

Sara Valentinetti, INFN and Univ. of Bologna (Italy)
On behalf of ATLAS and CMS

LC13 Workshop, ECT*, Villa Tambosi, Villazzano (TN), 16-20 Sep 2013

Outline

- Introduction on Inelastic and Diffractive Physics;
- Measurements in CMS, total inelastic cross section:
\rightarrow single side counting: CMS PAS QCD-11-002;
\rightarrow pile up counting: CMS PAS FWD-11-001;
Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ (Phys. Lett. B 722 (2013) 5-27)
- Measurements in ATLAS:
total inelastic cross section $\boldsymbol{\rightarrow}$ single side counting;
Measurement of the Inelastic pp Cross Section at $\sqrt{ } s=7 \mathrm{TeV}$ with the ATLAS Detector (Nature Comm. 2 (2011) 463);
differential inelastic cross section \rightarrow rapidity gap counting;
Rapidity Gap Cross Sections measured with the ATLAS Detector in pp Collisions at $\sqrt{s}=7 \mathrm{TeV}$ (Eur. Phys. J.C72 (2012) 1926);
- Discussion of results and comparison with theory.

The Total pp Cross Section

Total pp cross section composed by different contributions:

$$
\frac{\sigma_{\mathrm{tot}}=\sigma_{\mathrm{EL}}+\sigma_{\mathrm{SD}}+\sigma_{\mathrm{DD}}+\sigma_{\mathrm{CD}}+\sigma_{\mathrm{ND}}}{\mathbb{I N E \mathbb { N } A S T I \mathbb { C }}}
$$

Non
diffractive processes

At LHC energy: - 20\% elastic, 80\% inelastic;

- diffractive contribution $\sigma_{\mathrm{D}} / \sigma_{\text {inel }} \approx 0.2-0.3$.

Theoretical Definition of Diffractive Physics

No unique definition of diffraction processes

1. Interactions mediated by t-channel exchange of object (ladder of gluons) with the quantum numbers of the vacuum, i.e. color singlet exchange called "Pomeron".
2. Interactions where the beam particles emerge intact or dissociated into low mass states.

Diffractive physics not completely described by QCD. Phenomenological approaches based on QCD + different models implemented in MC simulations \rightarrow importance to compare models to data.

Diffractive Dissociation

Experimentally:

Kinematic variables:

- t , the 4 -momentum exchanged at the proton vertex;
- the mass of diffractive system, $\mathrm{M}_{\mathrm{X}}>\mathrm{M}_{\mathrm{Y}}$ or $\xi_{\mathrm{X}(\mathrm{Y})} \equiv \mathrm{M}_{\mathrm{X}(\mathrm{Y})} / 2$ (fractional squared momentum loss)

Total cross section not directly measured by ATLAS and CMS yet.

- Direct measurements of $\mathrm{M}_{\mathrm{X}(\mathrm{Y})}$ difficult: produced particles escape along the beam-pipe.
- ATLAS/CMS central detectors sensitive to high mass diffraction
\rightarrow low mass diffractive states not directly observable.
Diffractive processes lead to final state particles separated by large rapidity gaps: region of no activity (particle production suppressed).

Link between M_{X} and rapidity gap $\Delta \eta$ (for SD): $\Delta \eta \approx \ln \mathrm{s} / \mathrm{M}_{\mathrm{x}}{ }^{2}=-\ln \xi_{\mathrm{x}}$.

Analysis Strategy

Limits due to detector acceptance $\rightarrow \xi=\mathrm{M}_{\mathrm{x}}{ }^{2} / \mathrm{s}>5 \times 10^{-6}\left(\mathrm{M}_{\mathrm{X}}>15.7 \mathrm{GeV}\right)$
Inelastic cross section measured in limited kinematic range then extrapolated at full range using MC.

Measurements:

CMS: total inelastic cross section
ATLAS: total and differential
inelastic cross section
Methods:
CMS: 1) hit counting in
calorimeters,
2) vertex counting in
tracker;
ATLAS: hit counting in scintillator
counters;

Statistics:
CMS: 7 runs in 2010
$\mu \in$ [0.007;0.1]
High statistics, systematic effect due to pile up.
ATLAS: single fill in 2010
$\mu=0.01$
Low statistics,
pile up removal.

Measurement of the Inelastic ProtonProton Cross Section at $\sqrt{s}^{s}=7 \mathrm{TeV}$ with CMS
(Phys. Lett. B 722 (2013) 5-27)

CMS Detector

Single Side Counting (CMS PAS QCD-11-002)

Number of events with at least 5 GeV of energy in either of the two hadron forward calorimeters (HF) counted.

Three triggers: 1) coincidence trigger (for pp events);
2) single bunch trigger (for unpaired bunches);
3) random empty trigger (for detector noise).

HF acceptance outside tracker acceptance $\boldsymbol{\rightarrow}$ impossible to separate multiple inelastic events in the same bunch crossing $\boldsymbol{\rightarrow}$ pile up correction needed.

Event Selection Efficiency

PYTHIA 8

PHOJET

Events with small ξ can escape detection due to detector acceptance
\rightarrow event selection efficiency studied as function of ξ for different MC generators: PYTHIA6, PYTHIA8, PHOJET.

For $\xi>5 \times 10^{-6}$ CMS has more than 98% efficiency of detection.

