \text{ cm}^2$
 - ⁷Be: $\sigma(v_e) = 57.9 \times 10^{-46} \text{ cm}^2$
- Total neutrino fluxes: $\Phi(pp) = 5.94 \times 10^{10} \text{ cm}^{-2}\text{s}^{-1}$ $\Phi(^{7}\text{Be}) = 4.38 \times 10^{9} \text{ cm}^{-2}\text{s}^{-1}$
- Radial position resolution 15 mm; Z position resolution 3mm XENON100, 1" PMTs: 3 mm LUX, 2" PMTs: 5 mm → error on the FV calculation <0.1% XENON1T, 3" PMTs: 8 mm
- Energy resolution of the XENON100 detector (combined energy scale):

$$\frac{\sigma(E)}{E} [\%] = 0.9 + \frac{48.5}{\sqrt{E \text{ [keV]}}} \qquad (~1\% \text{ in the } 0\nu\beta\beta \text{ region of interest})$$

• Neutrino spectral shape:

$$\frac{dN_{\nu}(E_{\nu})}{dE_{\nu}} = A(Q + m_e - E_{\nu}) \left[(Q + m_e - E_{\nu})^2 - m_e^2 \right]^{\frac{1}{2}} E_{\nu}^2 F_{\nu}$$

Q – maximum neutrino energy, E_v – initial neutrino energy, m_e – mass of the electron, F – correction factor (close to unity for the low-Z nuclei in the Sun), A – normalization factor

Differential cross-section:

$$\frac{d\sigma(E_e, E_\nu)}{dE_e} = \frac{2G_F^2 m_e}{\pi} \left[g_L^2 + g_R^2 \left(1 - \frac{E_e}{E_\nu} \right)^2 - g_L g_R \frac{m_e}{E_e E_\nu} \right]$$

 E_v – kinetic energy of the final state electron, G_F – Fermi constant

$$g_L = \pm \frac{1}{2} + \sin^2 \theta_W \qquad \qquad g_R = \sin^2 \theta_W$$

 Θ_W – Weinberg angle with sin² Θ_W = 0.231; sign conventions for g_L is positive for v_e , and negative for $v_{\mu,\tau}$

• Probability of neutrino arrival at the detector as electron neutrino

$$P_{ee} = \cos^4 \theta_{13} \left(1 - \frac{1}{2} \sin^2 2\theta_{12} \right) + \sin^4 \theta_{13}$$

- Assuming mixing angles $\sin^2\Theta_{12} = 0.312$ and $\sin^22\Theta_{13} = 0.092$, electronneutrino survival probability is $P_{ee} = 0.543$, and the overall rates
- Differential electron recoil spectrum

$$\frac{dN_e(E_e)}{dE_e} = N_0 \times t \times \sum_{i}^{flavours} \int dE_{\nu} \frac{d\phi_i(E_{\nu})}{dE_{\nu}} \frac{d\sigma_i(E_e, E_{\nu})}{dE_e}$$

 N_0 – number of electrons in the target, t - measuring time

0.35

0.15

0.1

0.05

- Standard halo model: isothermal halo, local DM density 0.3 GeV/cm³, circular velocity 220 km/h, escape velocity 544 km/s
- $M_1 = 100 \text{ GeV/c}^2$, $\sigma_1 = 10^{-47} \text{ cm}^2$ $M_2 = 40 \text{ GeV/c}^2$, $\sigma_2 = 10^{-47} \text{ cm}^2$
- Conversion from keV_{ee} to keV_{nr} using L_{eff}: $2 \text{ keV}_{ee} \rightarrow 6.6 \text{ keV}_{nr}$ $10 \text{ keV}_{ee} \rightarrow 36.8 \text{ keV}_{nr}$
- Apply Poisson fluctuations in the number of PE
- Convert to keV_{ee} scale using measured light yield of low-energy electronic recoils at drift field ~0.5 kV/cm (in agreement with NEST prediction)

WIMP and neutrino sensitivity

• Assuming electronic recoil rejection 99.5%, nuclear recoil acceptance 50%

• Electronic recoil neutrino BG limits DM search channel (spin-independent WIMP-nucleon coupling) around cross-sections of 2×10⁻⁴⁸ cm², dominated by interactions of pp-neutrinos

- Coherent neutrino-nucleus elastic scattering (mostly ⁸B and hep neutrinos) affects the sensitivity to low-mass WIMPs
- Atmospheric and diffuse supernovae neutrinos become relevant at 10⁻⁴⁸ cm²

- Natural xenon composition: abundance of 136 Xe is 8.9% \rightarrow 534 kg of 136 Xe in the 6t target
- Region of interest for 0vββ is 3σ around the Q-value of ¹³⁶Xe 2458.7±0.6 keV (2385 to 2533 keV)
- Energy resolution in ROI is 1%
- Spectral shape parametrization with

 $dN/dE = E_{Xe} \times (E_0 - E_{Xe})^5 \times (E_{Xe}^4 + 10 \cdot E_{Xe}^3 + 40 \cdot E_{Xe}^2 + 60 \cdot E_{Xe} + 30)$

$$(E_0 = QXe/m_{e-}c^2; E_{Xe} = E/m_{e-}c^2)$$

Background from radioactivity in the construction materials

The best results from XENON100 and XENON1T screening campaigns have been selected

- The modeled photosensors are 2.8", and might be a QUPID or Hamamatsu R11410 PMT
- Intrinsic contamination: 0.1 ppt of ^{nat}Kr, 0.1µBq/kg of ²²²Rn

