3 He(α,γ) 7 Be

RICHARD DEBOER

ANTONIOS KONTOS, ETHAN UBERSEDER GRAN SASSO, OCTOBER 2013

OUTLINE

Why is 3 He(α,γ) 7 Be such an important reaction? A brief history of the reaction studies Different models (Antonino Di Leva) Notre Dame Experiment (Antonios Kontos) *R*-matrix analysis (Ethan Uberseder) Monte Carlo Uncertainty Estimates

ENERGY REGIONS OF INTEREST

C. Broggini / Progress in Particle and Nuclear Physics 66 (2011) 293–297

SOLAR NEUTRINOS

Measured to < 5%! G. Bellini et al., PRL 107, 141302 (2011)

Slide from Antonios Kontos

THE PRIMORDIAL LITHIUM PROBLEM

WMAP + BBN Spectral absorption lines

Brian Fields (2011)

LEVEL STRUCTURE

PARKER AND KAVANAGH (1963) 🗸

BARNARD *ET AL.* (1964) ✓

 1 H(p, e⁺ v_e) 2 H(p, γ) 3 He

THE SOLAR NEUTRINO PROBLEM --- ³He(α,γ)⁷Be

³He(³He, 2p)⁴He ³He(α, γ)⁷Be(p, γ)⁸B(e⁺ v_e)⁸Be^{*} $\rightarrow 2\alpha$ ⁷Be(e⁻, v_e)⁷Li(p, α)⁴He.

TABLE VI. S(0) values from our work and from published data.

Osborn *et al.* (1983)

	$S(0)^{a}$ (keV b)	Reference		
Activity	0.577 ± 0.035	Osborne et al.	[7]	1
	0.660 ± 0.040	Robertson et al.	[10]	1
	0.560 ± 0.030^{a}	Volk et al.	[11]	1
	$0.546^{\circ} \pm 0.020$	Nara Singh et al.	[13]	2
	0.545 ± 0.017	Bemmerer et al.	[14]	2
	0.595 ± 0.018	Present work		2
Prompt	0.481 ± 0.053	Parker and Kavanagh	[4]	1
	0.579 ± 0.07^{d}	Nagatani et al.	[5]	-
	$0.449 \pm 0.06^{\circ}$	Kräwinkel et al.	[6]	1
	0.522 ± 0.03	Osborne et al.	[7]	-
	0.478 ± 0.04	Alexander et al.	[8]	
	0.542 ± 0.03	Hilgemeier et al.	[9]	1
	0.560 ± 0.021	Confortola et al.	[15]	2
	0.596 ± 0.021	Present work		
Total ^f	$0.560\pm0.017^{\rm b}$	Confortola et al.	[15]	
	0.595 ± 0.018	Present work		

Brown et al. (2007)

MOHR *ET AL.* (1993) 🗸

"MODERN MEASUREMENTS"

TABLE I: Data sets considered in the the present analysis. The quoted systematic uncertainty is also given. The normalization is the result of the *R*-matrix fit using a χ^2 measure of the goodness of fit. For comparison with the Monte Carlo analysis, the weighted average of the normalization and the internal and external uncertainty are calculated.

Data Set	Transition	Systematic Uncertainty	Normalization
Barnard <i>et al.</i> (Elastic) [13]		5%	1.033
Mohr <i>et al.</i> (Elastic) $[14]$		$5\%^a$	1.020
Singh et al. (2004) (Activation) [15]	Total	3.7%	1.063
Gyürky et al. and Confortola et al. (2007) (Activation) [4, 5]	Total	3.2%	1.013
Confortola et al. (2007) (Prompt) [5]	G.S. & 1 st E.S.	3.8%	1.002
Brown et al. (2007) (Activation) [6]	Total	3.0%	0.980
Brown et al. (2007) (Prompt) [6]	G.S. & 1^{st} E.S.	3.5%	0.975
Di Leva et al. (2009) (Activation) [7]	Total	5.0%	0.973
Di Leva <i>et al.</i> (2009) (Prompt) [7]	G.S. & 1^{st} E.S.	7.0%	0.986
Di Leva <i>et al.</i> (2009) (Recoils) [7]	Total	5.0%	0.982
Carmona-Gallardo et al. (2012) (Activation) [8]	Total	3.0%	0.976
Kontos <i>et al.</i> (2013) (Prompt) [3]	Total	8.0%	0.970
Weighted Average	Total	int: 1.2%, ext: 1.0%	0.995

Slide from Antonino Di Leva

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Slide from Antonino Di Leva

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Slide from Antonino Di Leva

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Slide from Antonino Di Leva

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Slide from Antonino Di Leva

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Slide from Antonino Di Leva

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

Slide from Antonino Di Leva

Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr

Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc...