ATLAS results are also available for $\xi>5 \times 10^{-6} \rightarrow$ direct comparison

Cross Section Measurement

The number of collisions per trigger follows a Poisson statistics:

$$
P(n, \lambda)=\frac{\lambda^{n} \mathrm{e}^{-\lambda}}{n!}
$$

$$
\begin{aligned}
& \lambda=\text { mean number of } \\
& \text { interactions with } \mathrm{E}_{\mathrm{HF}}>5 \mathrm{GeV} \text {. }
\end{aligned}
$$

The fraction of overlapping events is evaluated from data for 7 different luminosity conditions:

$$
f_{\mathrm{pu}}=\frac{\sum_{n=2}^{\infty} P(n, \lambda)}{\sum_{n=1}^{\infty} P(n, \lambda)}=\frac{1-(1+\lambda) \mathrm{e}^{-\lambda}}{1-\mathrm{e}^{-\lambda}} \sim \frac{\lambda}{2}-\frac{\lambda^{2}}{12}+\mathcal{O}\left(\lambda^{3}\right) .
$$

For each $f_{p u}$, a value of $\sigma_{\text {inel }}\left(\xi>5^{*} 10^{-6}\right)$ is provided.

Inelastic pp Cross Section @ 7 TeV

Systematic source	Uncertainty on $\sigma_{\text {inel }}$	Change in $\sigma_{\text {inel }}$
Run-to-run variation	$\pm 0.8 \mathrm{mb}$	$\pm 1.3 \%$
Selection efficiency	$\pm 0.6 \mathrm{mb}$	$\pm 1.0 \%$
Contamination from $\xi<5 \times 10^{-6}$	$\pm 0.3 \mathrm{mb}$	$\pm 0.5 \%$
HF tower exclusion	$\pm 0.3 \mathrm{mb}$	$\pm 0.4 \%$
HF energy threshold	$\pm 0.1 \mathrm{mb}$	$\pm 0.2 \%$
Total (in quadrature)	$\pm 1.1 \mathrm{mb}$	$\pm 1.8 \%$

Averaging σ values obtained under 7 (low) pile-up conditions:

$$
\begin{aligned}
& \sigma_{\text {inel }}^{p p}\left(\xi>5^{*} 10^{-6}\right)=60.2 \pm 0.2(\text { stat } .) \\
& \pm 1.1(\text { syst. }) \pm 2.4(\text { lumi }) \mathrm{mb}
\end{aligned}
$$

Total inelastic cross section extrapolated to the full kinematic range using six additional MC models. Extrapolation factor (only MC dependent) averaged over models: 1.071 ± 0.025

$$
\begin{aligned}
& \sigma_{\text {inel }}^{p p}(7 \mathrm{TeV})=64.5 \pm 0.2(\text { stat } .) \pm 1.1(\text { syst } .) \\
& \pm 2.6(\text { lumi }) \pm 1.5(\text { extr. }) \mathrm{mb}
\end{aligned}
$$

Vertex Counting Method (CMS PAS FWD-11-001)

Estimation of the inelastic cross section by counting event vertices.
It relies on accuracy of tracking system not on MC simulations.

Two samples triggered by tracking system:

1) single-muon candidate events (for analysis);
2) inclusive sample of two-electron candidate events (for systematic check on the trigger choice).

Specific trigger requirements not important because their efficiencies do not depend on number of pile up.

Vertex Definition

- Quality cuts on vertex:
$->1,>2$ or >3 tracks with $\mathrm{p}_{\mathrm{T}}>200 \mathrm{MeV}$ in $|\eta|<2.4 \rightarrow 3$ set of events;
- each track should have at least 2 pixel hits and 5 strip hits in the tracker;
- the vertex should pass an overall quality cut on track fit:
- Vertex efficiency derived from PYTHIA simulation ($\sim 40 \%$ for a 2 tracks vertex (green) and $\sim 20 \%$ for a 3 tracks vertex (pink))
- Inefficiencies due to:
- fake vertices (real secondary vertices and fake secondary vertices);
- reconstruction inefficiencies.

Analysis Strategy

$$
P\left(n_{\text {pileup }}\right)=\frac{\left(L_{\text {inst }} * \sigma\right)^{n_{\text {pileup }}}}{n_{\text {pileup }}!} e^{-\left(L_{\text {inst }} * \sigma\right)}
$$

Fraction of $p p$ events with n pile up vertices

Idea: use the measured probability of having n (0 to 8) inelastic pp interactions each producing a vertex for different luminosities to evaluate $\sigma_{\text {inel }}$ from fit.

For each sample:

1) Count the number of pile-up events for a luminosity value:

- number of vertices in the event counted for any given bunch crossing;

2) Bin-by-bin MC corrections of the distribution of number of visible vertices for various effects;
3) Fit the probability of having 0 to 8 pile-up events as a function of luminosity with a Poisson curve \rightarrow 9 values of $\sigma_{\text {visible }}$ obtained.

Total Visible Inelastic pp Cross Section @ 7 TeV

Total visible inelastic cross section obtained averaging the 9 values of visible cross section, each obtained fitting the pile up distribution.

