Status of hadronic light-by-light scattering in the muon g-2

Andreas Nyffeler

Regional Centre for Accelerator-based Particle Physics (RECAPP)

Harish-Chandra Research Institute, Allahabad, India

nyffeler@hri.res.in

LC13: Exploring QCD from the infrared regime to heavy flavour scales at B-factories, the LHC and a Linear Collider

16-20 September 2013, ECT*, Villa Tambosi, Villazzano (Trento), Italy

Outline

- Muon g-2: current status
- ullet Hadronic light-by-light scattering in the muon g-2
- Status 2010
- Recent developments: Quark-loop, pion-loop
- Status 2013: how to proceed now ?
- Conclusions

Muon g-2: current status

• Experimental value (world average dominated by BNL experiment '06; shifted $+9.2\times10^{-11}$ due to new $\lambda=\mu_{\mu}/\mu_{p}$ from CODATA '08):

$$a_{\mu}^{\rm exp} = (116\,\, 592\,\, 089 \pm 63) \times 10^{-11}$$

• Theory: total SM contribution (based on various recent papers):

$$a_{\mu}^{\text{SM}} = (116\ 591\ 795 \pm \underbrace{47}_{\text{VP}} \pm \underbrace{40}_{\text{LbyL}} \pm \underbrace{1.8}_{\text{QED}\ +\ \text{EW}}\ [\pm 62]) \times 10^{-11}$$

Hadronic contributions are largest source of error: vacuum polarization (VP) and light-by-light (LbyL) scattering.

$$a_{\mu}^{\text{had. LbyL}}=(116\pm40)\times10^{-11}$$
 (Nyffeler '09; Jegerlehner, Nyffeler '09)
Sometimes used: $a_{\mu}^{\text{had. LbyL}}=(105\pm26)\times10^{-11}$ (Prades, de Rafael, Vainshtein '09)

- $\Rightarrow a_{\mu}^{\text{exp}} a_{\mu}^{\text{SM}} = (294 \pm 88) \times 10^{-11}$ [3.3 σ]
- Other evaluations: $a_{\mu}^{\rm exp}-a_{\mu}^{\rm SM}\sim(250-400)\times10^{-11}~[2.9-4.9~\sigma]$ (Jegerlehner, Nyffeler '09; Davier et al. '10; Jegerlehner, Szafron '11; Hagiwara et al. '11; Aoyama et al. '12; Benayoun et al. '13)
- Discrepancy a sign of New Physics ?
- Note: Hadronic contributions need to be better controlled in order to fully profit from future muon g-2 experiments at Fermilab or JPARC with $\delta a_{\mu}=16\times10^{-11}$

Hadronic light-by-light scattering in the muon g-2

 $\mathcal{O}(\alpha^3)$ hadronic contribution to muon g-2: four-point function $\langle VVVV \rangle$ projected onto a_μ (soft external photon $k \to 0$).

Had. LbyL: not directly related to experimental data, in contrast to had. VP which can be obtained from $\sigma(e^+e^- \to \text{hadrons}) \Rightarrow \text{need hadronic model}$ (or lattice QCD)

Current approach: use some hadronic model at low energies with exchanges and loops of resonances and some form of (dressed) "quark-loop" at high energies.

Problem: $\langle VVVV \rangle$ depends on several invariant momenta \Rightarrow distinction between low and high energies is not as easy as for two-point function $\langle VV \rangle$ (had. VP).

Hadronic light-by-light scattering in the muon g-2

 $\mathcal{O}(\alpha^3)$ hadronic contribution to muon g-2: four-point function $\langle VVVV \rangle$ projected onto a_μ (soft external photon $k \to 0$).

Had. LbyL: not directly related to experimental data, in contrast to had. VP which can be obtained from $\sigma(e^+e^- \to \text{hadrons}) \Rightarrow \text{need hadronic model}$ (or lattice QCD)

Current approach: use some hadronic model at low energies with exchanges and loops of resonances and some form of (dressed) "quark-loop" at high energies.

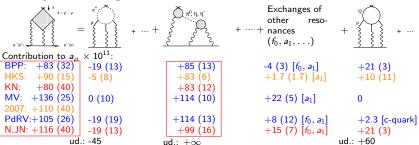
Problem: $\langle VVVV \rangle$ depends on several invariant momenta \Rightarrow distinction between low and high energies is not as easy as for two-point function $\langle VV \rangle$ (had. VP).

Classification of de Rafael '94: Chiral counting p^2 (ChPT) and large- N_C counting as guideline (all higher orders in p^2 and N_C contribute):

Exchanges of other resonances
$$p^4$$
 p^6 p^8 p^8

Constrain models using experimental data (form factors of hadrons with photons) and theory (ChPT at low energies; short-distance constraints from pQCD / OPE at high momenta).

Relevant scales in had. LbyL ($\langle VVVV \rangle$ with off-shell photons): 0-2 GeV, i.e. larger than m_{μ} !



ud. = undressed, i.e. point vertices without form factors

ud. = undressed, i.e. point vertices without form factors

BPP = Bijnens, Pallante, Prades '96, '02: Extended Nambu-Jona-Lasinio (ENJL) model; but for some contributions also other models used (in particular for pseudoscalars, pion-loop)

HKS = Hayakawa, Kinoshita, Sanda '96, '98, '02: Hidden Local Symmetry (HLS) model (often = VMD) KN = Knecht, Nyffeler '02: large-N_C QCD for pion-pole (lowest meson dominance LMD, LMD+V) MV = Mepiley Valuebria; '04: large-N_C QCD, short-distance constraint from /VV/V/) on pion-pole and

MV = Melnikov, Vainshtein '04: large- N_C QCD, short-distance constraint from $\langle VVVV \rangle$ on pion-pole and axial-vector contribution, mixing of two axial-vector nonets

