# aMC@NLO and top pair production at LC 

## Olivier Mattelaer

Universite Catholique de Louvain

# for the MadGraph/aMC@NLO team 

Full list of contributors:
http://amcatnlo.web.cern.ch/amcatnlo/people.htm

## Plan of the Talk

- aMC@NLO
- MadLoop
- MadFKS
- NLO+PS
- MadSpin
- DEMO
- top pair production at LC
- Conclusion


## aMC@NLO: A JointVenture



## aMC@NLO

- Why automation?
- Time: Less tools, means more time for physics
- Robust: Easier to test, to trust
= Easy: One framework/tool to learn


## aMC@NLO

- Why automation?
- Time: Less tools, means more time for physics
- Robust: Easier to test, to trust
- Easy: One framework/tool to learn
- Why NLO?
- Reliable prediction of the total rate
- Reduction of the theoretical uncertainty


## aMC@NLO

- Why automation?
- Time: Less tools, means more time for physics
- Robust: Easier to test, to trust
- Easy: One framework/tool to learn
- Why NLO?
- Reliable prediction of the total rate
- Reduction of the theoretical uncertainty
- Why matched to the PS?
- Parton are not an detector observables
- Matching cure some fix-order ill behaved observables


## NLO Basics

$$
\sigma^{N L O}=\int_{m}^{\text {NLO }} d^{(d)} \sigma^{V}+\int_{m+1}^{\text {Rirtual }} d^{(d)} \sigma^{R}+\int_{m} d^{(4)} \sigma^{B}
$$

## NLO Basics

$$
\sigma^{N L O}=\int_{m}^{\text {NLO }} d^{(d)} \sigma^{V}+\int_{m+1}^{\text {Rirtual }} d^{(d)} \sigma^{R}+\int_{m} d^{(4)} \sigma^{B}
$$

Need to deal with singularities
$\sigma^{N L O}=\int_{m} d^{(d)}\left(\sigma^{V}+\int_{1} d \phi_{1} C\right)+\int_{m+1} d^{(d)}\left(\sigma^{R}-C\right)+\int_{m} d^{(4)} \sigma^{B}$

## NLO Basics

$$
\sigma^{N L O}=\int_{m}^{\text {NLO }} d^{(d)} \sigma^{V}+\int_{m+1}^{\text {Rirtual }} d^{(d)} \sigma^{R}+\int_{m}^{\text {Real }} d^{(4)} \sigma^{B}
$$

Need to deal with singularities

$$
\sigma^{N L O}=\int_{m} d^{(d)}\left(\sigma^{V}+\int_{1} d \phi_{1} C\right)+\int_{m+1} d^{(d)}\left(\sigma^{R}-C\right)+\int_{m} d^{(4)} \sigma^{B}
$$

## MadLoop

MadFKS
MadGraph

## MADLOOP

## The virtual

## OPP Reduction

- decomposition to scalar integrals works at the level of the integrals

$$
\begin{aligned}
\mathcal{M}^{\text {1-loop }} & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}} d_{i_{0} i_{1} i_{2} i_{3}} \text { Box }_{i_{0} i_{1} i_{2} i_{3}} \\
& +\sum_{i_{0}<i_{1}<i_{2}} c_{i_{0} i_{1} i_{2}} \text { Triangle }_{i_{0} i_{1} i_{2}} \\
& +\sum_{i_{0}<i_{1}} b_{i_{0} i_{1}} \text { Bubble }_{i_{0} i_{1}} \\
& +\sum_{i_{0}} a_{i_{0}} \text { Tadpole }_{i_{0}} \\
& +R+\mathcal{O}(\epsilon)
\end{aligned}
$$

## OPP Reduction

- decomposition to scalar integrals - If we would know a similar relation at works at the level of the integrals the integrand level, we would be able to manipulate the integrands and extract the coefficients without doing the integrals

$$
\begin{aligned}
\mathcal{M}^{1 \text {-loop }} & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}} d_{i_{0} i_{1} i_{2} i_{3}} \text { Box }_{i_{0} i_{1} i_{2} i_{3}} \\
& +\sum_{i_{0}<i_{1}<i_{2}} c_{i_{0} i_{1} i_{2}} \text { Triangle }_{i_{0} i_{1} i_{2}} \\
& +\sum_{i_{0}<i_{1}} b_{i_{0} i_{1}} \text { Bubble }_{i_{0} i_{1}} \\
& +\sum_{i_{0}} a_{i_{0}} \text { Tadpole }_{i_{0}} \\
& +R+\mathcal{O}(\epsilon)
\end{aligned}
$$