Analysis repeated for the three sets of events:

Measurement	Result
$\sigma_{\text {inel }}(>1$ track $)$	$[58.7 \pm 2.0($ syst. $) \pm 2.4($ lum. $)] \mathrm{mb}$
$\sigma_{\text {inel }}(>2$ tracks $)$	$[57.2 \pm 2.0($ syst.) $\pm 2.4($ lum. $)] \mathrm{mb}$
$\sigma_{\text {inel }}(>3$ tracks $)$	$[55.4 \pm 2.0($ syst.) $\pm 2.4($ lum. $)] \mathrm{mb}$

Total Inelastic pp Cross Section @ 7 TeV

$\sigma_{\text {inel }}^{p p}(7 \mathrm{TeV})=68.0 \pm 2.0($ syst.$) \pm 2.4($ lumi $)$
± 4.0 (extr.) mb

Additional MC models used: PYTHIA6, PYTHIA8, PHOJET, SIBYLL, EPOS and QGSJET-II.

Similar trend for the measured cross sections but substantial differences in the expectation of the total inelastic pp cross section.

Systematic source	Uncertainty on $\sigma_{\text {inel }}$
Verrex reconstruction efficiency	$\pm 1.4 \mathrm{mb}$
Longitudinal position of vertex	$\pm 0.1 \mathrm{mb}$
Verrex quality	$\pm 0.7 \mathrm{mb}$
Minimum distance berween vertices	$\pm 0.1 \mathrm{mb}$
Transverse position of vertex	$\pm 0.3 \mathrm{mb}$
Different sers of dara	$\pm 0.9 \mathrm{mb}$
Range of luminosity used in fit	$\pm 0.2 \mathrm{mb}$
Reweighting MC track distribution	$\pm 0.2 \mathrm{mb}$
Total (in quadrature)	$\pm 2.0 \mathrm{mb}$

ATLAS Detector

Muon Detectors
Tile Calorimeter
Liquid Argon Calorimeter
Calorimeters
$|\eta|<4.9$

Tracker
$|\eta|<2.5$

Minimum Bias Trigger Scintillator
(MBTS) $2.1<|\eta|<3.8$
16 plastic scintillators on each side read out by
fibers + PMTs.

Measurement of the inelastic pp cross section at $\sqrt{S}=7 \mathrm{TeV}$ with ATLAS

(Nature Comm. 2 (2011), April 2011)

Minimum Bias Trigger Scintillator (MBTS) counting.
Two data sample:

1) inclusive events: at least two MBTS counters above threshold on at least one side of ATLAS.
2) single-sided events: at least two MBTS hits on one side and no hits on opposite side.

Cross Section Measurement

$\mathrm{N}, \mathrm{N}_{\mathrm{bkg}}, \varepsilon_{\text {trig }}, \mathrm{L}_{\text {int }}$ obtained from data.
$\varepsilon_{\text {sel }}, \mathrm{f}_{\xi^{\prime}<5^{*} 10 e-6}$ obtained from tuned MC simulation: variety of models
\rightarrow large uncertainty due to model dependence.
To reduce MC uncertainty, the ratio of single sided to inclusive events $R_{s s}=N_{S S} / N_{\text {incl }}$ is measured to constrain the f_{D} value (relative diffraction dissociation cross section):

$$
f_{D}=\frac{\left(\sigma_{S D}+\sigma_{D D}+\sigma_{C D}\right)}{\sigma_{i n e l}}
$$

Constraining f_{D}

- Measure the ratio of single sided to inclusive events $R_{S S}=N_{S S} / N_{\text {incl }}$

$$
R_{S S}=\left[10.02 \pm 0.03(\text { stat. })_{-0.4}^{+0.1}(\text { syst } .)\right] \%
$$

- Comparison of data to different MC.
- Constrain f_{D} for each model by finding value that match $R_{S S}$.
- Different models studied for the systematics.

Total Inelastic pp Cross Section @ 7TeV

Source	Uncertainty (\%)
Trigger Efficiency	0.1
MBTS Response	0.1
Material	0.2
f_{D}	0.3
Beam Background	0.4
MC Multiplicity	0.4
ξ distribution	0.4
Luminosity	3.4
Total	3.5

$\sigma_{\text {inel }}^{p p}\left(\xi>5 * 10^{-6}\right)=60.3 \pm 0.05($ stat.$)$ $\pm 0.5($ syst. $) \pm 2.1($ lumi $) m b$

Measured $\sigma\left(\xi>5^{*} 10^{-6}\right)$ lower than PYTHIA/PHOJET predictions. Total inelastic pp cross section extrapolated to full ξ using PYTHIA implementation of Donnachie-Landshoff model:

$$
\sigma_{\text {inel }}^{p p}(7 \mathrm{TeV})=69.1 \pm 2.4(\text { exp. }) \pm 6.9(\text { extr. }) \mathrm{mb}
$$

Large extrapolation errors \rightarrow Important to measure it directly.

Rapidity Gap Cross Section Measured with the ATLAS Detector in pp Collisions at $\sqrt{ }=7 \mathrm{TeV}$

Eur. Phys. J.C72 (2012) 1926

Inclusive events: at least two counters of Minimum Bias Trigger Scintillator detector (MBTS) above threshold on at least one side of ATLAS.

Select diffractive sample with large rapidity gap.
Compare $\mathrm{d} \sigma / \mathrm{d} \eta(\mathrm{d} \sigma / \mathrm{d} \xi)$ with various MC generators allowing to tune MC.

