

The Mainz TPC: a two-phase Xenon TPC for R&D towards future Dark Matter searches

Cyril Grignon Johannes Gutenberg University Mainz

Darwin meeting, Napoli, Italy, December 11, 2013

Status DM search

Dual phase Xenon TPC

3D position reconstruction with ~1mm resolution:

- XY from PMT pattern
- Z from electron drift time

Discrimination of $e^{-\gamma}\gamma$ and nuclear recoils with > 99.75% efficiency with an averaged nuclear recoil acceptance of 50%:

 $(S2/S1)_{wimp} < (S2/S1)_{ER}$

ER/NR Calibration

ER calibration with 60Co and 232Th: 35x statistics of background

NR Calibration with AmBe Calibration at beginning and end of the run

99.75% ER rejection for 50% efficiency loss on NRs

Response to nuclear recoils

Need to improve knowledge of Leff and Qy at low recoil energies

Pulse shape discrimination in LXe

From the 80's:

A. Hitachi et al. Phys. Rev. B, Condens. Matter 27(9): 5279-85 (1983)

S. Kubota et al. J. Phys. C : Solid State Phys., Vol. 11, 1978.

More recently: D. Akimov et al., Phys.Lett. B524 (2002) 245-251

J. Kwong et al. NIM A612, (2010) 328-333

K.Ueshima et al. NIM A659 (2011) 161-168 : XMASS collaboration

Promising technique

Need measurements with fast electronics

Study as function of electric field

Potential of PSD in a large Xenon TPC

Mainz TPC

Electronic Recoils: L_{eff} and Q_y

- focus: low energies (1-10 keV)
- what is new compare to former measurements:
 - simultaneous measurement of ${\rm L}_{\rm _{eff}}$ and ${\rm Q}_{\rm _{Y}}$
 - improved measurement of recoil energy (using a Ge-detector) in the Compton scatter experiment
 - cleaner data: 3D-position reconstruction allows fiducialization and detection of multiple scattering

Nuclear Recoils: L_{eff} and Q_{y}

- as for electronic recoils
- second step, as measurement of nuclear recoils requires a suitable neutron source (neutron scatter experiment)

Scintillation pulse shape (S1): Nuclear and electronic recoils

• measure systematically pulse shape for different drift fields and recoil energies with fast digitizers

TPC design

PMT: Hamamatsu R6041

PMT single photo electron pulseshape

Datasheet figures (800V) gain: 1 x 10⁶ anode pulse rise time: 2.3 ns transit time spread: 0.75 ns QE > 30% @ 178nm 2" diameter

supply voltage volts	rise time ns	fall time ns	pulse width ns	gain 10 [°] e⁻ per p.e.
750	2.249	14.16	33.96	-
800	2.229	14.29	33.73	2.3
850	2.132	16.09	33.56	4.9
900	1.997	18.34	33.39	9.4

BA-thesis: Thomas Jennewein

APD: RMD S1315

position reconstruction

RMD S1315:

- active area: 14x14 mm²
- QE ~ 30% @ 178nm => rice ref
- no housing little passive material

Setup for the Compton scatter experiment

Germanium detector

can be moved back and forth

Measured energy resolution

Ortec GEM HPGe:

- coaxial detector:
 - diameter: 58.8mm
 - length: 42.2 mm
- energy resolution:
 - 1.8 keV @ 1.33 MeV (⁶⁰Co)
 - 725 eV @ 122 keV (⁵⁷Co)
- efficiency: 24% @ 1.33 MeV (⁶⁰Co)

dth: Melanie Scheibelhut

Test of calibration techniques

Readout electronics

Struck SIS3305

- 10 bit FADC
- 2/4/8 channels
- 5/2.5/1.25 GS/s
- 1.5 GHz bandwidth

digitize PMT signal with good timeresolution

Struck SIS3316

- 16 bit FADC
- 16 channels
- 125 MS/s
- 62.5 MHz bandwidth

CAEN V1730 (new !!)

- 14 bit FADC
- 16 channels
- 500 MS/s
- 250 MHz bandwidth

digitize Ge-detector and APDs with good energyresolution

Possible upgrade of XENON1T or XENONnT

Readout electronics: TARGET5 evalboard

 input impedance can be changed for each channel 100/1k/10k Ohm

FibreOptic Ethernet

Status and future

Done:

- PMT and APD tests
- Ge detector test
- TPC construction
- Slow control

Ongoing:

- "finalize" gas system & commissioning.
- Construction of cryogenic system
- Testing level meters
- DAQ and trigger system

Next steps:

- Test calibration gas
- Commissioning TPC & cryogenics

Thanks to the Mainz XENON group

U. Oberlack, R. Othegraven, C. Grignon

PhD students: B. Beskers, P. Sissol

Master students: M. Scheibelhut, C. Hils

Bachelor theses: E. Kjartansson, T. Jennewein, M. Morbitzer

Alliance for Astroparticle Physics

http://xenon.physik.uni-mainz.de/