XENON100: (1.0 ± 0.2) ppt of krypton EXO-200: (3.7 ± 0.4) ppt of radon

Detector component	Material	Mass [unit]	Specific activity [mBq/unit]
			$^{228}\mathrm{Th}/^{226}\mathrm{Ra}/^{40}\mathrm{K}/^{60}\mathrm{Co}$
Outer cryostat	Copper	$2150\mathrm{kg}$	0.02/0.07/0.023/0.008
Inner cryostat	Copper	$1737{ m kg}$	0.02/0.07/0.023/0.008
Electrodes, bell	Copper	$113{ m kg}$	0.02/0.07/0.023/0.008
TPC	Teflon	$313.6\mathrm{kg}$	0.2/0.05/0.59/0.01
Photosensors	Quartz	1050 pieces	0.28/3.2/0.39/6.0/0.15
Total (instrumented) volume	LXe	21.4 (18) t	$0.1\mathrm{ppt}^{\ nat}\mathrm{Kr},0.1\mu\mathrm{Bq/kg}^{\ 222}\mathrm{Rn}$

Background reduction with fiducial volume and multi-site cuts

- 3D position reconstruction fiducialization of the LXe target
- Z coordinate from delay time between S1 and S2
 → resolution ~3mm (typical S2 width 2µs, electron drift velocity 1.5 mm/µs)
- XY resolution of about 8 mm can be achieved with 3 inch phototubes
 → not considered for multiple scatter rejection
 (probability to have such an event is already low)

Background reduction with fiducial volume and multi-site cuts

• Due to the geometry of the detector (large outer edge surface area), it is likely for a particle to scatter only once and leave the active volume. Instead, when an interaction happens in the center of the target, the remaining xenon acts as an active veto for multiple scattering events

• Rejection of the multiple scattering events has to be calculated with the combination of the multisite and fiducial volume cuts (>99.5%)

Background from radioactivity in the construction materials

 In the 0vββ-search energy region BG is dominated by decays from ²²⁶Ra chain in the cryostat. 2nd largest contribution comes from the photosensors

 Background in the WIMP-search energy range (materials only) is dominated by ⁴⁰K in the photosensors, followed by the cryostat, TPC and diving bell

Background from intrinsic contamination with radon

- From ²²²Rn decay chain, only ²¹⁴Pb and ²¹⁴Bi undergo β-decay.
- Isotopes after ²¹⁰Pb are not considered due to it's long mean lifetime and slow buildup
- Positively charged ions after decay drift in the electric field to the cathode
- Decays of ²¹⁴Bi can be identified by tagging the coincidence with ²¹⁴Po α decay ($T_{1/2} = 164 \ \mu s$)
- Two scintillation peaks can be separated if they are at least 300 ns apart

BG by a factor of ~2

Background in low energy region. Neutrino and WIMP detection

• The total background at low energies is dominated by $2v\beta\beta$ -decays of ¹³⁶Xe (T_{1/2} = 2.11×10²¹ years, as measured by EXO-200), followed by krypton

- Chose 14t of LXe in the central detector region
- Energy range for neutrino measurement up to 30 keV_{ee} (intersect with ^{136}Xe $2\nu\beta\beta$ curve)
- WIMP ROI up to 2–10 keVeeV. + electronic recoil rejection 99.5%

- Fiducial mass 14t
- For WIMP-search, ER rejection 99.5%, NR acceptance 50%

Physics channel	Low-energy ν measurement	Dark matter search
Energy range	230 keV	$210\mathrm{keV}$
Assumptions	No ER/NR discrimination	99.5% ER rejection
		50% NR acceptance
Rate	$Events/(14 t \cdot y)$	$Events/(14 t \cdot y)$
Solar pp neutrinos	1180	1.75
Solar ⁷ Be neutrinos	151	0.25
$100 { m GeV/c^2}$ WIMP, $2 \times 10^{-47} { m cm^2}$	42	19
$40 \mathrm{GeV/c^2}$ WIMP, $2 \times 10^{-48} \mathrm{cm^2}$	5.2	2.5
Coherent ν scattering	0.98	0.45
Detector components	19	0.03
85 Kr in LXe (0.1 ppt of nat Kr)	565	0.82
$^{222}\mathrm{Rn}$ in LXe $(0.1\mu\mathrm{Bq/kg})$	139	0.20
136 Xe $(2\nu\beta\beta)$	785	0.41

- Fiducial mass 6t
- BG dominated by ²²⁶Ra sub-chain decays (²¹⁴Bi) in the cryostat and photosensors
- Assuming: $T_{1/2}(0v\beta\beta) = 1.6 \times 10^{25}$ years $T_{1/2}(2v\beta\beta) = 2.11 \times 10^{21}$ years

	Events/(6 t y)
Energy range	$23852533\mathrm{keV}$
Signal events	106
Detector components	27
$^{222}\mathrm{Rn}$ in LXe $(0.1\mu\mathrm{Bq/kg})$	0.21
⁸ B (ν -e scattering)	0.22
¹³⁶ Xe $(2\nu\beta\beta)$	0.14

 Integrated pp-neutrino rate in 2–30 keV after 5 years run (with 14t fiducial mass) is 5900 events

 \rightarrow statistical uncertainty of the measured flux ~1%

→ limiting background for WIMP-search channel (WIMP-nucleon crosssections below $\sim 2 \times 10^{-48}$ cm² and WIMP masses around 50 GeV/c², assuming ER rejection of 99.5%)

 Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below 6 GeV/c² to cross-sections above ~5×10⁻⁴⁵ cm²

• Half-life sensitivity to $0\nu\beta\beta$ -decay of ¹³⁶Xe after 5 years of data (6t fiducial mass) is 3.6×10^{26} years