Rapidity Gap Definition

- Pseudorapidity acceptance defined by tracker and calorimeters:
$-4.9<\eta<4.9$
- Acceptance divided in rings of unit $-\Delta \eta$ starting from ± 4.9;
- Activity in a $\Delta \eta$ ring defined as either:
$-\geq 1$ track with $\mathrm{p}_{\mathrm{T}}>200 \mathrm{MeV}$ (ID: $|\eta|<2.5$)
$-\geq 1$ calorimeter cell above noise threshold (2.5 <| $\eta \mid<4.9$)
- Specific observable studied $\Delta \eta^{\mathrm{F}}=$ the larger of the two forward pseudorapidity region from $\eta= \pm 4.9$ to the nearest track or calorimeter cluster with no ring activity.

- Data cover the range $0<\Delta \eta^{\mathrm{F}}<8$ (detector acceptance). Diffractive events : large $\Delta \eta^{\mathrm{F}}\left(\Delta \eta^{\mathrm{F}}=\Delta \eta-4\right)$ MC prediction: $\mathrm{d} \sigma / \mathrm{d} \Delta \eta^{\mathrm{F}} \sim$ const

Differential Inelastic pp Cross Section

- low $\Delta \eta^{\mathrm{F}}(<2)$: exponential decrease due to ND contribution;
- intermediate $\Delta \eta^{\mathrm{F}}\left(2<\Delta \eta^{\mathrm{F}}<5\right)$ plateau due to diffractive component, ND component suppressed;
- high $\Delta \eta^{\mathrm{F}}(>5)$: rise due to diffractive component only.

$d \sigma_{\text {inel }} / \mathbf{d} \Delta \eta^{\mathrm{F}}$ vs Gaps for $\Delta \eta^{\mathrm{F}}>2$

No MC describes all data in all $\Delta \eta^{\mathrm{F}}$ range.
PYTHIA reproduces data better at low $\Delta \eta^{\mathrm{F}}$, PHOJET reproduced data better at intermediate $\Delta \eta^{\mathrm{F}}$. No MC reproduces the rise of cross section at large $\Delta \eta^{\mathrm{F}}$.

PYTHIA:

overshoot of data due to DD overestimation and missing CD components; PHOJET:
CD contribution modeled but smaller DD contribution. Total inelastic cross section overestimated.

Discussion of results and comparison with theory

Comparison of $\sigma_{\text {inel }}(p p)$ at $\sqrt{s}^{s}=7 \mathrm{TeV}$

TOTEM Total inelastic pp cross section

$$
\sigma_{\text {inel }}=73.5^{+2.4}{ }_{-1.9} \mathrm{mb}
$$

ALICE Visible pp cross section (2.8< $\eta<5.1 \&-3.7<\eta<-1.7$) $\sigma_{\text {inel }}=72.7 \pm 5.2 \mathrm{mb}$

ATLAS and CMS in agreement for $\sigma_{\text {inel }}\left(\xi>5^{*} 10^{-6}\right)$. High uncertainties on extrapolations of total inelastic cross section due to different theoretical models.

$\boldsymbol{\sigma}_{\text {inel }}$ (mb)	CMS HF calorimeter	CMS Pile up	ATLAS MBTS counting		
$\xi>5^{*} 10^{-6}$	60.2 ± 0.2 (stat) ± 1.1 (sys) ± 2.2 (lumi)	1 track 58.7 2 track $57.2 ~$	3 track 55.4	\quad	60.30 ± 0.05 (sys) stat)
:---					

Comparison of Inelastic pp Cross Section Measurements

ATLAS vs Theory

Differential Inelastic Cross Section Integrated for $\boldsymbol{\xi}>\xi_{\text {cut }}$ vs $\boldsymbol{\xi}_{\text {cut }}$

Total inelast cross section for $\Delta \eta^{\mathrm{F}}<\Delta \eta_{\text {cut }}\left(\xi>\xi_{\text {cut }}\right)$ as function of $\xi_{\text {cut }}$
$\log \xi_{c u t}=-0.45 \Delta \eta_{F, \text { cut }}-1.52$
ATLAS measurements compared with different theoretical models.

Similar trend of MC predictions but no one gives a precise description of data.

Conclusions

CMS two independent methods and subdetectors for the total inelastic cross section.

ATLAS two measurements:

1) total inelastic cross section (MBTS counting)
2) differential inelastic cross section (rapidity gaps)

ATLAS and CMS measured the inelastic cross section in the kinematic range $\boldsymbol{\xi}>5 \times 10^{-6}$ then extrapolated to the full range:

- agreement for $\sigma_{\text {inel }}\left(\xi>5^{*} 10^{-6}\right)$;
- extrapolations to total inelastic cross section rely entirely on theoretical models \rightarrow more uncertainties.

Future progresses:
direct measurement of $\sigma_{\text {inel }}$ via $\sigma_{\text {tot }}$ and $\sigma_{\text {el }}$ ongoing with ALFA.

Back up slides

Diffractive Physics

Theoretically

1) Interactions where beam particles emerge intact or dissociated into low mass states.
2) Interactions mediated
 by t-channel exchange ladder of gluons with the quantum numbers of the vacuum (color singlet exchange called "Pomeron").

Diffractive physics not yet completely described by QCD. Used phenomenological approaches based on QCD

Diffractive cross section modeled using Regge phenomenology.
Different models used in the Monte Carlo simulations: Ryskin, Martin and Khoze (RMK); Schuler and Sjöstrand; Bruni and Ingelman; Berger and Streng; Donnachie and Landshoff; etc etc...