## OPP Reduction

- decomposition to scalar integrals - If we would know a similar relation at works at the level of the integrals the integrand level, we would be able to manipulate the integrands and extract the coefficients without doing the integrals

$$
\begin{aligned}
\mathcal{M}^{1-\text { loop }} & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}} d_{i_{0} i_{1} i_{2} i_{3}} \text { Box }_{i_{0} i_{1} i_{2} i_{3}} \\
& +\sum_{i_{0}<i_{1}<i_{2}} c_{i_{0} i_{1} i_{2}} \operatorname{Triangle}_{i_{0} i_{1} i_{2}} \\
& +\sum_{i_{0}<i_{1}} b_{i_{0} i_{1}} \text { Bubble }_{i_{0} i_{1}} \\
& +\sum_{i_{0}} a_{i_{0}} \text { Tadpole }_{i_{0}} \\
& +R+\mathcal{O}(\epsilon)
\end{aligned}
$$

## OPP Reduction

- decomposition to scalar integrals - If we would know a similar relation at works at the level of the integrals the integrand level, we would be able to manipulate the integrands and extract the coefficients without doing the integrals

$$
\begin{aligned}
\mathcal{M}^{1-\text { loop }} & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}} d_{i_{0} i_{1} i_{2} i_{3}} \text { Box }_{i_{0} i_{1} i_{2} i_{3}} \\
& +\sum_{i_{0}<i_{1}<i_{2}} c_{i_{0} i_{1} i_{2}} \text { Triangle }_{i_{0} i_{1} i_{2}} \\
& +\sum_{i_{0}<i_{1}} b_{i_{0} i_{1}} \text { Bubble }_{i_{0} i_{1}} \\
& +\sum_{i_{0}} a_{i_{0}} \text { Tadpole }_{i_{0}} \\
& +R+\mathcal{O}(\epsilon)
\end{aligned}
$$

## OPP Reduction

- decomposition to scalar integrals works at the level of the integrals

If we would know a similar relation at the integrand level, we would be able to manipulate the integrands and extract the coefficients without doing the integrals

$$
\begin{aligned}
\mathcal{M}^{1-\text { loop }} & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}} d_{i_{0} i_{1} i_{2} i_{3}} \operatorname{Box}_{i_{0} i_{1} i_{2} i_{3}} \\
& +\sum_{i_{0}<i_{1}<i_{2}} c_{i_{0} i_{1} i_{2}} \text { Triangle }_{i_{0} i_{1} i_{2}} \\
& +\sum_{i_{0}<i_{1}} b_{i_{0} i_{1}} \text { Bubble }_{i_{0} i_{1}} \\
& +\sum_{i_{0}} a_{i_{0}} \text { Tadpole }_{i_{0}} \\
& +R+\mathcal{O}(\epsilon)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
N(l) & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d_{i_{0} i_{1} i_{2} i_{3}}-\tilde{d}_{i_{0} i_{1} i_{2} i_{3}}(l) \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}\right. \\
& +\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c_{i_{0} i_{1} i_{2}}-\tilde{c}_{i_{0} i_{1} i_{2}}(l)\right] \prod_{\neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}}^{m-1}\left[b_{i_{0} i_{1}} \tilde{\tilde{b}}_{i_{0} i_{1}}(l)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i} \\
& +\sum_{i_{0}}^{m-1}\left[a_{i_{0}} \tilde{a}_{i_{0}}(l)\right] \prod_{i \neq i_{0}}^{m-1} D_{i}
\end{aligned} \\
& +\tilde{P}(l) \prod_{i}^{m-1} D_{i} \quad \text { Spurious term }
\end{aligned}
$$

- feed cut tools with numerator value and it returns the coeficients
[Ossola, Papadopoulos, Pittau 2006]


## OPP in a nutshell

- In OPP reduction we reduce the system at the integrand level.
- We can solve the system numerically: we only need a numerical function of the (numerator of) integrand. We can set-up a system of linear equations by choosing specific values for the loop momentum I, depending on the kinematics of the event
- OPP reduction is implemented in CutTools (publicly available). Given the integrand, CutTools provides all the coefficients in front of the scalar integrals and the RI term
- The OPP reduction leads to numerical unstabilities whose origins are not well under control. Require quadruple precision.
- Analytic information is needed for the R2 term, but can be compute once and for all for a given model


