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Abstract:

1. Motivations [Stückelberg Mass Term (SMT)]

SYM + M 2

∫
d4x Tr

{
[gAµ − iΩ∂µΩ†]2

}
.

2. Lattice model for massive SU(2) Yang-Mills

3. Lattice simulation.

4. Bound states? (Preliminary)
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1. Introduction

The mass m is introduced in the action on the cubic lattice

of size N ≡ L4 with sites x and links µ

SL =
β

2
Re
∑
�

Tr{1− U�}

+
β

2
m2Re

∑
xµ

Tr{1− Ω(x)†U(x, µ)Ω(x + µ)} , (1)

where the sum over the plaquette is the Wilson action.
U(x, µ),Ω(x) ∈ SU(2) and in the naive limit of zero lattice
spacing a one gets a mass term à la Stückelberg (M2 = a−2m2 )

SYM + M 2

∫
d4x Tr

{
[gAµ − iΩ∂µΩ†]2

}
. (2)
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2. Local and global gauge invariance

The action is invariant under the local-left transformations

gL(x) ∈ SU(2)L and the global-right transformations gR ∈
SU(2)R

SU(2)L

 Ω′(x) = gL(x)Ω(x)

U ′(x, µ) = gL(x)U(x, µ)g
†
L(x + µ)

, SU(2)R

 Ω′(x) = Ω(x)g
†
R

U ′(x, µ) = U(x, µ)
(3)

We would like to stress the importance of this invariance

property, in particular because in the nonrenormalizable con-

tinuum Minkowskean theory it is the starting point for the

removal of the ultraviolet divergences of the loop expansion.

In fact the invariance of the path integral measure ensures

the validity of the LFE for the generating functionals [1].
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3. Why a Lattice Theory and how?

The lattice formulation allows the exploration of the non-

pertubative regime (as large energy phenomena, bound states).

The present work is devoted to this exploration. The miss-

ing link to phenomenology is the identification of the line

in the parameter space (m2(a), β(a)) which allows the evalua-

tion of the physical amplitudes. This can be achieved either

by: i) evaluate relation among physical amplitudes where

the dependence from m2(a) and β(a) has been removed; ii)

go in the perturbative regime and compare the amplitudes

evaluated in the lattice and in the continuum.
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4. Features of the Lattice Model

The statistics is performed by using the partition function

Z[β,m2, N ] =
∑
{U,Ω}

e−SL (4)

It is well established that a Transition Line (TL) exists with

end point at β ' 2.2 where energy and order parameter

(D = 4)

C =
1

DNβ

∂

∂m2
lnZ =

1

2ND
〈Re

∑
xµ

Tr{Ω†(x)U(x, µ)Ω(x + µ)}〉. (5)

have an inflection point becoming steeper by increasing β.

See Fig. 1
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Figure 1: The transition line. The arrow marks the position of the end point. In the figure data from

previous analysis have been used and the statistical errors are not displayed since they are too small

to be shown.
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5. Gauge invariant Fields

We study the two-point functions which can provide some

information over the spectrum . The gauge invariant fields

are very useful (τa are the Pauli matrices).

C(x, µ) := Ω†(x)U(x, µ)Ω(x + µ) = C0(x, µ) + iτaCa(x, µ). (6)

By construction

C(x, µ) ∈ SU(2). (7)

C(x, µ) is invariant under local-left transformations , while

under the global-right transformations they have I = 0 (C0)

and I = 1 components (Ca) (I is the isospin ). One has

C0(x, µ)2 +
∑
a=1,3

Ca(x, µ)2 = 1. (8)
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6. Correlators: General Properties

In the deconfined region we expect the global-right symme-

try to be implemented and therefore

〈Ca(x, µ)〉 = 0

〈Ca(x, µ)Cb(y, ν)〉 = 0, if a 6= b. (9)

Moreover the symmetry over four-dimensional finite rota-

tions requires

〈Ca(x, µ)Ca(y, ν)〉 = 0, if µ 6= ν. (10)

The equations (9) and (10) are satisfied by the numerical

simulations to a reasonable level of accuracy.
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7. Correlators: Energy Gaps

Consider the two-point function of the zero -three-momentum

operator

Cj(t, µ) =
1

L
3
2

∑
x1,x2,x3

Cj(x1, x2, x3, x4, µ)|x4=t, j = 0, 1, 2, 3. (11)

Then we evaluate the connected correlator

Cjj′,µν(t) =
1

L

∑
t0=1,L

〈Cj(t + t0, µ)Cj′(t0, ν)〉C. (12)