Experimentally

Kinematic variable: mass of diffractive system: $\mathrm{M}_{\mathrm{X}(\mathrm{Y})}$, or $\xi_{\mathrm{X}(\mathrm{Y})} \equiv \mathrm{M}_{\mathrm{X}(\mathrm{Y})}{ }^{2} / \mathrm{s}$ (fractional squared momentum loss).

Total cross section not directly measured by ATLAS and CMS yet.
Direct measurements of $\mathrm{M}_{\mathrm{X}(\mathrm{Y})}$ difficult: produced particles escape in the beampipe. ATLAS/CMS central detectors sensitive to high mass diffraction; low mass diffractive dissociation not directly observable.

Diffractive processes lead to final state particles separated by large rapidity gaps: region of no activity (particle production suppressed).
Link between M_{X} and rapidity gap $\Delta \eta$: $\Delta \eta=\ln \mathrm{s} / \mathrm{M}_{\mathrm{X}}{ }^{2} \sim-\ln \xi_{\mathrm{X}}$.

Analysis Strategy

CMS

Total inelastic cross section

$\mathrm{L}_{\mathrm{int}}=2.78 \mu \mathrm{~b}^{-1}, 7$ runs in 2010.
$\mu_{\text {mean }} \in[0.007 ; 0.1]$
High statistics, systematic effect due to pile up.

1) Hits in forward calorimeters:
kinematic limit not geometrical but selection efficiency based:
$\xi=\mathrm{M}_{\mathrm{x}}{ }^{2} / \mathrm{s}>5^{*} 10^{-6}$
(i.e: 5 GeV energy deposited in HF)
2) Visible cross section selecting events with at least 1 track.

Inelastic cross section extrapolated at full range using MC.

ATLAS

1. Total inelastic cross section
$\mathrm{L}_{\mathrm{int}}=20.3 \mu \mathrm{~b}^{-1}$, single fill in 2010 $\mu_{\text {mean }}=0.01$.
Low statistics, no correction for pile up.
Limits on measurements due to detector acceptance:

$$
\begin{aligned}
& |\eta|<4.9 \rightarrow \hat{\xi}=\mathrm{M}_{\mathrm{x}}{ }^{2} / \mathrm{s}>5^{*} 10^{-6} \\
& \text { (i.e } \mathrm{M}_{\mathrm{X}}>15.7 \mathrm{GeV} \text {) }
\end{aligned}
$$

Inelastic cross section extrapolated at full range using MC.

2. Differential cross section

$\mathrm{L}_{\mathrm{int}}=7.1 \pm 0.2 \mu \mathrm{~b}^{-1}$, single fill in 2010.
$\mu_{\text {mean }}=0.01$ (negligible pile up). $d \sigma / d \xi$ as function of ξ.

ATLAS: MBTS counting

MC cross section models

Process	cross section (mb)	
	PYTHIA	PHOJET
non-diffractive	48.5	61.6
single diffractive dissociation	13.7	10.7
double diffractive dissociation	9.3	3.9
central diffractive dissociation	-	1.1
inelastic	71.5	77.3
	fractional contribution (\%)	
f_{D}	32.2	20.2
$f_{S D}$	59.6	68.6

MBTS multiplicity distribution

Systematics due to ξ-distribution Taken from maximum difference between models

None of the generators is perfect but data lie between the models at low multiplicity

Donnachie-Landshoff des|cribes well single-side sample

Choose threshold in $\mathbf{E}_{\text {CaloCell }}$

- Crucial to define what activity in $\Delta \eta$-ring is
- tails in noise distributions: optimize threshold
$-\mathrm{S}=\mathrm{E}_{\text {CaloCell }} / \sigma_{\text {noise }}>4.8-5.8$ depending on η-ring
- Data vs MC: good understanding of noise over 7 orders of magnitude

Comparison of the inelastic cross section with prediction

$\sigma\left(\xi>5 \times 10^{-6}\right)(\mathrm{mb})$	
ATLAS Data 2010	60.33 ± 2.10 (exp.)
Schuler and Sjōstrand	66.4
Phojet	74.2
Ryskin et al.	51.8-56.2
$\sigma\left(\xi>m_{p}{ }^{2} / \mathrm{s}\right)(\mathrm{mb})$	
ATLAS Data 2010	69.1 ± 2.4 (exp) ± 6.9 (extr.)
Schuler and Sjöstrand	71.5
Phojet	77.3
Block and Halzen	69.0 ± 1.3
Ryskin et al.	65.2-67.1
Gotsman et al.	68
Achilli et al.	60-75

[^0]
Optimize the MC for data unfolding

- Default MC(s) tuned based on existing measurements:
- f_{D} based on previously described ATLAS result
- $\sigma_{D D} / \sigma_{S C}$ and $\sigma_{C D} / \sigma_{S D}$ based on Tevatron results
- Tuned-MC vs uncorrected-data on distributions used for data correction: not perfect BUT acceptable (best PYTHIA8)

Experimental Effect / Systematics

- Beam-induced background subtracted (0.2\%)
- MBTS efficiency correction ($\varepsilon_{\text {MBTS }}>\sim 95 \%$)
- Migration between reconstructed and hadron-levels
- Unfolding procedure based on Bayesan method
- Unfoding matrix approximatively diagonal (small migration in interesting $\Delta \mathrm{n}^{\mathrm{F}}$ region)
- Systematic uncertainty:

$$
\begin{array}{ll}
\text { - } & <8 \%\left(\Delta \eta^{F}>3\right) \\
\text { - } & \sim 20 \%\left(\Delta \eta^{F} \sim 1.5\right) \\
\text { - } & \sim 10 \%\left(\Delta \eta^{F}<\sim 1\right)
\end{array}
$$