2007 = Bijnens, Prades; Miller, de Rafael, Roberts; PdRV = Prades, de Rafael, Vainshtein '09 (compilation) N = Nyffeler '09: large- N_C for pion-exchange with off-shell LMD+V form factor, new short-distance constraint at external vertex; JN = Jegerlehner, Nyffeler '09 (compilation)

ud. = undressed, i.e. point vertices without form factors

BPP = Bijnens, Pallante, Prades '96, '02: Extended Nambu-Jona-Lasinio (ENJL) model; but for some contributions also other models used (in particular for pseudoscalars, pion-loop)

HKS = Hayakawa, Kinoshita, Sanda '96, '98, '02: Hidden Local Symmetry (HLS) model (often = VMD) KN = Knecht, Nyffeler '02: large-N_C QCD for pion-pole (lowest meson dominance LMD, LMD+V)

MV = Melnikov, Vainshtein '04: large- N_C QCD, short-distance constraint from $\langle VVVV \rangle$ on pion-pole and axial-vector contribution, mixing of two axial-vector nonets

2007 = Bijnens, Prades; Miller, de Rafael, Roberts; PdRV = Prades, de Rafael, Vainshtein '09 (compilation) N = Nyffeler '09: large- N_C for pion-exchange with off-shell LMD+V form factor, new short-distance constraint at external vertex; JN = Jegerlehner, Nyffeler '09 (compilation)

- 2001: sign change in dominant pseudoscalar contribution: $a_{\mu}^{\text{had. LbyL}} \sim 85 \times 10^{-11}$ with discussion about estimate of error (adding errors of individual contributions linearly or in quadrature).
- 2004: MV ⇒ enhanced pion-pole and axial-vector contributions. Estimate shifted upwards.
- 2010: (almost) consensus reached on central value a_μ^{had. LbyL} ~ 110 × 10⁻¹¹, still discussion about error estimate. Conservative in N, JN: ±40 × 10⁻¹¹, more progressive in PdRV: ±26 × 10⁻¹¹.

Other recent partial evaluations (mostly pseudoscalars)

Nonlocal chiral quark model (off-shell) [Dorokhov et al.]

$$\begin{array}{l} 2008: \; a_{\mu}^{\mathrm{LbyL};\pi^0} = 65(2) \times 10^{-11} \\ 2011: \; a_{\mu}^{\mathrm{LbyL};\pi^0} = 50.1(3.7) \times 10^{-11}, \quad a_{\mu}^{\mathrm{LbyL};\mathrm{PS}} = 58.5(8.7) \times 10^{-11} \\ 2012: \; a_{\mu}^{\mathrm{LbyL};\pi^0+\sigma} = 54.0(3.3) \times 10^{-11}, \quad a_{\mu}^{\mathrm{LbyL};a_0+f_0} \sim 0.1 \times 10^{-11} \\ a_{\mu}^{\mathrm{LbyL};\mathrm{PS+S}} = 62.5(8.3) \times 10^{-11} \end{array}$$

Strong damping for off-shell form factors. Positive and small contribution from scalar $\sigma(600)$, differs from other estimates (BPP '96, '02; Blokland, Czarnecki, Melnikov '02).

- Holographic (AdS/QCD) model 1 (off-shell ?) [Hong, Kim '09] $a_{\mu}^{\mathrm{LbyL};\pi^0} = 69 \times 10^{-11}, \quad a_{\mu}^{\mathrm{LbyL};\mathrm{PS}} = 107 \times 10^{-11}$
- Holographic (AdS/QCD) model 2 (off-shell) [Cappiello, Cata, D'Ambrosio '10] $a_{\mu}^{\mathrm{LbyL};\pi^0}=65.4(2.5)\times 10^{-11}$
 - Used AdS/QCD to fix parameters in ansatz by D'Ambrosio et al. '98.
- Resonance saturation in odd-intrinsic parity sector (off-shell) [Kampf, Novotny '11] $a_{\mu}^{\rm LbyL;\pi^0} = 65.8(1.2) \times 10^{-11}$
- Padé approximants (on-shell, but not constant FF at external vertex) $a_{\mu}^{\mathrm{LbyL};\pi^0} = 54(5) \times 10^{-11}$ [Masjuan '12 (using on-shell LMD+V FF)] $a_{\mu}^{\mathrm{LbyL};\pi^0} = 64.9(5.6) \times 10^{-11}$, $a_{\mu}^{\mathrm{LbyL};\mathrm{PS}} = 89(7) \times 10^{-11}$ [Escribano, Masjuan, Sanchez-Puertas '13]

Fix parameters in Padé approximants from data on transition form factors.

Relevant momentum regions in $a_{\mu}^{\mathrm{LbyL};\pi^0}$

 In Knecht, Nyffeler '02, a 2-dimensional integral representation was derived for a certain class (VMD-like) of form factors (schematically):

$$a_{\mu}^{\mathrm{LbyL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \sum_{i} w_{i}(Q_{1}, Q_{2}) f_{i}(Q_{1}, Q_{2})$$

with universal weight functions w_i . Dependence on form factors resides in the f_i .

Expressions with on-shell form factors are in general not valid as they stand. One needs
to set form factor at external vertex to a constant to obtain pion-pole contribution
(Melnikov, Vainshtein '04). Expressions valid for WZW and off-shell VMD form factors.

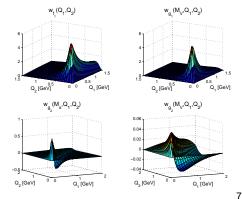
Relevant momentum regions in $a_{\mu}^{\mathrm{LbyL};\pi^0}$

• In Knecht, Nyffeler '02, a 2-dimensional integral representation was derived for a certain class (VMD-like) of form factors (schematically):

$$a_{\mu}^{\mathrm{LbyL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \sum_{i} w_{i}(Q_{1}, Q_{2}) f_{i}(Q_{1}, Q_{2})$$

with universal weight functions w_i . Dependence on form factors resides in the f_i .

