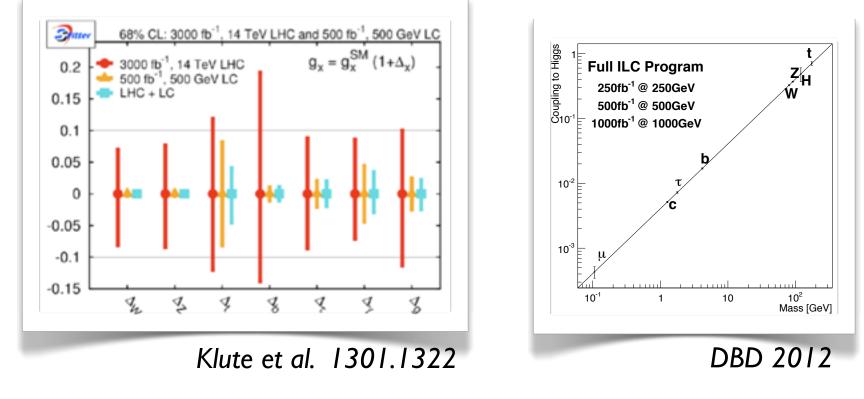
Top EW couplings at LCs Emi Kou (LAL-Orsay)

based on arXive:1307.8102 by Amjad, Boronat, Frisson, Garcia, Poeschl, Ros, Richard, Rouene, Ruiz Femenia,Vos


LC 13 @ ECT* Trento (16-20 September)

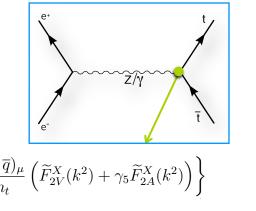
Linear Colliders

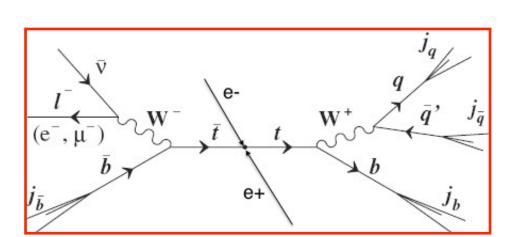
The LHC discovery of Higgs particle completed all the particles needed in SM.

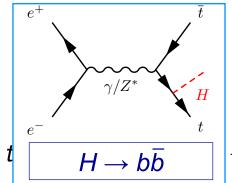
* Now we are aiming at precisely measuring the properties of these particles to search for signs of new physics.

* Challenges towards precision can adequately be met in a clean environment • e+e- colliders.

Top Physics at LCs

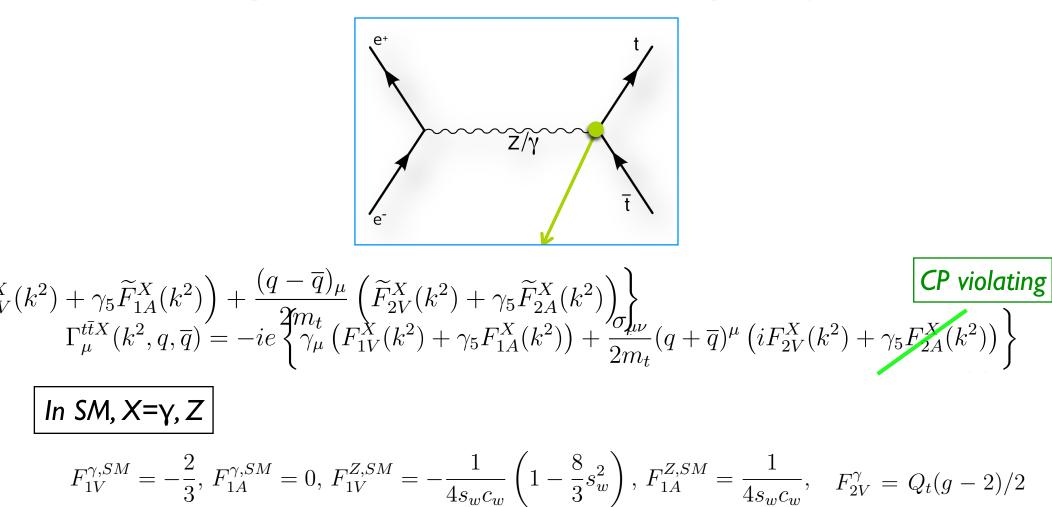

* The top physics is one of the three pillars of linear collider physics program. $e^+e^- \rightarrow t\overline{t}$

