

Top-quark results from CMS and ATLAS

Hafeez Hoorani – National Center for Physics, Islamabad – Pakistan **On behalf of CMS & ATLAS**

LC13 Workshop, 16-20 Sep 2013, ECT* and INFN , Villazzano (Italy)

OVERVIEW

- Introduction
- Top Production
 - Pair Production via Strong Interaction
 - Single Top Production via Electroweak
 - Cross Section Total & Differential
- Top Quark Properties
 - Mass
 - W helicity measurement
 - Spin Correlations
- Future Prospects and Conclusions

FR

INTRODUCTION

- Heaviest fundamental particle known (40 times heavier than b quark, almost weigh equal to gold atom)
- Most precisely measured mass $\Delta m/m \approx 0.5\%$
- Short lifetime 4 x 10⁻²⁵ s hadronization scale 2.8 x 10⁻²⁴ s.
- Top's Yukawa couplings to the Higgs Boson is 1.
- Weak isospin partner of b quark with spin ½ and charge +2/3 e
- The most probable place for BSM physics to show up.

INTRODUCTION

- tt pair is produced through strong interaction
 - E_{cm} = 7 TeV (80%) and @ 14 TeV (90%) is due to gluon fusion - $x = 2m_t/E_{cm}$ typical value
- Single top quarks produced through electroweak interaction and *Wtb* vertex.
 - t-channel mode
 - s-channel mode
 - associated production
- Decay width of top is 1.33 GeV

Top quark reconstruction

- reconstruction of all detector objects are needed: electron, muon, jets, missing energy, b-jets etc.
- kinematical fit, under constrained kinematics in dilepton events
- unfolding kinematical distributions
 - differential cross sections, polarizations, asymmetries
- Background estimations from data
 - multijets, W+jets, DY in corners of phase space
 - large data/MC scale factors
- Control of the systematics
 - accuracy of measurements is now limited by systematics

Top Quark Decay - Pairs

- Top decays 100% into W and b
- Decay products seen depends on the decay of W boson.
- $W \rightarrow Iv$ or $W \rightarrow qq'$
 - *tt* → *qq'bqq'b* (46.2%) Alljets, largest BR but huge QCD background
 - *tt* → *lvbqq'b* (43.5%) Lepton plus jets with manageable background
 - *tt* → *lvblvb* (10.3%) Dilepton small BR with very little background
- Very interesting channel almost all detector objects are there

Top Pair Decay Channels

Top Cross Section - CMS

Cross Section Summary - ATLAS

Total Xsec – Top pair

- First results from ATLAS and CMS at 8 TeV
- Excellent agreement between QCD prediction and measurement
- Theoretical and experimental uncertainties are comparable at 5% level.

ATLAS-CONF-2012-149 CMS PAS TOP-12-007

Differential Cross Section

- With large top sample at LHC it is possible to measure differential cross section
- Can be used to validate:
 - MC Models
 - Parton Distribution Function (PDF)
 - Higher order QCD calculations
- Deviations could signal contributions from new physics

p_T(t), l+jets

p_T(tt), dilepton

ATLAS: Eur. Phys. J. C73 (2013):2261

CMS: Eur. Phys. J. C73 (2013):2339

Single Top Production

Top Mass – fully hadronic

Ideogram method 3.5 fb-1

CMS PAS-TOP-11-017 (2012)

Template method 2.0 fb-1

ATLAS-CONF-2012-030 (2012)

 $M_t = 173.49 \pm 0.69(stat) \pm 1.25(syst) \ GeV$ $M_t = \delta M_t = 1.5 \ GeV \ (0.85\%)$

t) GeV $M_t = 174.9 \pm 2.1(\text{stat}) \pm 3.8 \text{ (syst) GeV}$ $\delta M_t = 4.3 \text{ GeV} (2.5\%)$

 CMS: using Ideogram method – lepton+Jets at 7 TeV with 5 fb⁻¹: JHEP 12, 105 (2012)

 $M_t = 173.49 \pm 0.43(stat+JES) \pm 0.98(syst) GeV$ $\delta M_t = 1.1 GeV (0.63\%)$

• ATLAS: using 3D Template method – lepton +Jets at 7 TeV with 4.7 fb⁻¹ ATLAS-CONF-2013-046

 $M_t = 172.31 \pm 0.75(stat+JSF) \pm 1.35(syst) GeV$ $\delta M_t = 1.5 GeV (0.90\%)$

Top Mass - dilepton

CMS – 5 fb-1 @7 TeV

EPJC 72, 2202 (2012)

ATLAS – 4.7 fb-1 @7 TeV

ATLAS-CONF-2013-077

 $M_t = 172.5 \pm 0.4(stat) \pm 1.5(syst) \text{ GeV}$ $\delta M_t = 1.6 \text{ GeV} (0.93\%)$ $M_t = 173.09 \pm 0.64(stat) \pm 1.50(syst) \text{ GeV}$ $\delta M_t = 1.63 \text{ GeV} (0.94\%)$

Top Mass – CMS Summary

CMS Preliminary

- All channels considered including all jets
- 2011 data at 7 TeV
- Luminosity up to 5 fb-1
- Best single LHC measurement reaches a precision of 0.6%
- Tevatron still provides the best measurement with precision 0.5%