- Expressions with on-shell form factors are in general not valid as they stand. One needs
 to set form factor at external vertex to a constant to obtain pion-pole contribution
 (Melnikov, Vainshtein '04). Expressions valid for WZW and off-shell VMD form factors.
- Plot of weight functions w_i from Knecht, Nyffeler '02:

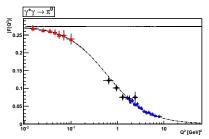


- Relevant momentum regions around 0.25 1.25 GeV. As long as form factors in different models lead to damping, expect comparable results for $a_{\mu}^{\rm LbyL;\pi^0}$, at level of 20%.
- Jegerlehner, Nyffeler '09 derived 3-dimensional integral representation for general (off-shell) form factors (hyperspherical approach). Integration over Q_1^2 , Q_2^2 , $\cos\theta$, where $Q_1 \cdot Q_2 = |Q_1||Q_2|\cos\theta$.
- Idea recently taken up by Dorokhov et al. '12 (for scalars) and Bijnens, Zahiri Abyaneh '12, '13 (for all contributions, work in progress).

Impact of form factor measurements: example KLOE-2

On the possibility to measure the $\pi^0 \to \gamma\gamma$ decay width and the $\gamma^*\gamma \to \pi^0$ transition form factor with the KLOE-2 experiment

Babusci et al. '12



Simulation of KLOE-2 measurement of $F(Q^2)$ (red triangles). MC program EKHARA 2.0 (Czyż, Ivashyn '11) and detailed detector simulation.

Solid line: F(0) given by chiral anomaly (WZW).

Dashed line: form factor according to on-shell LMD+V model (Knecht, Nyffeler '01). CELLO (black crosses) and CLEO (blue stars) data at higher Q^2 .

Within 1 year of data taking, collecting 5 fb $^{-1}$, KLOE-2 will be able to measure:

- $\Gamma_{\pi^0 \to \gamma\gamma}$ to 1% statistical precision.
- $\gamma^*\gamma \to \pi^0$ transition form factor $F(Q^2)$ in the region of very low, space-like momenta 0.01 GeV² $\leq Q^2 \leq$ 0.1 GeV² with a statistical precision of less than 6% in each bin.

KLOE-2 can (almost) directly measure slope of form factor at origin (note: logarithmic scale in Q^2 in plot !).

Impact of form factor measurements: example KLOE-2 (continued)

- Error in $a_{\mu}^{\mathrm{LbyL};\pi^0}$ related to the model parameters determined by $\Gamma_{\pi^0 \to \gamma\gamma}$ (normalization of form factor; not taken into account in most papers) and $F(Q^2)$ will be reduced as follows:
 - $\delta a_\mu^{{
 m LbyL};\pi^0} pprox 4 imes 10^{-11}$ (with current data for $F(Q^2) + \Gamma^{{
 m PDG}}_{\pi^0 o \gamma\gamma}$)
 - $\delta a_{\mu}^{\mathrm{LbyL};\pi^0} \approx 2 \times 10^{-11} \ (+ \Gamma_{\pi^0 \to \gamma\gamma}^{\mathrm{PrimEx}})$
 - $\delta a_\mu^{\mathrm{LbyL};\pi^0} pprox (0.7-1.1) imes 10^{-11}$ (+ KLOE-2 data)
- Note that this error does not account for other potential uncertainties in $a_{\mu}^{\mathrm{LbyL};\pi^0}$, e.g. related to the off-shellness of the pion or the choice of model.
- Simple models with few parameters, like VMD (two parameters: F_π, M_V), which are completely determined by the data on Γ_{π0→γγ} and F(Q²), can lead to very small errors in a_μ^{LbyL;π⁰}. For illustration:

$$\begin{split} &a_{\mu;VMD}^{\mathrm{LbyL};\pi^0} = \left(57.3 \pm 1.1\right) \times 10^{-11} \\ &a_{\mu;LMD+V}^{\mathrm{LbyL};\pi^0} = \left(72 \pm 12\right) \times 10^{-11} \text{ (off-shell LMD+V form factor, including all errors)} \end{split}$$

But this might be misleading! Results differ by about 20%! VMD form factor has wrong high-energy behavior ⇒ too strong damping.

Recent development: Dressed quark-loop

Dyson-Schwinger equation (DSE) approach [Fischer, Goecke, Williams '11, '13]

Claim: no double-counting between quark-loop and pseudoscalar exchanges (or exchanges of other resonances)

Had. LbyL in Effective Field Theory (hadronic) picture:

Quarks here may have different interpretation than below!

Recent development: Dressed quark-loop

Dyson-Schwinger equation (DSE) approach [Fischer, Goecke, Williams '11, '13]

Claim: no double-counting between quark-loop and pseudoscalar exchanges (or exchanges of other resonances)

Had. LbyL in Effective Field Theory (hadronic) picture:

Quarks here may have different interpretation than below!

Had. LbyL using functional methods (all propagators and vertices fully dressed):

Expansion of quark-loop in terms of planar diagrams (rainbow-ladder approx.):

$$\left(\mathbf{q} \right)_{i,j}^{\mathbf{q}} = \left(\mathbf{q} \right)_{i,j}^{\mathbf{q}} + \left(\mathbf{q} \right)_{i,j}^{\mathbf{q}} + \cdots$$

Pole representation of ladder-exchange contribution:

$$\stackrel{i_1}{\longrightarrow} \stackrel{i_2}{\longrightarrow} \stackrel{i_3}{\longrightarrow} \stackrel{i_4}{\longrightarrow} \stackrel{i_4}{\longrightarrow} \stackrel{i_5}{\longrightarrow} \stackrel{i_7}{\longrightarrow} \stackrel{i_$$

Truncate DSE using well tested model for dressed quark-gluon vertex (Maris, Tandy '99).