## MADLOOP

- Diagram Generation



## MADLOOP

- Diagram Generation



## MADLOOP

- Diagram Generation
- Generate diagrams with 2 extra particles
$\Rightarrow$ Need to filter result



## MADLOOP

- Diagram Generation
- Generate diagrams with 2 extra particles
$\Rightarrow$ Need to filter result

- Evaluation of the Numerator:
$\Rightarrow$ OpenLoops technique [S. Pozzorini \& al.(2011)]

$$
\mathcal{N}\left(l^{\mu}\right)=\sum_{r=0}^{r_{\max }} C_{\mu_{0} \mu_{1} \cdots \mu_{r}}^{(r)} l^{\mu_{0}} l^{\mu_{1}} \cdots l^{\mu_{r}}
$$



## MADFKS

The real

## FKS substraction

- Find parton pairs i,j that can give collinear singularities
- Split the phase space into regions with one collinear singularities
- Integrate them independently
- with an adhoc PS parameterization
- can be run in parallel
- \# of contributions ~ $n^{\wedge} 2$


## MC@NLO

## Matching to the shower

## Sources of double counting

Born+Virtual:

Real emission:


- There is double counting between the real emission matrix elements and the parton shower: the extra radiation can come from the matrix elements or the parton shower
- There is also an overlap between the virtual corrections and the Sudakov suppression in the zeroemission probability


## MC@NLO procedure

$$
\begin{aligned}
& \text { Born+Virtual: } \\
& \text { Real emission: } \\
& \frac{d \sigma_{\mathrm{NLOwPS}}}{d O}= {\left[d \Phi_{m}\left(B+\int_{\mathrm{loop}} V+\int d \Phi_{1} M C\right)\right] I_{\mathrm{MC}}^{(m)}(O) } \\
&+\left[d \Phi_{m+1}(R-M C)\right] I_{\mathrm{MC}}^{(m+1)}(O)
\end{aligned}
$$

- Double counting is explicitly removed by including the "shower subtraction terms"


## Four-lepton production




- 4-lepton invariant mass is almost insensitive to parton shower effects. 4-lepton transverse momenta is extremely sensitive


## results

- Errors are the MC integration uncertainty only
- Cuts on jets, $\gamma^{*} / Z$ decay products and photons, but no cuts on b quarks (their mass regulates the IR singularities)
- Efficient handling of exceptional phase-space points: their uncertainty always at least two orders of magnitude smaller than the integration uncertainty