- Dominated by $\mathrm{E}_{\text {calocell }}$ and MC modelling

MC prediction

- $\sigma(\mathrm{s})$
- $s^{\alpha(0)-1}$ where $\alpha(0)$ is the IP-intercept
$-\ln (s)$
- Predicted values (ND+SD+DD+CD)
- PYTHIA: 48.5+13.7+9.3+0 $=71.5 \mathrm{mb}$
- PHOJET: 61.6+10.7+3.9+1.1 = 77.3 mb
- ξ-dependence
- Schuler and Sjöstrand (defalt PYTHIA): flat
- Donnachie-Landshoff (DL): $1 / \xi^{a(0)}, \alpha(0)=1.085, \alpha^{\prime}=0.25$ GeV^{-2} (default model in the analysis)
- PHOJET: decrease with decreasing ξ

ATLAS: Rapidity Gap

Hadronization Fluctuation: Uncertainty varying $\mathbf{p}_{\mathbf{T}}{ }^{\text {cut }}$

Test MC prediction on hadronization fluctuations at high $\Delta \eta^{\mathrm{F}}$. All models predict by increasing p_{T} : - larger ND component at high $\Delta \eta^{\mathrm{F}}$;

- ND and Diffractive component become similar.

PYTHIA8 better in describing both shape and absolute value.

Pomeron-flux Parameterization

Flatness at large $\Delta \eta^{\mathrm{F}} \rightarrow$ Pomeron intercept close to 1 . Increase at large $\Delta \eta^{\mathrm{F}}$ due to $\alpha_{\mathrm{IP}(0)}>1$.
$\alpha_{I P}(t)=\alpha_{I P}(0)+\alpha_{I P}^{\prime} t$
In triple Pomeron Regge-model, slope of differential cross section sensitive to Pomeron intercept value:

Best choice of Pomeron intercept: - cleanest diffractive region $\Delta \eta^{\mathrm{F}}>6$ - PYTHIA8 + Donnachie-Landshoff flux parameterization;

- varying $\alpha_{\mathrm{IP}}(0)$;
- best estimate: $\alpha_{\text {IP }}(0)=1.058(40)$

Good description of data at $\Delta \eta^{\mathrm{F}}>5$ and $\Delta \eta^{\mathrm{F}}<2$.

For $2<\Delta \eta^{\mathrm{F}}<5$ discrepancy:

- missing CD component in PYTHIA;

- uncertainty in modeling large hadronization fluctuations in ND.

MC prediction

SD x-sect. expressed as a triple pomeron 3IP amplitude (PYTHIA and PHOJET)

- $\mathrm{G}_{3 \mathrm{IP}}(0)=$ product of couplings
- $\mathrm{aIP}(0)-2$
$\alpha \mathrm{IP}(\mathrm{t})$ is IP -trajectory
- $\mathrm{f}(\mathrm{t})=\exp \left(\mathrm{B}\left(\mathrm{s}, \mathrm{M}^{2}\right) \mathrm{t}\right.$
- ξ-dependence: ($d \sigma / d \ln \xi \sim d \sigma / d \Delta \eta)$
- Schuler and Sjostrand (default) : aIP(0) =1,dб/dln $\varsigma \sim$ const)
- Bruni-Ingelmann: double exponential in t-dependence
- Donnachie-Landshoff: $\alpha(0)=1.085, a^{\prime}=0.25 \mathrm{GeV}^{-2}$
- Tuned MC: each model with respective value for $f_{D}+C F D$ constraints on $\mathrm{f}_{\mathrm{DD}} / \mathrm{f}_{\mathrm{SD}}$

CMS: HFcounting

Generator	Efficiency ϵ_{ξ}	
Threshold:	4 GeV	5 GeV
PYTHIA $6\left(\xi>5 \times 10^{-6}\right)$	$98.7 \pm 0.6 \%$	$97.5 \pm 0.6 \%$
PYTHIA $8\left(\xi>5 \times 10^{-6}\right)$	$99.7 \pm 0.2 \%$	$99.3 \pm 0.2 \%$
PHOJET $\left(\xi>5 \times 10^{-6}\right)$	$99.4 \pm 0.2 \%$	$99.1 \pm 0.2 \%$

Generator	f_{ξ}	
Threshold:	4 GeV	5 GeV
PYTHIA 6	0.0234	0.0200
PYTHIA 8	0.0256	0.0205
PHOJET	0.0143	0.0118

Run No.	λ	f_{pu}
132601	$(0.64 \pm 0.01) x$	0.0032 ± 0.0001
132599	$(0.78 \pm 0.01) x$	0.0039 ± 0.0001
133877	$(1.74 \pm 0.02) x$	0.0087 ± 0.0001
133874	$(3.34 \pm 0.05) x$	0.0166 ± 0.0002
137027	$(4.59 \pm 0.17)^{x}$	0.0228 ± 0.0009
135575	$(8.41 \pm 0.04) x$	0.0415 ± 0.0002
135175	$(9.98 \pm 0.05) x$	0.0491 ± 0.00031