UNIVERSITY OF NOTRE DAME

NUCLEAR SCIENCE LABORATORY (NSL) AT NOTRE DAME

FN Tandem Accelerator (11 MV)

St. George recoil separator

Santa Ana Accelerator (5 MV)

NOTRE DAME EXPERIMENT: GAS JET CHARACTERIZATION

Antonios Kontos

Kontos et al. (2013)

R-matrix theory: reaction framework for low energy nuclear reactions

Based on the algorithms developed for AZURE FORTRAN

by R.E. Azuma \rightarrow

Written in C++, Graphical Interface created with Qt

Utilizes currently maintained pubic libraries

- MINUIT2
- GNU Scientific Library

Open Source soon

Multiple entrance/exit channels

- Particle, particle
- Particle, gamma
- Beta delayed particle emission

Full external capture calculation with E1, E2, and M1 as well as channel capture

AZURE2

SYSTEMATIC UNCERTAINTY

$$\chi^{2} = \sum_{i} \left(\sum_{j} \frac{(c_{i} \cdot f(x_{i,j}) - y_{i,j})^{2}}{\sigma_{i,j}^{2}} + \frac{(c_{i} - 1)^{2}}{\sigma_{c_{\exp,i}}^{2}} \right)$$

G. D'Agostini, Nucl. Instrum. Methods A 346 (1994) 306.

Schürmann et al. (2012)

$$\chi_{\text{norm}}^2(n1, n2) = \frac{\left[\delta_{n2}^2(\alpha_{n1} - 1)^2 - 2\delta_c^2(\alpha_{n1} - 1)(\alpha_{n2} - 1) + \delta_{n1}^2(\alpha_{n2} - 1)^2\right]}{\left[\delta_{n1}^2\delta_{n2}^2 - \delta_c^4\right]}$$

Common Uncertainties Cybert and Davids (2008)

TABLE II. Data set normalization factors.

Data set	Quoted sys. uncertainty	Normalization
Barnard et al. (Elastic) [20]	5%	1.033
Mohr et al. (Elastic) [19]	5%ª	1.020
LUNA (Activation) [4,5]	3.2%	1.013
LUNA (Prompt) [5]	3.8%	1.002
Washington (Activation) [6]	3.0%	0.980
Washington (Prompt) [6]	3.5%	0.975
ERNA (Activation) [8]	5.0%	0.973
ERNA (Prompt) [8]	7.0%	0.986
ERNA (Recoils) [8]	5.0%	0.982
Weizmann (Activation) [3]	3.7%	1.063
Madrid (Aactivation) [9]	3.0%	0.976
Notre Dame (Prompt)	8.0%	0.970
Capture average		0.993

 $\chi^{2}/\nu = 1.4$

WHY DO WE LIKE THE *R*-MATRIX FIT?

- 1) It can fit all of the data simultaneously
 - 1) Capture and
 - 2) Elastic scattering
- 2) It is phenomenological but it is a direct fit to the experimental data
- 3) What are the issues with the models?
 - Ab initio is good but only gets close, is not tuned to the data
 - 2) Previous *R*-matrix analysis were incomplete, external contributions (channel capture) ignored in background pole

WHAT ARE THE DETAILS? U=1

U = U(int. res) + U(ch. res.) + U(hard sphere)

Lane and Lynn (1960)

INTERFERENCE IS IMPORTANT

 $\sigma_{int} \propto \sqrt{2\sigma_1 \sigma_2}$

EXTERNAL CAPTURE MODIFIES BACKGROUND POLE CONTRIBUTION: "CHANNEL CAPTURE"

Ethan Uberseder

Only S and D wave external capture is important

-Tombrello and Parker (1963)

Internal contribution is also important

-Neff (2011)

RECENT ESTIMATES OF THE UNCERTAINTY

Descouvemont et al. (2004)

```
5 data sets (classic data)
```

external capture *R*-matrix, $\Delta \chi^2$ method

 $S(0) = 0.51 \pm 0.04 (7.8\%) \text{ keV b}$

Cybert and Davids (2008)

4 data sets (modern data)

MCMC using a physically motivated polynomial expansion

S(0) = 0.580 ± 0.043 (7.4%) keV b

Adelberger et al. (2011)

4 data sets (modern)

Potential Models (scaled), different models

 $S(0) = 0.56 \pm 0.02(exp) \pm 0.02(theory)$ (5%)

Kontos *et al.* (2013)

6 data sets (modern)

external and internal capture *R*-matrix, $\Delta \chi^2$ method

 $S(0) = 0.554 \pm .020 (3.6\%)$

UNCERTAINTY: MONTE CARLO

6 data sets (modern)

- 1) For the data, sample over a Gaussian distribution (statistical uncertainty)
- 2) Throw normalization over a Gaussian or Uniform distribution (systematic uncertainty)
- 3) Redo *R*-matrix fit
- 4) Repeat 1-3 several thousand times

Gialanella et al. (2001) Schürman et al. (2012)

MODEL UNCERTAINTY: RADIUS PARAMETER

NEW UNCERTAINTY ESTIMATE

0.554 \pm 1.9% (syst and stat) \pm 1.5% (model) keV b

2.4% total (ideal estimate)

LOOKING BACK: PARKER AND KAVANAGH (1963)

LOOKING FORWARD

CONCLUSIONS

- 1) R-matrix fit can reproduce all of the "modern" data sets if systematic uncertainties are considered.
- 2) Channel Capture, which is often ignored, is very important for this calculation
- 3) The reaction rate may be known to as well as 2.4%!
- 4) Connect LUNA data with higher energy measurements
- 5) Measure to higher energies to test the R-matrix model

COLLABORATORS

- **Antonios Kontos**
- **Ethan Uberseder**
- **Joachim Görres**
- **Karl Smith**
- **Michael Wiescher**
- Gianluca Imbriani Frank Strieder
- Antonino Di Leva

EXAMPLE REACTION: ${}^{12}C(\alpha,\gamma)$

EXAMPLE REACTION: ²²Ne(α,n)