|  | Process | $\mu$ | $n_{l f}$ | Cross section (pb) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LO | NLO |
| a. 1 | $p p \rightarrow t \bar{t}$ | $m_{\text {top }}$ | 5 | $123.76 \pm 0.05$ | $162.08 \pm 0.12$ |
| a. 2 | $p p \rightarrow t j$ | $m_{\text {top }}$ | 5 | $34.78 \pm 0.03$ | $41.03 \pm 0.07$ |
| a. 3 | $p p \rightarrow t j j$ | $m_{\text {top }}$ | 5 | $11.851 \pm 0.006$ | $13.71 \pm 0.02$ |
| a. 4 | $p p \rightarrow t \bar{b} j$ | $m_{\text {top }} / 4$ | 4 | $25.62 \pm 0.01$ | $30.96 \pm 0.06$ |
| a. 5 | $p p \rightarrow t \bar{b} j j$ | $m_{\text {top }} / 4$ | 4 | $8.195 \pm 0.002$ | $8.91 \pm 0.01$ |
| b. 1 | $p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e}$ | $m_{W}$ | 5 | $5072.5 \pm 2.9$ | $6146.2 \pm 9.8$ |
| b. 2 | $p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} j$ | $m_{W}$ | 5 | $828.4 \pm 0.8$ | $1065.3 \pm 1.8$ |
| b. 3 | $p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} j j$ | $m_{W}$ | 5 | $298.8 \pm 0.4$ | $300.3 \pm 0.6$ |
| b. 4 | $p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-}$ | $m_{Z}$ | 5 | $1007.0 \pm 0.1$ | $1170.0 \pm 2.4$ |
| b. 5 | $p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} j$ | $m_{Z}$ | 5 | $156.11 \pm 0.03$ | $203.0 \pm 0.2$ |
| b. 6 | $p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} j j$ | $m_{Z}$ | 5 | $54.24 \pm 0.02$ | $56.69 \pm 0.07$ |
| c. 1 | $p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} b \bar{b}$ | $m_{W}+2 m_{b}$ | 4 | $11.557 \pm 0.005$ | $22.95 \pm 0.07$ |
| c. 2 | $p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} t \bar{t}$ | $m_{W}+2 m_{\text {top }}$ | 5 | $0.009415 \pm 0.000003$ | $0.01159 \pm 0.00001$ |
| c. 3 | $p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} b \bar{b}$ | $m_{Z}+2 m_{b}$ | 4 | $9.459 \pm 0.004$ | $15.31 \pm 0.03$ |
| c. 4 | $p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} t \bar{t}$ | $m_{Z}+2 m_{\text {top }}$ | 5 | $0.0035131 \pm 0.0000004$ | $0.004876 \pm 0.000002$ |
| c. 5 | $p p \rightarrow \gamma t \bar{t}$ | $2 m_{\text {top }}$ | 5 | $0.2906 \pm 0.0001$ | $0.4169 \pm 0.0003$ |
| d. 1 | $p p \rightarrow W^{+} W^{-}$ | $2 m_{W}$ | 4 | $29.976 \pm 0.004$ | $43.92 \pm 0.03$ |
| d. 2 | $p p \rightarrow W^{+} W^{-} j$ | $2 m_{W}$ | 4 | $11.613 \pm 0.002$ | $15.174 \pm 0.008$ |
| d. 3 | $p p \rightarrow W^{+} W^{+} j j$ | $2 m_{W}$ | 4 | $0.07048 \pm 0.00004$ | $0.1377 \pm 0.0005$ |
| e. 1 | $p p \rightarrow H W^{+}$ | $m_{W}+m_{H}$ | 5 | $0.3428 \pm 0.0003$ | $0.4455 \pm 0.0003$ |
| e. 2 | $p p \rightarrow H W^{+}{ }_{j}$ | $m_{W}+m_{H}$ | 5 | $0.1223 \pm 0.0001$ | $0.1501 \pm 0.0002$ |
| e. 3 | $p p \rightarrow H Z$ | $m_{Z}+m_{H}$ | 5 | $0.2781 \pm 0.0001$ | $0.3659 \pm 0.0002$ |
| e. 4 | $p p \rightarrow H Z j$ | $m_{Z}+m_{H}$ | 5 | $0.0988 \pm 0.0001$ | $0.1237 \pm 0.0001$ |
| e. 5 | $p p \rightarrow H t \bar{t}$ | $m_{\text {top }}+m_{H}$ | 5 | $0.08896 \pm 0.00001$ | $0.09869 \pm 0.00003$ |
| e. 6 | $p p \rightarrow H b \bar{b}$ | $m_{b}+m_{H}$ | 4 | $0.16510 \pm 0.00009$ | $0.2099 \pm 0.0006$ |
| e. 7 | $p p \rightarrow H j j$ | $m_{H}$ | 5 | $1.104 \pm 0.002$ | $1.036 \pm 0.002$ |

# MadSpin <br> Decay with Full Spin correlation 

[P.Artoisenet, R. Frederix, OM, R. RietKerk (20I2)]

## MadSpin

- WISH-LIST:
- For a sample of events include the decay of unstable final states particles.
- Keep full spin correlations and finite width effect
- Keep unweighted events


## MadSpin

- WISH-LIST:
- For a sample of events include the decay of unstable final states particles.
- Keep full spin correlations and finite width effect
- Keep unweighted events
- Solution:
[Frixione, Leanen, Motylinski, Webber (2007)]


$$
\left|M_{L O}^{P+D}\right|^{2} /\left|M_{L O}^{P}\right|^{2}
$$

## MadSpin

- Fully automatic
- Fully integrated in MG5 [LO and NLO]
- Can be run in StandAlone


## MadSpin

- Fully automatic
- Fully integrated in MG5 [LO and NLO]
- Can be run in StandAlone
- we are going to release a speed up version (I5x faster)


## MadSpin

- Fully automatic
- Fully integrated in MG5 [LO and NLO]
- Can be run in StandAlone
- we are going to release a speed up version (I5x faster)
- Example $\mathrm{t} \mathrm{t} \sim \mathrm{h}$ :




## DEMO

## Is it really automatic?

DEMO

## - I) Download the code



## The MadGraph Matrix Element Generator version

The version 5 of the MadGraph Matrix Element Generator for the simulation of parton-level events for decay and collision processes at high energy colliders. Allows matrix element generation and event generation for any model that can be written as a Lagrangian, using the output of the FeynRules Feynman rule calculator. Provides output in multiple formats and languages, including Fortran MadEvent, Fortran Standalone matrix elements, C++ matrix elements, and Pythia 8 process libraries.