Large contribution from quark-loop (even after recent correction), in contrast to all other approaches, where coupling of (constituent) quarks to photons is dressed by form factors ($\rho - \gamma$ -mixing, VMD).

Recent development: Dressed quark-loop (continued)

Dyson-Schwinger equation approach [Fischer, Goecke, Williams '11, '13]

$$\begin{array}{l} a_{\mu}^{\rm LbyL;\pi^0} = 57.5(6.9)\times 10^{-11} \text{ (off-shell)}, \quad a_{\mu}^{\rm LbyL;PS} = 81(2)\times 10^{-11} \\ a_{\mu}^{\rm LbyL;quark-loop} = 107(2)\times 10^{-11}, \quad a_{\mu}^{\rm had.\ LbyL} = 188(4)\times 10^{-11} \end{array}$$

Error for PS, quark-loop and total only from numerics. Quark-loop: still some parts are missing. Systematic error? Not yet all contributions calculated.

Note: numerical error in quark-loop in earlier paper (GFW PRD83 '11):

 $a_{\mu}^{\rm LbyL; quark-loop} = 136(59) \times 10^{-11}, \quad a_{\mu}^{\rm had.\ LbyL} = 217(91) \times 10^{-11}$

• Constituent quark loop [Boughezal, Melnikov '11] $a_{\mu}^{\rm had.\ LbyL} = (118 - 148) \times 10^{-11}$

Consider ratio of had. VP and had. LbyL with pQCD corrections. Paper was reaction to earlier results using DSE yielding large values for the quark-loop and the total.

• Constituent Chiral Quark Model [Greynat, de Rafael '12] $a_{\mu}^{\text{LbyL};\text{CQloop}} = 82(6) \times 10^{-11}$ $a_{\mu}^{\text{LbyL};\pi^0} = 68(3) \times 10^{-11} \text{ (off-shell)}$ $a_{\mu}^{\text{had. LbyL}} = 150(3) \times 10^{-11}$

Error only reflects variation of constituent quark mass $M_Q=240\pm10$ MeV, fixed to reproduce had. VP in g-2. Determinations from other quantities give larger value for $M_Q\sim300$ MeV and thus smaller value for quark-loop. 20%-30% systematic error estimated. Not yet all contributions calculated.

• Padé approximants [Masjuan, Vanderhaeghen '12] $a_{\mu}^{\rm had.~LbyL} = (76(4) - 125(7)) \times 10^{-11}$ Quark-loop with running mass $M(Q) \sim (180 - 220)$ MeV, where the average momentum $\langle Q \rangle \sim (300 - 400)$ MeV is fixed from relevant momenta in 2-dim. integral representation for pion-pole in Knecht, Nyffeler '02. 11

Recent development: Dressed pion-loop

1. ENJL/VMD versus HLS

Model	$a_{\mu}^{\pi-loop} imes 10^{11}$
scalar QED (no FF)	-45
HLS	-4.5
ENJL	-19
full VMD	-15

Strong damping if form factors are introduced, very model dependent: compare ENJL (BPP '96) versus HLS (HKS '96). See also discussion in Melnikov, Vainshtein '04.

Recent development: Dressed pion-loop

1. ENJL/VMD versus HLS

Model	$a_{\mu}^{\pi-loop} imes 10^{11}$
scalar QED (no FF)	-45
HLS	-4.5
ENJL	-19
full VMD	-15

Strong damping if form factors are introduced, very model dependent: compare ENJL (BPP '96) versus HLS (HKS '96). See also discussion in Melnikov, Vainshtein '04.

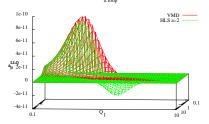
Origin: different behavior of integrands in contribution to g-2 (Zahiri Abyaneh '12; Bijnens, Zahiri Abyaneh '12; Talk by Bijnens at MesonNet 2013, Prague)

 $P_1 = P_2 \mathbf{12}$

One can do 5 of the 8 integrations in the 2-loop integral for g-2 analytically, using the hyperspherical approach / Gegenbauer polynomials (Jegerlehner, Nyffeler '09; taken up in Bijnens, Zahiri Abyaneh '12):

$$\mathbf{a}_{\mu}^{X} = \int \mathit{dl}_{P_{1}} \, \mathit{dl}_{P_{2}} \, \mathbf{a}_{\mu}^{XLL} = \int \mathit{dl}_{P_{1}} \, \mathit{dl}_{P_{2}} \, \mathit{dl}_{Q} \, \mathbf{a}_{\mu}^{XLLQ}, \quad \text{with} \quad \mathit{l}_{P} = \ln(P/\text{GeV})$$

Contribution of type X at given scale P_1 , P_2 , Q is directly proportional to volume under surface when $a_{\mu}^{\rm XLL}$ and $a_{\mu}^{\rm XLLQ}$ are plotted versus the energies on a logarithmic scale.



Momentum distribution of the full VMD and HLS pion-loop contribution for $P_1=P_2$. HLS: Integrand changes from positive to negative at high momenta. Leads to cancellation and therefore smaller absolute value. Usual HLS model (a=2) known to not fullfill certain QCD short-distance constraints.

Recent development: Dressed pion-loop (continued)

- 2. Role of pion polarizability and a₁ resonance
 - Engel, Patel, Ramsey-Musolf '12: ChPT analysis of LbyL up to order p^6 in limit $p_1, p_2, q \ll m_\pi$. Identified potentially large contributions from pion polarizability ($L_9 + L_{10}$ in ChPT) which are not fully reproduced in ENJL / HLS models used by BPP '96 and HKS '96. Pure ChPT approach is not predictive. Loops not finite, would need new a_μ counterterm (Knecht et al. '02).