The correlator is zero unless j = j′ and µ = ν. The spin one-

and zero- amplitudes V and S are extracted by using the

relation

Cjj,µν(t) = Vjj(δµν − δµ4δν4) + Sjjδµ4δν4. (13)
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Very good fit of the data is obtained by using the function

g(t) =
1

2
(f (t) + f (L− t))

f (t) = b1e
−m1t + b2e

−m2t. (14)

Two exponentials are needed only for m ' mc, as we will il-

lustrate shortly. Otherwise one single exponential is enough

for the fit. For comparison the β = 1.5 single exponential is

shown with the β = 3 two exponentials in Figs. 2 and 3.
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Figure 2: A time correlator in the isovector channel where a single exponential is used. The mass m2 is

close to the TL at m2
c ∼ 0.9.
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Figure 3: A time correlator in the isovector channel where two exponentials are used. The mass m2 is

close to the TL at m2
c ∼ 0.231. The figure shows the contribution of the large energy gap.
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8. The Spectrum for β = 1.5

We collect all the simulation data for β = 1.5. Interesting

case since there is only one phase. We explore all three

channels I = 1, J = 1 and I = 0, J = 0, 1. Fig. 2, Fig. 3 and

Fig. 4 show that the single exponential fit is good and that

there is at least one state for each channel. The I = 1, J = 1

is the candidate for the vector meson: its mass m1 follows

the bare curve
√
m2.
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9. The Spectrum for β = 10 For β above the end point the fit

with two exponentials becomes necessary as m2 approaches

the m2
TL. Typically (clearer in the isovector channel) there

is a bifurcation point where one gap follows the bare value

m and the other is very large. The weight of the larger

gap becomes dominant for m2 near m2
TL. A series of Figures

illustrates the phenomenon: for I = 1, J = 1 Fig. 6, for

I = 0, J = 0 Fig. 7, for I = 0, J = 1 Fig. 8. By m2 approaching

m2
c the weight of the large gap becomes dominant as shown

in Fig. 9 for I = 1, J = 1, Fig. 10 for I = 0, J = 0 and Fig. 11

for I = 0, J = 1.
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Figure 8: Mass spectrum in the isoscalar channel (J = 1) for β = 10.
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10. Scaling?

In the limit a = 0 the parameter m = Ma → 0, thus it is

important if simulation supports scaling

β ∼ 1

a
For β = 3 the Figures 12 and 13, for β = 10 the Figures 14 and

15, and β = 40 the Figures 16 and 17 illustrate the presence

of scaling. That means that physical quantities have to be

evaluated on the corresponding points.
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Figure 12: Spectrum for I = 0, J = 0 for β = 3.
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Figure 13: Spectrum for I = 0, J = 1 for β = 3.
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Figure 14: Spectrum for I = 0, J = 0 for β = 10.
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Figure 15: Spectrum for I = 0, J = 1 for β = 10.
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Figure 16: Spectrum for I = 0, J = 0 for β = 40.
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Figure 17: Spectrum for I = 0, J = 1 for β = 40.
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11. Near the Transition Line

It is interesting to zoom near the Transition Line. We plot

in the same figure the data for the gaps (I = 1, J = 1), (I =

0, J = 0) and (I = 0, J = 1). From the Figures 18, 19 and 20

we see that the energy levels come closer but they never

reach a situation where a bound state is formed. The scalar

sector is realized by resonances
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Figure 18: Zoom on the energy gaps near the TL for β = 3.
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Figure 19: Zoom on the energy gaps near the TL for β = 10.
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Figure 20: Zoom on the energy gaps near the TL for β = 40.
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12. Conclusions

i) No correlation in the I = 1, J = 0 channel ¨̂ .

ii) Single exponential fit of correlators for β < 2.2 and for

m2 >> m2
c. Bifurcation to two exponential fit for m2 ' m2

c.

iii) Scaling (m ∼ a−1, β ∼ a) seems working.

iv) The I = 1, J = 1 gap follows close the bare value m (gauge

bosons).

v) There is a gap in the channel I = 0, J = 0 (the Higgs

channel). However it is above threshold.

vi) There is a gap in I = 0, J = 1 almost degenerate with the

”Higgs”.
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13. Outlook

1. Study the properties of the TL.

2. Examine the origin of the larger gap present after the

bifurcation.

3. Improve the determination of the phenomenological line.

4. Survey the confined region (bounded by QCD line (m2 =

0), Transition line and End Point).
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