Top Mass – ATLAS Summary

ATLAS Preliminary		July 2013	
ATLAS 4.7 fb ⁻¹ l+jets (3d) ATLAS-CONF-2013-046	F-F	$172.31 \pm 0.75 \pm 1.35$	
ATLAS 4.7 fb ⁻¹ eμ m _{T2} ATLAS-CONF-2012-082		-175.2 $\pm 1.6 \pm \frac{3.1}{2.8}$	
ATLAS 4.7 fb ⁻¹ dilepton m _{Ib} ATLAS-CONF-2013-077		$173.09 \pm 0.64 \pm 1.50$	
CMS 5.0 fb ⁻¹ dilepton Eur. Phys. J. C72 (2012) 2202	⊢ :=: 1	$172.50 \pm 0.43 \pm 1.48$	3
CDF 5.6 fb ⁻¹ dilepton <i>Phys. Rev. D83 (2011) 111101</i>		170.28 ± 1.95 ± 3.09	
D0 5.3 fb ⁻¹ dilepton Phys. Rev. D86 (2012) 051103	++	$174.00 \pm 2.36 \pm 1.44$	-
Tevatron Combination 2013 arXiv:1305.3929	HeH	173.20 ± 0.51 ± 0.71 (stat) (syst)	
160	170	180	190
	m _{top} [GeV]		

CERN

W helicity in top decays

 W^+

h

V_{tb}

- Probe (V-A) structure of Wtb vertex
- Measure do/dcos0*, the angle between the lepton and the b directions (in the W rest frame)

J. A. Aguilar-Saavedra et al, arXiv:1005.5382v2

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^{*}} = \frac{3}{8} (1 + \cos\theta_{\ell}^{*})^{2} F_{R} + \frac{3}{8} (1 - \cos\theta_{\ell}^{*})^{2} F_{L} + \frac{3}{4} \sin^{2}\theta_{\ell}^{*} F_{0}$$

- W polarization fractions calculated at NNLO:
 F₀ = 0.687 ± 0.005
 - $F_L = 0.311 \pm 0.005$
 - $F_R = 0.0017 \pm 0.0001$

Czarnecki et al., PR D 81 (2010) 111503

W helicity in top decays

First LHC combination: ATLAS and CMS preliminary \sqrt{s} = 7 TeV, L_{int}=35 pb⁻¹ - 2.2 fb⁻¹ F_{R} F_{L} F₀ $F0=0.626 \pm 0.034$ (stat.) ± 0.048 (syst.) NNLO QCD $FL=0.359 \pm 0.021$ (stat.) ± 0.028 (syst.) Combination $\bullet \bullet \bullet$ Data (F_D/F₁/F₀) **CMS PAS-TOP-12-025** ATLAS 2010 (single lepton) ATLAS-CONF-2013-033 ATLAS 2011 (single lepton) ATLAS 2011 (dilepton) €2000 ATLAS single lepton channels CMS 2011 (single muon) _____1800 $L dt = 1.04 \text{ fb}^{-1}$ Data LHC combination Best fit SM exp. 1600 Bkg best fit 0.5 0 Unc. best fit 1400 W boson helicity fractions 1200 **CMS PAS-TOP-12-015** 1000 **CMS dilepton:** 800 $F_1 = 0.288 \pm 0.035(stat.) \pm 0.050(syst.)$ 600 E $\mathbf{F}_0 = 0.698 \pm 0.057$ (stat.) ± 0.063 (syst.) **400** $F_{R} = -0.014 \pm 0.027(\text{stat.}) \pm 0.055(\text{syst.})$ 200 0└ _1 -0.5 0.5 0 JHEP 1206 (2012) 088 $\cos \theta^*$

W helicity in single top

- First measurement using singletop enriched sample
- 7 and 8 TeV, **μ**+jets events
- Helicity fractions and W+jets contribution simultaneously extracted.
- Consistent with the SM and with the measurement in ttbar channels

 $F_{L} = 0.293 \pm 0.069(stat.) \pm 0.030(syst.)$ $F_{0} = 0.713 \pm 0.114(stat.) \pm 0.023(syst.)$ $F_{R} = -0.006 \pm 0.057(stat.) \pm 0.027(syst.)$

CMS PAS-TOP-12-020

Top spin correlations

- SM predicts correlation of spin of the top and antitop
- Measured from angular distributions of the top decay products
- Use Δφ between leptons which don't require top reconstruction
- Sensitive to New Physics

Spin correlation coefficient:

 $A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$

ATLAS:0.40 ± 0.08CMS:0.24 ± 0.08

PRL 108, 212001 (2012) CMS PAS TOP-12-004

- LHC with high luminosity:
 - Phase 1: 300 fb⁻¹
 - Phase 2 (HL-LHC): 3000 fb⁻¹
- LHC True top factory: E_{cm} = 13 TeV with 300 fb⁻¹, we expect per experiment:
 - 50 M ttbar events in the lepton+jet channel
 - 10 M events in the dilepton channel
 - 15 M single top events
- What can be studied?
 - Top coupling to W and Z
 - Precise studies of the tWb vertex
 - FCNC decays of top t \rightarrow Zq

Conclusions

- Excellent measurements of top physics are now available:
 - mass ~ 0.5%
 - cross sections: top pair ~ 5%, single top ~ 10%
 - Vtb ~ 2% (from R), 5% (from single top)
 - Charge asymmetry ~ 2%
 - W helicity fractions ~ 10%
 - differential cross sections challenging NLO QCD calculations
- Most measurements are dominated by systematic uncertainties
 - Jet energy scale, b-tagging, signal modeling
 - The road ahead will not be easy
- The SM persists in describing the data remarkably well
- Bright prospects for top physics at LHC:
 - Precise measurements
 - Searches involving top quarks in the final state