Generator	ϵ_{ζ}	f_{ξ}	Extrapolation Factor $\frac{\varepsilon_{\xi}}{\left(1-f_{\zeta}\right) \epsilon_{\text {inel }}}$
PYTHIA 6	0.995	0.0272	1.0911
PYTHIA 8	0.999	0.0263	1.0904
PHOJET	0.997	0.0146	1.0402
SIBYLL	0.999	0.0173	1.0548
EPOS	0.997	0.0064	1.0498
QGSJET-II	0.996	0.0281	1.0977
Average	0.997	0.0200	1.0707

$\frac{\epsilon_{\bar{\zeta}}}{\epsilon_{\text {inel }}\left(1-f_{\bar{\zeta}}\right)}$

Event Selection Efficiency

PYTHIA 8

PHOJET

PYTHIA 6

PYTHIA 8

PHOJET

3 different generator and for two threshold energy

CMS: pile up counting

To select vertices with at least 2 track \rightarrow NDOF >0.5

$$
N D O F=2 * \Sigma_{\text {tracks }}(\text { weights })-3 \quad \text { weight } \epsilon[0 ; 1](1=\text { perfect track })
$$

Vertex Definition

- We select PU event large enough to make a vertex:
- We count vertexes requiring at least 3 tracks with $|\boldsymbol{\eta}|<2.4 \& \& p_{t}>$ 200 MeV
- Each track should have at least 2 pixel hits \&\& 5 Strip hits
- We define "real" those vertexes generated in pp scattering and "fake" those created by other mechanisms. Fake come mostly from:
- Real secondary vertexes (i.e. generated by long lived particles)
- Split secondary vertexes (i.e generated by the vertex algorithm splitting a single vertex in two)

Fake vertexes have been studied with Pythia generated without PU (i.e. at most one interaction -> secondary vertex is fake by definition)
Fake vertexes rate $\sim 1.510^{-3}$

- Using a full GEANT simulation of the tracker detector we studied the vertex reconstruction efficiency.
- The most important parameter is the vertex multiplicity: vertexes with < 17 tracks are not always reconstructed
- The algorithm reconstructs vertexes separated by more than 0.06 mm .

The "blind distance" is largely independent of the number of tracks in the vertexes.

Need to correct the PU distribution for the missing fraction of events at low multiplicity and for vertex merging

Vertex reconstruction efficiency

CMS Preliminary

$\sqrt{\mathbf{s}}=\mathbf{7} \mathrm{TeV}, \mathrm{L}=\mathbf{3 6} \mathbf{p b}^{-1}$

- Measured
——MC - Predicted

Pile Up Distribution vs Luminosity

- The expected distribution of pile up interactions calculated for a specific luminosity interval;
- MC simulation reweighted to generate a distribution matching the calculated one;
- The generated pile up distributions for inclusive interactions with $>1,>2$ and >3 tracks each with $\mathrm{p}_{\mathrm{T}}>200 \mathrm{MeV}$ and $|\eta|<2.4$ obtained from reweighted MC;
- bin-by-bin correction computed using ratio reconstructed to generated MC pile up distributions for the three inclusive sets on events.

Good agreement with Poisson fit.

Unfolding

The visible number of vertexes needs to be $\frac{\text { 喜 }}{\substack{4}}$ corrected to obtain the "real" number. This is done in luminosity bins (14).

An unfolding technique is used, according to the following steps:

1) Generate the "true" vertex distribution in luminosity bins (convolution of measured lumi + poisson). Use the true vertex distribution to generate events with n vertexes
2) Assign to each of the generated vertex a multiplicity and a position in z according to the data distribution
3) For vertexes with low multiplicity decides whether or not they are selected. Vertexes closer together than 0.06 cm are merged
4) Fill the calculated "visible" distribution

Other Measurements: ALFA

- Modified optics needed ($\beta^{*}>90 \mathrm{~m}$)
- Trigger on left-right coincidence (elastic)
- Prescaled triggers for diffraction
- First data taking

October 2011

- Analysis ongoing

- Loose cuts on back-toback topology

Other Measurements: TOTEM

TOTEM has measured the differential cross-section for elastic proton-proton scattering at the LHC energy of $\sqrt{s}=7 \mathrm{TeV}$ analysing data from a short run with dedicated large β^{*} optics. A single exponential fit with a slope $B=\left(20.1 \pm 0.2^{\text {stat }} \pm 0.3^{\text {syst }}\right) \mathrm{GeV}^{-2}$ describes the range of the fourmomentum transfer squared $|t|$ from 0.02 to $0.33 \mathrm{GeV}^{2}$. After the extrapolation to $|t|=0$, a total elastic scattering cross-section of ($\left.24.8 \pm 0.2^{\text {stat }} \pm 1.2^{\text {syst }}\right) \mathrm{mb}$ was obtained. Applying the optical theorem and using the luminosity measurement from CMS, a total proton-proton cross-section of $\left(98.3 \pm 0.2^{s t a t} \pm 2.8^{\text {syst }}\right) \mathrm{mb}$ was deduced which is in good agreement with the expectation from the overall fit of previously measured data over a large range of center-of-mass energies. From the total and elastic pp cross-section measurements, an inelastic pp cross-section of $\left(73.5 \pm 0.6^{\text {stat }}+1.8{ }_{-1}\right.$ syit $) \mathrm{mb}$ was inferred.