Recent development: Dressed pion-loop (continued)

- 2. Role of pion polarizability and a₁ resonance
 - Engel, Patel, Ramsey-Musolf '12: ChPT analysis of LbyL up to order p^6 in limit $p_1, p_2, q \ll m_\pi$. Identified potentially large contributions from pion polarizability ($L_9 + L_{10}$ in ChPT) which are not fully reproduced in ENJL / HLS models used by BPP '96 and HKS '96. Pure ChPT approach is not predictive. Loops not finite, would need new a_μ counterterm (Knecht et al. '02).
 - Engel, Ph.D. Thesis '13; Engel, Ramsey-Musolf '13: tried to include a_1 resonance explicitly in EFT. Problem: contribution to g-2 in general not finite (loops with resonances) \Rightarrow Form factor approach with a_1 that reproduces pion polarizability at low energies, has correct QCD scaling at high energies and generates a finite result in a_μ :

energies, has correct QCD scaling at high energies and generates a finite result in
$$a_{\mu}$$
:
$$\mathcal{L}_{I} = -\frac{\mathrm{e}^{2}}{4}F_{\mu\nu}\pi^{+}\left(\frac{1}{D^{2}+M_{A}^{2}}\right)F^{\mu\nu}\pi^{-} + \mathrm{h.c.} + \cdots \qquad \underbrace{\begin{array}{c} a_{\mu}^{\pi}-\mathrm{loop} \times 10^{11} : \\ \hline \mathrm{Model} \quad (a) \quad (b) \\ \hline \mathrm{I} \quad -11 \quad -34 \\ \hline \mathrm{II} \quad -40 \quad -71 \\ \hline \end{array}}_{}^{\pi}$$

Second and third columns in Table correspond to different values for the polarizability LECs, $(\alpha_9'+\alpha_{10}')$: (a) $(1.32\pm1.4)\times10^{-3}$ (from radiative pion decay $\pi^+\to e^+\nu_e\gamma$) and (b) $(3.1\pm0.9)\times10^{-3}$ (from radiative pion photoproduction $\gamma p\to\gamma'\pi^+n$).

Potentially large results (absolute value): $a_{\mu}^{\pi-{\rm loop}} \sim -(11-71)\times 10^{-11}$. Variation of 60×10^{-11} ! Uncertainty underestimated in earlier calculations?

Recent development: Dressed pion-loop (continued)

2. Role of pion polarizability and a₁ resonance

- Engel, Patel, Ramsey-Musolf '12: ChPT analysis of LbyL up to order p^6 in limit $p_1, p_2, q \ll m_\pi$. Identified potentially large contributions from pion polarizability ($L_9 + L_{10}$ in ChPT) which are not fully reproduced in ENJL / HLS models used by BPP '96 and HKS '96. Pure ChPT approach is not predictive. Loops not finite, would need new a_μ counterterm (Knecht et al. '02).
- Engel, Ph.D. Thesis '13; Engel, Ramsey-Musolf '13: tried to include a_1 resonance explicitly in EFT. Problem: contribution to g-2 in general not finite (loops with resonances) \Rightarrow Form factor approach with a_1 that reproduces pion polarizability at low energies, has correct QCD scaling at high energies and generates a finite result in a_μ :

$$\mathcal{L}_{I} = -\frac{e^{2}}{4} F_{\mu\nu} \pi^{+} \left(\frac{1}{D^{2} + M_{A}^{2}} \right) F^{\mu\nu} \pi^{-} + \text{h.c.} + \cdots \qquad \frac{a_{\mu}^{\pi-\text{loop}} \times 10^{11}}{\text{Model} \quad (a) \quad (b)}$$

$$\mathcal{L}_{II} = -\frac{e^{2}}{2M_{A}^{2}} \pi^{+} \pi^{-} \left[\left(\frac{M_{V}^{2}}{\partial^{2} + M_{V}^{2}} \right) F^{\mu\nu} \right]^{2} + \cdots \qquad \frac{a_{\mu}^{\pi-\text{loop}} \times 10^{11}}{\text{II} \quad -11 \quad -34}$$
Second and third columns in Table and the different value for the columns in Table 2.

Second and third columns in Table correspond to different values for the polarizability LECs, $(\alpha_9'+\alpha_{10}')$: (a) $(1.32\pm1.4)\times10^{-3}$ (from radiative pion decay $\pi^+\to e^+\nu_e\gamma$) and (b) $(3.1\pm0.9)\times10^{-3}$ (from radiative pion photoproduction $\gamma p\to\gamma'\pi^+n$).

Potentially large results (absolute value): $a_{\mu}^{\pi-\text{loop}} \sim -(11-71) \times 10^{-11}$. Variation of 60×10^{-11} ! Uncertainty underestimated in earlier calculations?

Issue taken up in Zahiri Abyaneh '12; Bijnens, Zahiri Abyaneh '12; Bijnens, Relefors (to be published); Talk by Bijnens at MesonNet 2013, Prague. Tried various ways to include a₁, but again no finite result for g - 2 achieved. With a cutoff of 1 GeV:

$$a_{\mu}^{\pi-\mathsf{loop}} = (-20 \pm 5) \times 10^{-11} \qquad \text{(preliminary)}$$

Summary of recent developments

Recent partial evaluations (mostly pseudoscalars):

$$a_{\mu}^{\mathrm{LbyL; \pi^0}} \sim (50 - 69) \times 10^{-11}$$

 $a_{\mu}^{\mathrm{LbyL; PS}} \sim (59 - 107) \times 10^{-11}$

Most evaluations agree at level of 15%, but some estimates are quite low or high.