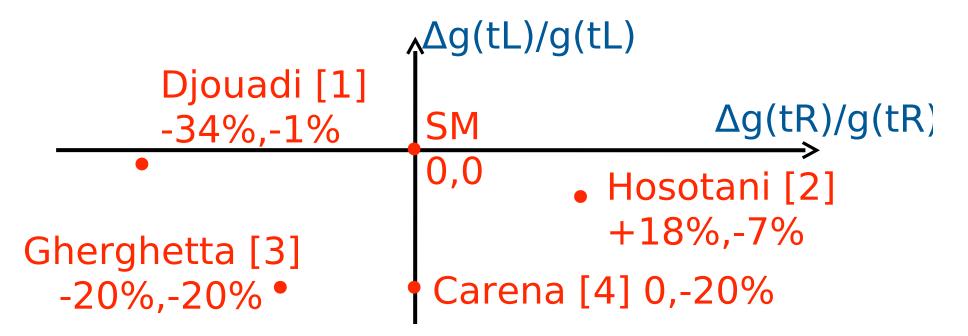

* Current on-going studies in the ILC collaboration include:


Properties of top: mass, width and cross section

Coupling of top, namely, top Yukawa coupling

BSM: anomalous couplings to BSM gauge bosons (Z', W', Extra dimension etc) Top Electroweak coupling.



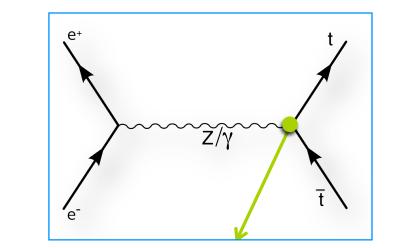

10⁵⁻⁶ ttbar pairs production at sqrt[s]=500 GeV with 500 fb⁻¹!

Top electroweak couplings

new physics models

New physics models inducing anomalous coupling

[1] : Djouadi et al., Nuclear Physics B, Volume 773 (2007)


[2] : Hosotani et al., Prog. Theor. Phys. 123 (2010), 757-790

[3] : Cui, Gherghetta et al., arXiv:1006.3322v1 [hep-ph]

[4] : Carena et al., Nuclear Physics B759 (2006)

