

Overview of ALICE results

M. Gagliardi Università degli Studi and Sezione INFN, Torino

for the ALICE Collaboration

Outline

- Introduction and detector description
- Selected Pb-Pb results
 - Global properties and particle spectra
 - Anisotropic flow
 - Heavy flavour and quarkonia
 - Charmonium production in ultra-peripheral collisions
- p-Pb highlights
- pp highlights
- Conclusions

Introduction

The ALICE physics goal

Study the hot and dense medium formed in **ultra-relativistic heavy-ion collisions** at the LHC

QCD asymptotic freedom -> transition to a **deconfined state of nuclear matter** with partonic degrees of freedom (**Quark Gluon Plasma**, QGP)

Lattice QCD predicts transition at T ~ 170 MeV (ϵ ~ 0.7 GeV/fm³)

Early indications of QGP formation came from experiments at RHIC and SPS

A Large Ion Collider Experiment

ALICE performance

ALICE data taking during LHC Run I

- **Two Pb-Pb runs** at $\sqrt{s_{NN}} = 2.76$ TeV:
 - in 2010 commissioning and first data taking (mostly min. bias trigger)
 - in 2011 several dedicated triggers
- **pp data** in 2009-2013:
 - 0.9, 2.76, 7 and 8 TeV
 - \rightarrow reference for Pb-Pb data, but also pp physics
- p-Pb:

pilot run in September 2012, run (p-Pb and Pb-p) in Jan-Feb 2013

year	system	√s _{NN} (TeV)	integrated luminosity
2010	Pb – Pb	2.76	~ 10 mb⁻¹
2011	Pb – Pb	2.76	~ 0.1 nb⁻¹
2013	p – Pb	5.02	∼ 30 nb ⁻¹

Pb-Pb results

Global event observables: multiplicity, energy density

PRL 105, 252301 (2010)

(3x larger than at RHIC)

9

Global event observables: fireball size, lifetime, temperature

Particle spectra: radial flow

Low p_T spectra : **collective motion of particles** on top of thermal motion

Collective motion is due to high pressure arising from **compression and heating**.

Blast-Wave fit to p_T spectra

- E. Schnedermann, et al.; Phys. Rev. C48, 2462 (1993):
- → Radial flow velocity <β> ≈ 0.65 (10 % larger than at RHIC)
- →Kinetic freeze-out temp. $T_{\kappa} \approx 95$ MeV (same as RHIC within errors)

High p_T particle spectra: nuclear modification factor

A parton passing through the QCD medium undergoes energy loss which results in the suppression of high- p_T hadron yields

Elliptic flow

- Sensitivity to initial anisotropy is a measure of the importance of collective phenomena
- In non-central collisions, pressure gradients convert the spatial anisotropy in **momentum anisotropy**
- Elliptic flow (v₂) = 2nd harmonic coefficient in Fourier decomposition of particle azimuthal distribution w.r.t. reaction plane (RP)

 $v_2 vs. p_T$ for non-identified charged particles in Pb-Pb collisions, was measured for three different centrality intervals

v₂ vs. p_T does not change between RHIC (200 GeV) and LHC (2.76 TeV) energy

Elliptic flow for identified particles

- v₂ shows mass ordering up to multi-strange baryons
- v₂ vs. p_T described by hydrodynamical models

- v₂/n_q scaling (seen at RHIC) is less obvious (still, within 20%) at LHC
 - at large p_T/n_q protons have smaller v_2 than pions

Open heavy flavour

- Particles containing **heavy quarks** (c,b) are produced in the early stages of the collision (high Q²)
 - -> tool to study the parton-medium interaction, via the energy loss mechanism
- R_{AA} ≠ 1 if medium effects are present (seen at RHIC with non-photonic electrons)
- Energy loss is predicted to vary with
- the colour charge ($\Delta E_q < \Delta E_g$)
- the mass ($\Delta E_{u,d,s} > \Delta E_b > \Delta E_c$)
 - -> Prediction: $\mathbf{R}_{AA}^{\pi} < \mathbf{R}_{AA}^{D} < \mathbf{R}_{AA}^{B}$
- Heavy flavour detection in ALICE
- Midrapidity:
 - D-meson hadronic decays
 - electrons from semileptonic decays
- Forward rapidity
 - muons from semileptonic decays

15

Open heavy flavour R_{AA}

Similar **suppression** (by a factor 2-4) for muons (2.5<y<4) and electrons (|y|<0.6) from HF decay

Large suppression for D^0 , D^+ , D^{*+} , consistent within uncertainties for the three species

Hint for larger $D_s^+ R_{AA}$ at low p_T

(not conclusive with current uncertainties)

D meson R_{AA} is smaller than that of J/ ψ from B (CMS), as expected from the **mass dependence of heavy quark** energy loss

16

Quarkonium production

Resonance melting by colour screening in a Quark Gluon Plasma: one of the first proposed signatures of deconfinement.