Open problem: Dressed quark-loop
 Dyson-Schwinger equation (DSE) approach (Fischer, Goecke, Williams '11, '13):

$$a_{\mu}^{\mathrm{LbyL;quark-loop}} = 107 \times 10^{-11}$$
 (still incomplete)

Large contribution, no damping seen, in contrast to BPP '96, HKS '96.

Open problem: Dressed pion-loop
 Potentially important effect from pion polarizability and a₁ resonance (Engel, Patel, Ramsey-Musolf '12; Engel '13; Engel, Ramsey-Musolf '13):

$$a_{\mu}^{\mathrm{LbyL};\pi-\mathrm{loop}} = -(11-71) imes 10^{-11}$$

Large negative contribution, no damping seen, in contrast to BPP '96, HKS '96.

 If we take those newer estimates of the quark-loop and the pion-loop seriously and combine the extreme estimates:

$$\begin{array}{cccc} a_{\mu}^{\rm had.\ LbyL} & = & (64-202)\times 10^{-11} \\ \text{or:} & a_{\mu}^{\rm had.\ LbyL} & = & (133\pm69)\times 10^{-11} \end{array}$$

⇒ We do not understand had. LbyL scattering at all !?

 If we take those newer estimates of the quark-loop and the pion-loop seriously and combine the extreme estimates:

$$a_{\mu}^{
m had.\ LbyL} = (64-202) imes 10^{-11}$$
 or: $a_{\mu}^{
m had.\ LbyL} = (133\pm69) imes 10^{-11}$

⇒ We do not understand had. LbyL scattering at all !?

• Option 1: Wait for final result from Lattice QCD

One idea: put QCD + QED on the lattice!

Blum et al. '05, '08, '09; Chowdhury '09; Blum, Hayakawa, Izubuchi '12 + poster at Lattice 2013 (private communication):

$$F_2(0.18 \ {\rm GeV}^2) = (127 \pm 29) \times 10^{-11}$$
 (result 4.4σ from zero) $F_2(0.11 \ {\rm GeV}^2) = (-15 \pm 39) \times 10^{-11}$ (result consistent with zero) $a_\mu^{\rm had.\ LbyL;models} = F_2(0) = (116 \pm 40) \times 10^{-11}$ (Jegerlehner, Nyffeler '09)

For $m_{\mu}=190$ MeV, $m_{\pi}=329$ MeV. Still large statistical errors, systematic errors not yet under control, still quenched QED, potentially large "disconnected" contributions missing!

• Option 2: Maybe non-Lattice theorists and experimentalists can still do some work in the coming years, as far as had. LbyL scattering in muon g-2 is concerned!

Outlook

- Need more information from experiment for various form factors of photons with hadrons at small and intermediate momenta $|Q| \leq 2$ GeV, decays like $\pi^0 \to \gamma \gamma$ to fix normalization of form factors and from cross-section measurements like $\gamma \gamma \to \pi \pi$ to gain information on the relevant $\gamma \pi \pi$ and $\gamma \gamma \pi \pi$ form factors (with off-shell pions !). Also needed as input for dispersion relations. In this way one can hopefully test the models.
- Need more theoretical constraints on form factors and \(\begin{align*} VVVV \rangle \) at low energies from ChPT and short-distance constraints from OPE and pQCD.
 Also useful to constrain models: sum rules for the (on-shell) hadronic light-by-light scattering (Pascalutsa, Pauk, Vanderhaeghen '12)
- Pseudoscalars: under control at level of 15%. Issue: off-shell form factors (pion-exchange) versus on-shell form factors (pion-pole; Melnikov, Vainshtein '04).
- Quark-loop: more work needed. Problem for theory only!
 First let Fischer et al. complete DSE calculation of quark-loop and the rest of the contributions!?
- Pion-loop: more work needed. Theory and experiment have to work together. Need more information on pion-polarizability, e.g. from radiative pion decay $\pi^+ \to e^+ \nu_e \gamma$, radiative pion photoproduction $\gamma p \to \gamma' \pi^+ n$, the hadronic Primakoff process $\pi A \to \pi' \gamma A$ (with some heavy nucleus A) or $\gamma A \to \pi^+ \pi^- A$. Conflicting values from previous experiments, some new measurements are ongoing or planned. Also the properties of the a_1 resonance should be better determined, e.g. its decay modes $a_1 \to \rho \pi$ and $a_1 \to \pi \gamma$. Also important for axial-vector exchange contribution!

Conclusions

- Hadronic light-by-light scattering in muon g − 2: not directly related to data
 ⇒ need hadronic model (or lattice QCD).
 - Goal: to match precision of new muon g-2 experiments $\delta a_{\mu}=16\times 10^{-11}$.
- Note: only Bijnens, Pallante, Prades '96, '02 and Hayakawa, Kinoshita, Sanda '96, '98, '02 are "full" calculations so far! But the models used have their deficiencies.
 - Need one consistent (as much as possible) hadronic model!
- Error estimates for individual contributions: a small error does not necessarily imply that the estimate is "better", maybe the model used is too simple! Overall uncertainty: combine errors from different contributions, where different models are used, linearly or in quadrature? Small error of $\pm 26 \times 10^{-11}$ in Prades, de Rafael, Vainshtein '09 from adding errors in quadrature might again be misleading.
- Recent developments for the quark-loop and the pion-loop: those authors raised important questions about the validity of the models used so far, but more work is needed to confirm those numbers.
- We think that the estimate

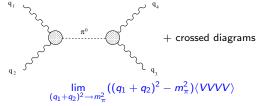
$$a_{\mu}^{\text{had. LbyL}} = (116 \pm 40) \times 10^{-11}$$
 (Nyffeler '09; Jegerlehner, Nyffeler '09)

still gives a fair description of the current situation.