From: thesis Ph. Doublet

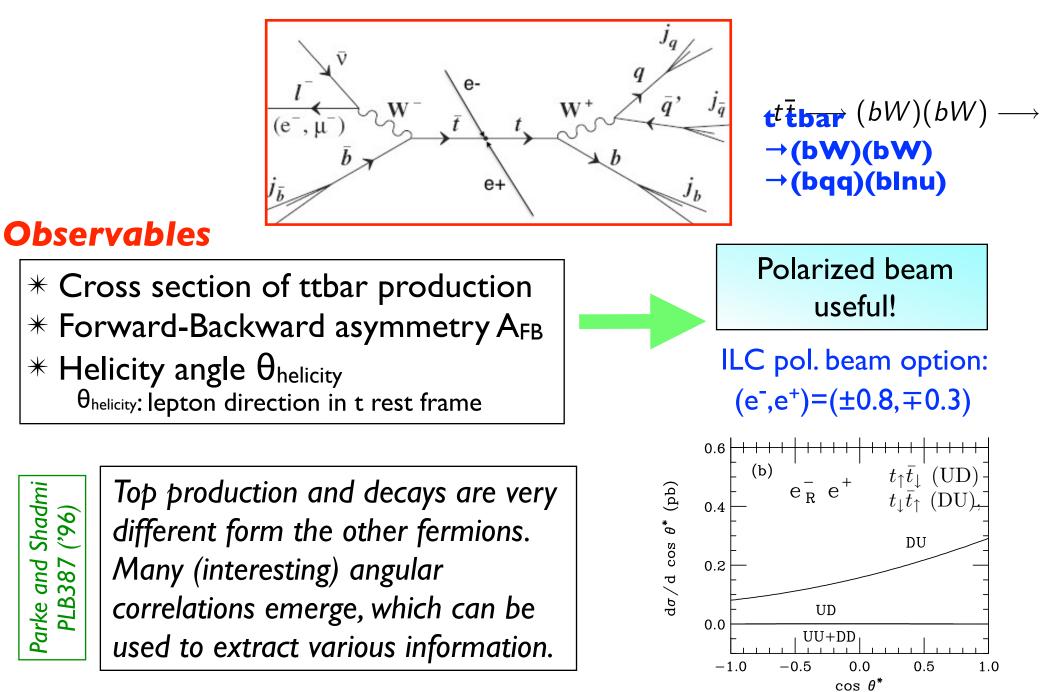
Top electroweak couplings

$$\begin{split} & \left\{ \begin{array}{l} \mathcal{K}_{V}(k^{2}) + \gamma_{5}\widetilde{F}_{1A}^{X}(k^{2}) \right\} + \frac{(q - \overline{q})_{\mu}}{2m_{t}} \left(\widetilde{F}_{2V}^{X}(k^{2}) + \gamma_{5}\widetilde{F}_{2A}^{X}(k^{2}) \right) \\ & \Gamma_{\mu}^{t\overline{t}X}(k^{2}, q, \overline{q}) = -ie \left\{ \begin{array}{l} \mathcal{M}_{U}^{X}\left(F_{1V}^{X}(k^{2}) + \gamma_{5}F_{1A}^{X}(k^{2})\right) + \frac{\sigma_{\mu\nu}}{2m_{t}}(q + \overline{q})^{\mu} \left(iF_{2V}^{X}(k^{2}) + \gamma_{5}F_{2A}^{X}(k^{2})\right) \right\} \\ \hline \\ \mathbf{In \ SM, X=\gamma, Z} \\ & F_{1V}^{\gamma,SM} = -\frac{2}{3}, \ F_{1A}^{\gamma,SM} = 0, \ F_{1V}^{Z,SM} = -\frac{1}{4s_{w}c_{w}} \left(1 - \frac{8}{3}s_{w}^{2}\right), \ F_{1A}^{Z,SM} = \frac{1}{4s_{w}c_{w}}, \ F_{2V}^{\gamma} = Q_{t}(g - 2)/2 \\ \hline \\ & \mathbf{mew \ physics \ models} \end{split}$$

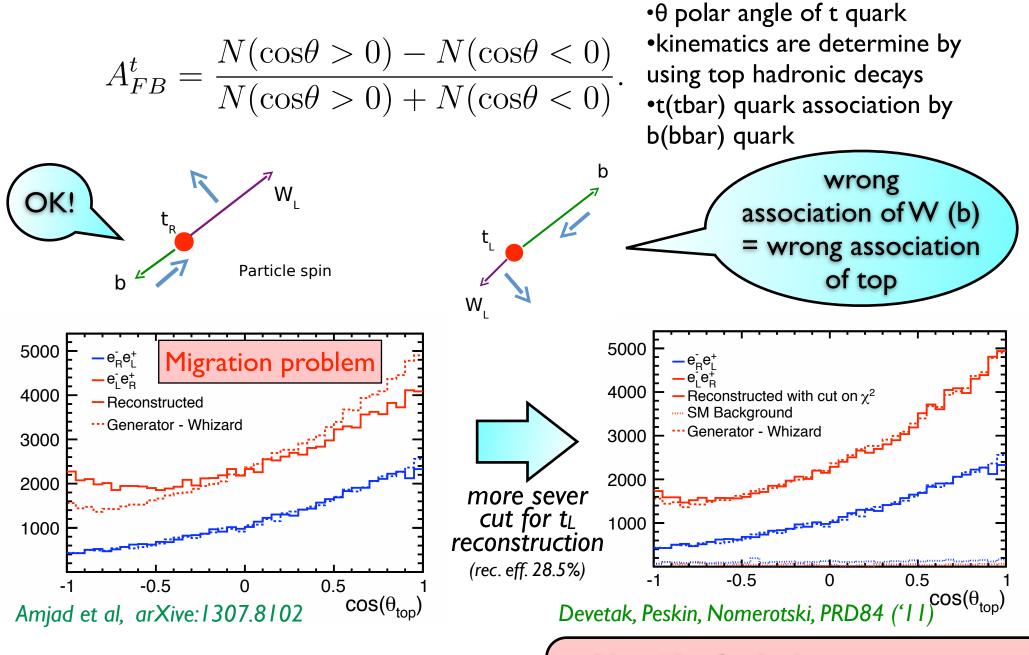
In this talk: ILC sensitivity to the 6 form factors

