Presentation of new groups

Ben Kilminster U.Zürich

Darwin meeting Dec. 9 2013

My background

Experiments

- Darwin
- DAMIC (Dark Matter in CCDs) (2008)
- CMS experiment (2011)
- CDF experiment (1997 -
- Positions
- Associate professor, U. Zürich (2012 Scientist, Fermilab (2008-2012)
 Post doc, Ohio State (2003-2008)
 PhD, University of Rochester (2003)
 - advisor : Kevin McFarland

CDF experiment (1997 -

Physics

Higgs boson searches

- Higgs convener 2008 2011
- Searches for $H \rightarrow bb$
- top quark properties
 - Search for right-handed top quark decay

Hardware & software

- as post doc, helped design, build 3D global track trigger at Level 1
- as student, helped design, build Level 3
 - data logging and monitoring system
- some work on controls for silicon pixel detector

CMS (2011-)

Physics
Higgs combination
Now, exotic physics
Extra dimensions, supersymmetry
Especially, high mass particles in

boosted boson-jets

 Hardware/software
 Upgraded pixel detector (2016)
 Building 2-phase CO₂ cooling system
 Integrating pixel digital-optical signal/ control electronics, dag testing

- Dark Matter in CCDs History
 - Design run 2009, T-987
 - Engineering run 2010
 - Best limits for DM < 4 GeV
 - Currently, running in SNOIab
 - Next phase begins summer 2014

Scientific CCDs for searching for DM

Noise measurement

Pixel values in low threshold image

Allows lowest energy threshold of current dark matter experiments ~ 50 eV

Diffusion of charge

Size of hit depends on location within pixel

Maximal (minimal) diffusion at bottom (top) of CCD

Experimental setup DAMIC prototype in operation at SNOIab

Upgrade to DAMIC 100

- LBNL CCD group is building us even thicker, fully depleted high resistivity CCDs (500 µm)
 - 4 times the mass
- Can now reach 100 g of detector mass
 Prototype revealed dominant
 background from U²³⁸ in Al N substrate
 of CCD package ~ 3 Bq kg⁻¹
 Solved in new CCD design
 Also removed astronomy-related
 - material additions

DAMIC100 : Fermilab, U. Chicago, U. Zürich, U. Michigan, UNAM, FIUNA, CAB

Projected sensitivity DAMIC 100 with 1 year of data

Previous results in Phys. Lett. B 711, 264-269 (2012)

arXiv:1105.5191

Contributions to DARWIN

- Possible contributions ?
 - Previous experience points to :
 - data acquisitions
 - triggering
 - logging
 - monitoring
 - Simulations
 - Or wherever most help is needed
- Open to suggestions new ideas
- Person-power
 - still building up CMS, DAMIC groups
 - estimate student or post doc on DARWIN sometime in 2014
 - ramp up over next few years

Particle identification in CCD

Ionization efficiency for nuclear recoils

Challenge is to provide dependable calibration down to 50 eV energy threshold

Ongoing R & D

 Neutron energy response at low energy
 Electron Capture from irradiated silicon (calibration at ~ 100 eV) : could be done at PSI
 Lower energy calibrations still needed
 Improved readout - multiple sampling (skipper)

of CCD data can yield sub-eV noise

- CCD limitation is long exposure time : 1000s of seconds no timing to reject triggerable
 - backgrounds
 - Other types of silicon detectors with fast readout and low background noise can be investigated

Conclusions

- CCDs are a viable particle detector for low mass dark matter
 - Can provide useful constraints on an exciting mass range for dark matter
 - Relatively cheap (DAMIC 100 ~ 400 kCHF)
- Detector R&D advancing with thick, high
 - resistivity, low noise scientific CCDs
- U. Zürich is playing a leading role in this experiment
 - Building a CCD lab for testing and calibrations

Energy Spectrum

Results from 2011 Run

- Wimp density
 → 0.3 GeV/cm
- V_{earth} = 244 km/s
- V_{escape} = 650 km/s

Assumes Lindhard quenching factor for conservative limits

Results from First Run

Direct Search for Low Mass Dark Matter Particles with CCDs

J. Barreto¹, H. Cease², H.T. Diehl², J. Estrada², B. Flaugher², N. Harrison² J. Jones², B. Kilminster², J. Molina³, J. Smith ², T. Schwarz⁴ and A. Sonnenschein² ¹Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil ²Fermi National Accelerator Laboratory, Batavia, Illinois, USA ³Facultad de Ingenieria, Universidad Nacional de Asuncion (FIUNA), Asuncion, Paraguay ⁴University of California at Davis, USA.

(Dated: August 17, 2011)

A direct dark matter search is performed using fully-depleted high-resistivity CCD detectors. Due to their low electronic readout noise (RMS \sim 7 eV) these devices operate with a very low detection threshold of 40 eV, making the search for dark matter particles with low masses (~ 5 GeV) possible. The results of an engineering run performed in a shallow underground site are presented, demonstrating the potential of this technology in the low mass region.

PACS numbers: 93.35.+d, 95.55.Aq

I. INTRODUCTION

There have been several direct-detection experiments searching for dark matter (DM) performed in recent years, and several more in development. [I]. Most of these experiments have been actimized for detecting the elasof their very low fiducial mass. The receptor of thick, fully-depleted CCDs of the provide than conventional CCDs of the provide the providet the provide the prov

Ramping Up!

Calibrating to Lower Energy

• Using a mono-energetic beam of neutrons to calibrate quenching factor to very low energies

Naturalness of Dark Matter Mass scale

- 1. "Wimp miracle" scale :
 - Why do SUSY cross-sections provide correct relic DM density ?
 - M_{DM} ~ 100 GeV
 - 2. "Baryon-DM coincidence" scale :
 - Why is the DM abundance so close to matter
 - ρ_{DM} ~ 5·ρ_M
 - What if dark matter is more baryon-like ?
 Assume N_{DM} ~ N_{baryon} in early universe
 - M_{DM} ~ 5 GeV

Asymmetric DM hep-ph/1111.0293