Backup

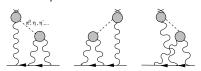
Pion-pole in $\langle VVVV \rangle$ versus pion-exchange in $a_{\mu}^{{ m LbyL};\pi^0}$

• To uniquely identify contribution of exchanged neutral pion π^0 in Green's function $\langle VVVV \rangle$, we need to pick out pion-pole:



Residue of pole: on-shell vertex function $\langle 0|VV|\pi\rangle \to \text{on-shell}$ form factor $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2)$

 But in contribution to muon g - 2, we evaluate Feynman diagrams, integrating over photon momenta with exchanged off-shell pions.
 For all the pseudoscalars:



Shaded blobs represent off-shell form factor $\mathcal{F}_{\mathrm{PS}^*\gamma^*\gamma^*}((q_1+q_2)^2,q_1^2,q_2^2)$ where $\mathrm{PS}=\pi^0,\eta,\eta',\pi^{0'},\dots$

Off-shell form factors are either inserted "by hand" starting from constant, pointlike Wess-Zumino-Witten (WZW) form factor or using e.g. some resonance Lagrangian.

• Similar statements apply for exchanges (or loops) of other resonances.

Off-shell pion form factor from $\langle VVP \rangle$

• Following Bijnens, Pallante, Prades '96; Hayakawa, Kinoshita, Sanda '96, '98, we can define off-shell form factor for π^0 :

$$\int d^{4}x d^{4}y e^{i(q_{1}\cdot x+q_{2}\cdot y)} \langle 0|T\{j_{\mu}(x)j_{\nu}(y)P^{3}(0)\}|0\rangle$$

$$= \varepsilon_{\mu\nu\alpha\beta} q_{1}^{\alpha} q_{2}^{\beta} \frac{i\langle \overline{\psi}\psi\rangle}{F_{\pi}} \frac{i}{(q_{1}+q_{2})^{2}-m_{\pi}^{2}} \mathcal{F}_{\pi^{0*}\gamma^{*}\gamma^{*}}((q_{1}+q_{2})^{2},q_{1}^{2},q_{2}^{2})+\dots$$

Up to small mixing effects of P^3 with η and η' and neglecting exchanges of heavier states like $\pi^{0'}, \pi^{0''}, \dots$

$$j_{\mu}(x) = (\overline{\psi}\,\widehat{Q}\gamma_{\mu}\psi)(x), \quad \psi \equiv \left(egin{array}{c} u \ d \ s \end{array}
ight), \quad \widehat{Q} = \mathrm{diag}(2,-1,-1)/3$$

(light quark part of electromagnetic current)

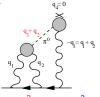
$$P^3 = \overline{\psi} i \gamma_5 \frac{\lambda^3}{2} \psi = \left(\overline{u} i \gamma_5 u - \overline{d} i \gamma_5 d \right) / 2$$
, $\langle \overline{\psi} \psi \rangle = \text{single flavor quark condensate}$

Bose symmetry:
$$\mathcal{F}_{\pi^{0*}\gamma^*\gamma^*}((q_1+q_2)^2,q_1^2,q_2^2) = \mathcal{F}_{\pi^{0*}\gamma^*\gamma^*}((q_1+q_2)^2,q_2^2,q_1^2)$$

• Note: for off-shell pions, instead of $P^3(x)$, we could use any other suitable interpolating field, like $(\partial^\mu A^3_\mu)(x)$ or even an elementary pion field $\pi^3(x)$! Off-shell form factor is therefore model dependent and not a physical quantity!

Pion-exchange versus pion-pole contribution to $a_{\mu}^{\mathrm{LbyL};\pi^0}$

 Off-shell form factors have been used to evaluate the pion-exchange contribution in Bijnens, Pallante, Prades '96 and Hayakawa, Kinoshita, Sanda '96, '98. "Rediscovered" by Jegerlehner in '07, '08. Consider diagram:



$$\mathcal{F}_{\pi^{0*}\gamma^*\gamma^*}((q_1+q_2)^2,q_1^2,q_2^2) \times \mathcal{F}_{\pi^{0*}\gamma^*\gamma}((q_1+q_2)^2,(q_1+q_2)^2,0)$$

• On the other hand, Knecht, Nyffeler '02 used on-shell form factors:

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}(m_{\pi}^2, q_1^2, q_2^2) \times \mathcal{F}_{\pi^0\gamma^*\gamma}(m_{\pi}^2, (q_1+q_2)^2, 0)$$

• But form factor at external vertex $\mathcal{F}_{\pi^0\gamma^*\gamma}(m_\pi^2,(q_1+q_2)^2,0)$ for $(q_1+q_2)^2\neq m_\pi^2$ violates momentum conservation, since momentum of external soft photon vanishes! Often the following misleading notation was used:

$$\mathcal{F}_{\pi^0 \gamma^* \gamma^*}((q_1+q_2)^2,0) \equiv \mathcal{F}_{\pi^0 \gamma^* \gamma^*}(m_{\pi}^2,(q_1+q_2)^2,0)$$

At external vertex identification with transition form factor was made (wrongly !).

Melnikov, Vainshtein '04 had observed this inconsistency and proposed to use

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}(m_{\pi}^2, q_1^2, q_2^2) \times \mathcal{F}_{\pi^0\gamma\gamma}(m_{\pi}^2, m_{\pi}^2, 0)$$

i.e. a constant form factor at the external vertex given by the WZW term.

- However, this prescription will only yield the so-called pion-pole contribution and not the full pion-exchange contribution!
- The pion-exchange contribution with off-shell pions is model dependent. Only the sum of all contributions in a given model is relevant.