Observables

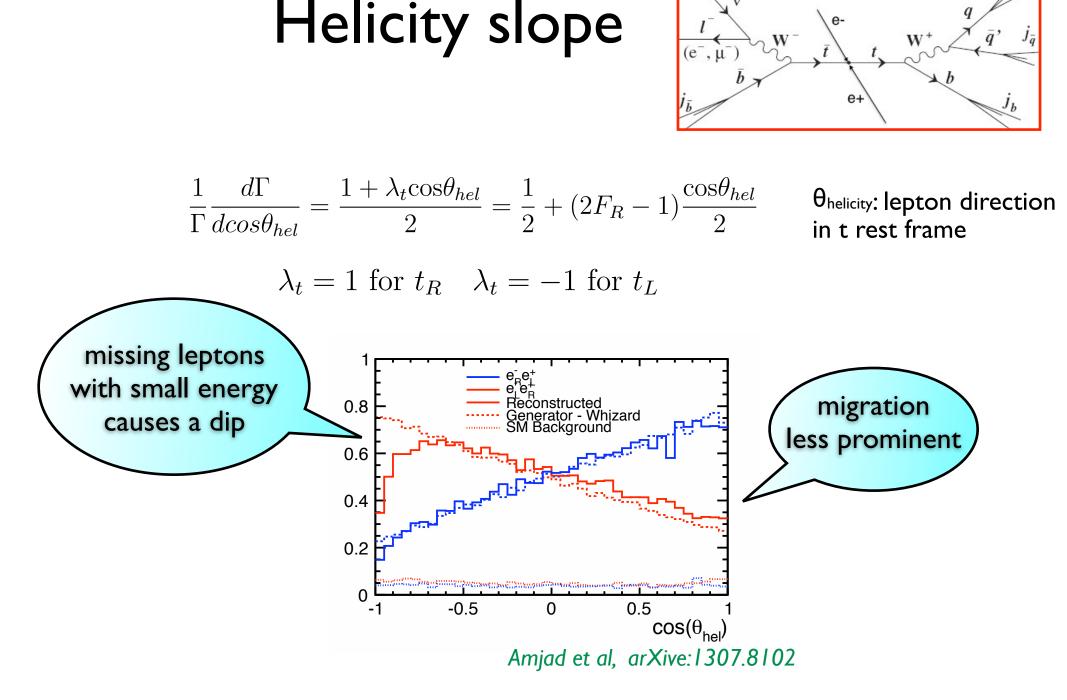
Shadmi


and

Parke


(96.)

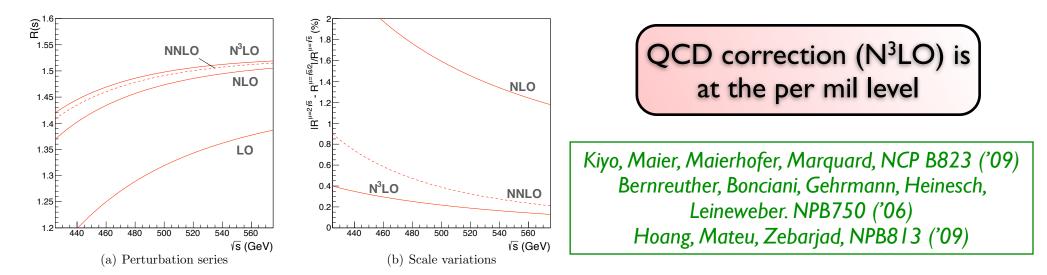
PLB387


Amjad et al, arXive:1307.8102

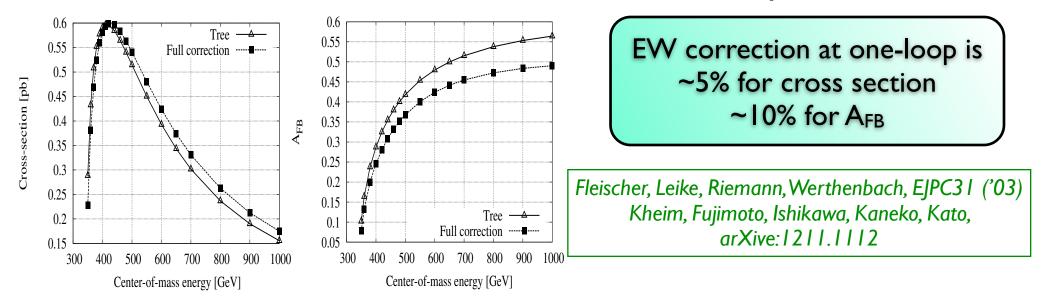
Forward-Backward Asymmetry

New idea for b charge measurement?