Sequential suppression of quarkonium states as the energy density increases -> thermometer of the plasma

 J/ψ suppression beyond cold nuclear matter effects observed at SPS and RHIC (but similar magnitude in spite of different energy densities).

J/ ψ regeneration by recombination of cc pairs might play a role at low to intermediate p_{τ} , and even become dominant at LHC energies

Quarkonium production: J/ ψ and Y R_{AA}

- Inclusive $J/\psi R_{AA}$ vs centrality (and p_T) is in reasonable agreement with models including J/ψ regeneration
- Weak rapidity dependence of Y suppression; similar magnitude as J/ψ (CAVEAT: inclusive measurement, no feed-down separation)
- Results from p-Pb are also available -> address cold nuclear matter effects

J/ψ and D meson elliptic flow (v₂)

D mesons and regenerated J/ ψ s should have a significant v_2 if charm quarks participate in the collective motion

J/ψ: hint for non-zero v_2 at intermediate p_T (not seen at lower \sqrt{s})

D mesons:

indication of **non-zero** v_2 at intermediate p_T ; simultaneous description of R_{AA} and v_2 is a **challenge for models**

J/ψ coherent photoproduction in ultra-peripheral Pb-Pb

In ultra-peripheral collisions ions interact via their clouds of **virtual photons** (hadronic processes are strongly suppressed) Production of vector mesons containing heavy flavour in photo-nuclear processes is a powerful tool to **study the gluon distribution function in the nuclei down to x~10⁻⁴**

First measurement of coherent J/ ψ photoproduction at both forward and mid-

rapidity

Rapidity dependence is reproduced by the AB-EPS09 partonic model ($d\sigma/dy \alpha g(x)^2$)

p-Pb highlights (global event properties only)

Charged particle multiplicity

- Normalization: NSD
- All models within 20%
- Saturation models too steep with η_{lab}
- pQCD models (HIJING, DPMJET) in agreement with data
- Where shadowing is included, strong yield reduction (~ 30%)

<p_T> vs charged particle multiplicity

Long range correlations vs multiplicity

Associated yield per trigger particle:

Multiplicity classes defined from the sum of the signals from the two VZERO arms

Phys. Lett. B 719 (2013) 29

- Low-multiplicity p-Pb: pp-like (jet-like) correlation
- High multiplicity p-Pb: near-side ridge appears; higher yields on near and away side
- Subtracting the per-trigger yield of the low multiplicity class to that of the high multiplicity class, a double ridge structure appears
- -> similar to Pb-Pb, where it is ascribed to collective effects. **Unexplained** in p-Pb.

pp highlights

Inelastic and diffractive cross sections

10

- Relative rates of single and double-diffraction determined via a **study of pseudorapidity gaps**
- The inelastic cross section is obtained from the visible cross section determined in a vdM scan corrected by the trigger efficiency, determined via a **simulation tuned on diffraction data**
- Results on the inelastic cross section at 7 TeV consistent with ATLAS, CMS and TOTEM
- Results on single diffraction **consistent with UA5** at $\sqrt{s} = 0.9$ TeV

Heavy flavour cross sections

- Measurement of D meson cross sections down to low p_T
- The measured cross sections are reproduced by pQCD within uncertainties

Multiplicity dependence of J/ ψ and D mesons

- Linear increase of D meson and J/ψ production vs the underlying min bias event multiplicity
- For J/ ψ , the results are not reproduced by Phythia 6.4
- Measurement may provide insights on the interplay between hard and soft regime

Conclusions

- ALICE has provided a wealth of results, trying to characterise the hot and dense medium formed in heavy-ion collisions. Many of them were left out from this talk: strange and multi-strange particles, resonances, higher armonics anisotropic flow, jets, correlations, EM dissociation cross sections...
- Analysis of the 2013 p-Pb run is well advanced, providing insights on cold nuclear matter effects
 -> collective behaviour in p-Pb?
- pp measurements are crucial to the ALICE physics program, both as a reference for Pb-Pb and as a field of study in his own right