Extrapolation to $t=0$ The elastic differential cross-section has been measured down to $|t|=2 \times$ $10^{-2} \mathrm{GeV}^{2}$. The data were then extrapolated to $t=0$ assuming the functional form

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{\mathrm{el}}}{\mathrm{~d} t}=\left.\frac{\mathrm{d} \sigma_{\mathrm{el}}}{\mathrm{~d} t}\right|_{t=0} \mathrm{e}^{-B|\xi|} . \tag{3}
\end{equation*}
$$

The total proton-proton cross-section is related to the elastic cross-section via the optical theorem

$$
\begin{equation*}
\sigma_{\text {tot }}^{2}=\left.\frac{16 \pi(\hbar c)^{2}}{1+\rho^{2}} \frac{\mathrm{~d} \sigma_{\mathrm{el}}}{\mathrm{~d} t}\right|_{t=0} . \tag{4}
\end{equation*}
$$

Taking the COMPETE prediction [30] of $0.14_{-0.08}^{+0.01}$ for the parameter $\left.\left.\rho=\frac{S T}{S} \right\rvert\, f_{\mathrm{f}}(0)\right]$, where $f_{\mathrm{el}}(0)$ is the forward nuclear elastic amplitude, $\sigma_{\text {tot }}$ was thus determined to be

$$
\begin{equation*}
\sigma_{\mathrm{tot}}=\left(98.3 \pm 0.2 \text { (stat) }{ }_{-2.7}^{+2.8} \text { (syst) }\right) \mathrm{mb} . \tag{5}
\end{equation*}
$$

The errors are dominated by the extrapolation to $t=0$ and the luminosity uncertainty.

Table 1: Results of the TUIEM measurements at the LHC energy of $\sqrt{ } s=\% \mathrm{MeV}$.

	Statistical uncertainties	Systematic uncertainties	Result
t	$\pm[3.4 \div 11.9] \%$ single measurement ${ }^{*}$)	$\pm[0.6 \div 1.8] \%^{\text {optics }} \pm<1 \%^{\text {aligrment }}$	
$\frac{\mathrm{d} \sigma}{\mathrm{d} t}$	5\%/bin	$\pm 4 \%^{\text {luminosity }} \pm 1 \%^{\text {aralysis }} \pm 0.7 \%^{\text {unfolding }}$	
B	$\pm 1 \%$	$\pm 1 \%^{t-\text { scale }} \pm 0.7 \%^{\text {unfolding }}$	$\left(20.1 \pm 0.2^{\text {stat }} \pm 0.3^{\text {syst }}\right) \mathrm{GeV}^{-2}$
$\left.\frac{\mathrm{d} \sigma}{\mathrm{d}}\right\|_{t=0}$	$\pm 0.3 \%$	$\pm 0.3 \%^{\text {optics }} \pm 4 \%^{\text {huminosity }} \pm 1 \%^{\text {analysis }}$	$\left(503.7 \pm 1.5^{\text {stat }} \pm 26.7^{\text {syst }}\right) \mathrm{mb} / \mathrm{GeV}^{2}$
$\int \frac{\mathrm{d} \sigma}{\mathrm{d} t} \mathrm{~d} t$	$\pm 0.8 \%$ extrapolation	$\pm 4 \%{ }^{\text {luminosity }} \pm 1 \%^{\text {aralysis }}$	
$\sigma_{\text {tot }}$	$\pm 0.2 \%$	$\left({ }_{-0.2 \%}^{+0.8 \%}\right)^{(\rho)} \pm 2.7 \%$	$\left(98.3 \pm 0.2^{\text {stat }} \pm 2.8^{\text {syst }}\right) \mathrm{mb}$
$\sigma_{\mathrm{el}}=\int \frac{\mathrm{d} \sigma}{\mathrm{d} t} \mathrm{~d} t$	$\pm 0.8 \%$	$\pm 5 \%$	$\left(24.8 \pm 0.2^{\text {stat }} \pm 1.2^{\text {syst }}\right) \mathrm{mb}$
$\sigma_{\text {inel }}$ $\sigma_{\text {inel }}(\mathrm{CMS})$ $\sigma_{\text {inel }}$ (ATLAS) $\sigma_{\text {inel }}$ (ALICE)	$\pm 0.8 \%$	$\left({ }_{-1.8 \%}^{+2.4 \%}\right)$	$\begin{aligned} & \left(73.5 \pm 0.6^{\text {stat }}+1.1 .{ }_{-1.3}^{\text {syst }}\right) \mathrm{mb} \\ & \left(68.0 \pm 2.0^{\text {syst }} \pm 2.4^{\text {lumi }} \pm 4^{\text {extrap }}\right) \mathrm{mb} \\ & \left(69.4 \pm 2.4^{\text {exp }} \pm 6.9^{\text {extrap }}\right) \mathrm{mb} \\ & \left(72.7 \pm 1.1^{\text {model }} \pm 5.1^{\text {hmmi }}\right) \mathrm{mb} \end{aligned}$

${ }^{(*)}$ corrected after unfolding
analysis (includes tagging, acceptance, efficiency, background)

[^0]: Measurement and theoretical predictions of the inelastic cross-section for the restricted kinematic range, $\xi>5 \times 10^{-s}$, and for the full kinematic range, $\xi>\mathrm{m}_{2}^{2} / \mathrm{s}$. The experimental uncertainty (exp.) includes the statistical, systematic and luminosity uncertainties. The extrapolation uncertainty (extr.) only applies to the full kinematic range and is listed separately.