Amjad et al, arXive:1307.8102



Coupling	SM value	LHC $[3]$	e^+e^- [8]	$e^+e^-[ILC \ DBD]$	
		$\mathcal{L} = 300 \text{ fb}^{-1}$	$\mathcal{L} = 300 \text{ fb}^{-1}$	$\mathcal{L} = 500 \text{ fb}^{-1}$	
			$\mathcal{P}, \mathcal{P}' = -0.8, 0$	$\mathcal{P}, \mathcal{P}' = \pm 0.8, \mp 0.3$	
$\Delta \widetilde{F}_{1V}^{\gamma}$	0.66	$^{+0.043}_{-0.041}$	_	$^{+0.002}_{-0.002}$	
$\Delta \widetilde{F}^Z_{1V}$	0.23	$^{+0.240}_{-0.620}$	$^{+0.004}_{-0.004}$	$^{+0.002}_{-0.002}$	
$\Delta \widetilde{F}^Z_{1A}$	-0.59	$^{+0.052}_{-0.060}$	$^{+0.009}_{-0.013}$	$^{+0.006}_{-0.006}$	
$\Delta \widetilde{F}_{2V}^{\gamma}$	0.015	$^{+0.038}_{-0.035}$	$^{+0.004}_{-0.004}$	$^{+0.001}_{-0.001}$	
$\Delta \widetilde{F}^Z_{2V}$	0.018	$^{+0.270}_{-0.190}$	$+0.004 \\ -0.004$	$^{+0.002}_{-0.002}$	


Table 4: Sensitivities achievable at 68.3% CL for CP conserving form factors $\widetilde{F}_{1V,A}^X$ and \widetilde{F}_{2V}^X defined in Eq. 1 at the LHC and at linear e^+e^- colliders. The assumed luminosity samples and, for e^+e^- colliders, the beam polarisation, are indicated. In the LHC studies and in earlier studies for a linear e^+e^- collider as published in the TESLA TDR [8] study, only one coupling at a time is allowed to deviate from its Standard Model value. In the present study, denoted as ILC DBD, either the four form factors \widetilde{F}_1 or the two form factors \widetilde{F}_2 are allowed to vary independently. The sensitivities are based on statistical errors only.

Theoretical uncertainties

*QCD corrections are known up to N³LO

*Electroweak corrections are known at one-loop level

Outlook

Jncertainty

10⁻¹

- Experimental issues (some are common ^{10²} with the other top physics measurements):
 - ✓ b-tagging and charge identification
 - ✓ jet algorithm (Durham-algorithm, kt-algorithm etc...)
 - ✓ luminosity measurement
 - \checkmark refinement of the current analysis
- Theoretical topics :
 - \checkmark theoretical uncertainties (QCD, electroweak corrections)
 - \checkmark CP violating observable
 - ✓ new observables, new ideas (e.g. more angular correlation)!

ILC (preliminary)

 $\widetilde{\mathsf{F}}_{2\mathsf{V}}^{\mathsf{Y}}$

 \tilde{F}_{2v}^{Z}

LHC (hep-ph/0601112)

Result : sensitivity of ILC to the form factors

Coupling	LHC $[3]$	e^+e^- [8]	
	$\mathcal{L} = 300 \text{ fb}^{-1}$	$\mathcal{L} = 300 \text{ fb}^{-1}$	
		$\mathcal{P}, \mathcal{P}' = -0.8, 0$	
$\Delta \mathrm{R} e \widetilde{F}_{2A}^{\gamma}$	$^{+0.17}_{-0.17}$	$^{+0.007}_{-0.007}$	
$\Delta {\rm R} e \widetilde{F}^Z_{2A}$	$^{+0.35}_{-0.35}$	$^{+0.008}_{-0.008}$	
$\Delta \mathrm{I}m\widetilde{F}_{2A}^{\gamma}$	$^{+0.17}_{-0.17}$	$^{+0.008}_{-0.008}$	
$\Delta \mathrm{I}m\widetilde{F}^Z_{2A}$	$^{+0.035}_{-0.035}$	$^{+0.015}_{-0.015}$	

Table 5: Sensitivities achievable at 68.3% CL for the top quark magnetic and electric dipole form factors \tilde{F}_{2A}^V defined in Eq. 1, at the LHC and at for a linear e^+e^- collider as published in the TESLA TDR [8]. The assumed luminosity samples and, for TESLA, beam polarisation, are indicated. In the LHC study and in the TESLA study only one coupling at a time is allowed to deviate from its Standard Model value. The sensitivities are based on statistical errors only