The VMD form factor

Vector Meson Dominance:

$$\mathcal{F}^{
m VMD}_{\pi^{0*}\gamma^*\gamma^*}((q_1+q_2)^2,q_1^2,q_2^2) = rac{\mathcal{N}_{\mathcal{C}}}{12\pi^2\mathcal{F}_{\pi}}rac{\mathcal{M}_{\mathcal{V}}^2}{q_1^2-\mathcal{M}_{\mathcal{V}}^2}rac{\mathcal{M}_{\mathcal{V}}^2}{q_2^2-\mathcal{M}_{\mathcal{V}}^2}$$

on-shell = off-shell form factor !

Only two model parameters even for off-shell form factor: F_{π} and M_{V}

Transition form factor:

$$F^{
m VMD}(Q^2) = rac{N_C}{12\pi^2 F_\pi} rac{M_V^2}{Q^2 + M_V^2}$$

The LMD+V form factor (off-shell)

Knecht, Nyffeler, EPJC '01; Nyffeler '09

- Ansatz for $\langle VVP \rangle$ and thus $\mathcal{F}_{\pi^{0*}\gamma^*\gamma^*}$ in large- N_C QCD in chiral limit with 1 multiplet of lightest pseudoscalars (Goldstone bosons) and 2 multiplets of vector resonances, ρ, ρ' (lowest meson dominance (LMD) + V)
- $\mathcal{F}_{\pi^{0*}\gamma^*\gamma^*}$ fulfills all leading (and some subleading) QCD short-distance constraint from Operator Product Expansion (OPE)
- Reproduces Brodsky-Lepage (BL): $\lim_{Q^2 \to \infty} \mathcal{F}_{\pi^{0*}\gamma^*\gamma^*}(m_\pi^2, -Q^2, 0) \sim 1/Q^2$ (OPE and BL cannot be fulfilled simultaneously with only one vector resonance)
- Normalized to decay width $\Gamma_{\pi^0 o \gamma\gamma}$

Off-shell LMD+V form factor:

Free parameters: h_i

$$\mathcal{F}^{\text{LMD+V}}_{\pi^{0*}\gamma^{*}\gamma^{*}}(q_{3}^{2}, q_{1}^{2}, q_{2}^{2}) = -\frac{F_{\pi}}{3} \frac{q_{1}^{2} q_{2}^{2} (q_{1}^{2} + q_{2}^{2} + q_{3}^{2}) + P_{H}^{V}(q_{1}^{2}, q_{2}^{2}, q_{3}^{2})}{(q_{1}^{2} - M_{V_{1}}^{2}) (q_{1}^{2} - M_{V_{2}}^{2}) (q_{2}^{2} - M_{V_{1}}^{2}) (q_{2}^{2} - M_{V_{1}}^{2})}$$

$$P_{H}^{V}(q_{1}^{2}, q_{2}^{2}, q_{3}^{2}) = h_{1} (q_{1}^{2} + q_{2}^{2})^{2} + h_{2} q_{1}^{2} q_{2}^{2} + h_{3} (q_{1}^{2} + q_{2}^{2}) q_{3}^{2} + h_{4} q_{3}^{4}$$

$$+ h_{5} (q_{1}^{2} + q_{2}^{2}) + h_{6} q_{3}^{2} + h_{7}$$

$$q_{3}^{2} = (q_{1} + q_{2})^{2}$$

$$F_{\pi} = 92.4 \text{ MeV}, \qquad M_{V_{1}} = M_{\rho} = 775.49 \text{ MeV}, \qquad M_{V_{2}} = M_{\rho'} = 1.465 \text{ GeV}$$

Relevant momentum regions in $a_{\mu}^{\mathrm{LbyL;PS}}$

Result for pseudoscalar exchange contribution $a_{\mu}^{LbyL;PS} \times 10^{11}$ for off-shell LMD+V and VMD form factors obtained with momentum cutoff Λ in 3-dimensional integral representation of Jegerlehner, Nyffeler '09 (integration over square). In brackets, relative contribution of the total obtained with $\Lambda=20$ GeV.

Λ [GeV]	LMD+V (h ₃ = 0)	π^0 LMD+V ($h_4 = 0$)	VMD	η VMD	η' VMD
0.25	14.8 (20.6%)	14.8 (20.3%)	14.4 (25.2%)	1.76 (12.1%)	0.99 (7.9%)
0.5	38.6 (53.8%)	38.8 (53.2%)	36.6 (64.2%)	6.90 (47.5%)	4.52 (36.1%)
0.75	51.9 (72.2%)	52.2 (71.7%)	47.7 (83.8%)	10.7 (73.4%)	7.83 (62.5%)
1.0	58.7 (81.7%)	59.2 (81.4%)	52.6 (92.3%)	12.6 (86.6%)	9.90 (79.1%)
1.5	64.9 (90.2%)	65.6 (90.1%)	55.8 (97.8%)	14.0 (96.1%)	11.7 (93.2%)
2.0	67.5 (93.9%)	68.3 (93.8%)	56.5 (99.2%)	14.3 (98.6%)	12.2 (97.4%)
5.0	71.0 (98.8%)	71.9 (98.8%)	56.9 (99.9%)	14.5 (99.9%)	12.5 (99.9%)
20.0	71.9 (100%)	72.8 (100%)	57.0 (100%)	14.5 (100%)	12.5 (100%)

 π^0 :

- Although weight functions plotted earlier are not applicable to off-shell LMD+V form factor, region below $\Lambda=1$ GeV gives the bulk of the result: 82% for LMD+V, 92% for VMD.
- No damping from off-shell LMD+V form factor at external vertex since $\chi \neq 0$ (new short-distance constraint). Note: VMD falls off too fast, compared to OPE.

η, η' :

- Mass of intermediate pseudoscalar is higher than pion mass → expect a stronger suppression from propagator.
- Peak of relevant weight functions shifted to higher values of Q_i . For η' , vector meson mass is also higher $M_V=859$ MeV. Saturation effect and the suppression from the VMD form factor only fully set in around $\Lambda=1.5$ GeV: 96% of total for η , 93% for η' .