Note that process generation can also be done directly online at hetpd//madgraph.phys.uclac.be or hetp://madgraph.hep.uivce.edu.
If you use MadCraph 5, please cite JHEP 1106(2011)128, arXiv.1106.0522 [hep-ph]
Installation:
MadCraph 5 needs python version 2.6 or 2.7 . The latest stable release is in the trunk, which can be
branched using the Bazaar versioning system:
bar branch lpmadgraphs
or be downloaded as a targz package to the right. This release contains everything needed for
process generation in multiple models, as well as event generation through Madevent, and
standalone matrix element evaluation for fortran or C++ output.
In order to use the process library output for Pythia 8 , you need Pythia 8.150 or later installed.

## Getting started

Run bin/mg5 and type "help" to learn how to run MadGraph 5 using the command interface, or run the interactive quick-start tutorial by typing "tutorial".
Or copy the Template, edit the Cards/proc_card_mg5.dat and run Bin/newprocess_mg5.
Examples of process generation syntax
$p p>w+j$
$p p>t t-t>b j i, t->b-1-v \mid-$
$e+e->z>n 2 n 2,(n 2>x 1+w, x 1+>|+v| n 1, w->|-v|-), n 2>j j n 1$
To output model files for MadGraph 5 with FeymRules, use version 1.6 or later, and use the
WriteUFO command.
© Change branding
© Home page © wikl
Change details
(t) Sharing
(4) Subscribe to bug mail
(C) Edit bug mail

Get Involved
Report a bug $\Rightarrow$

Aska question $\Rightarrow$
Register a blueprint $\Rightarrow$
$\Delta$ Help translate $\Rightarrow$
Configuration Progress

D Configuration options

## Downloads

Latest version is 1.5.0
MadCraph5_vi.S.stargaz

MadCraphs_v_eta3.targ.

DEMO

## - launch the code [./bin/mg5]

- Exactly like MG5 !!!



## - You can enter ANY process!

- add [QCD] for NLO functionalities
$\rightarrow$ generate $p$ p $>\mathrm{t} \mathrm{t} \sim$ [QCD]
* generate $p$ p > e+ e- mu+ mu- [QCD]
- generate e+ e->t t~[QCD]

```
mg5>generate e+ e- > t t~ [QCD]
Switching from interface MG5 to aMC@NLO
The default sm model does not allow to generate loop processes. MG5 now loads 'loop_sm' instead.
import model loop_sm
INFO: load particles
INFO: load vertices
INFO: Restrict model loop_sm with file models/loop_sm/restrict_default.dat .
INFO: Run "set stdout_level DEBUG" before import for more information.
INFO: Change particles name to pass to MG5 convention
Kept definitions of multiparticles l- / j / vl / l+ / p / vl~ unchanged
Defined multiparticle all = g gh gh~ d u s c d~ u~ s~ c~ a ve vm vt e- mu- ve~ vm~ vt~ e+ mu+ b t b~ t~ z w+ h
INFO: Generating FKS-subtracted matrix elements for born process: e+ e- > t t~ [ QCD ]
INFO: Generating virtual matrix elements using MadLoop:
INFO: Generating virtual matrix element with MadLoop for process: e+ e- > t t~ [ QCD ]
INFO: Generated 1 subprocesses with 4 real emission diagrams, 2 born diagrams and 2 virtual diagrams
aMC@NLO>
```


## - Born


born diagram $1 \quad$ QCD $=0$, QED=2

born diagram 2
$Q C D=0, Q E D=2$

- real

- Virtual

- Create your aMC@NLO code - output PATH


## - Create your aMC@NLO code

## - output PATH

INFO: Writing out the aMC@NLO code, using optimized Loops
INFO: initialize a new directory: PROD_TT2
INFO: remove old information in PROD_TT2
INFO: Generating real emission matrix-elements...
INFO: Generating Helas calls for FKS process: $\mathrm{e}+\mathrm{e}-\mathrm{>} \mathrm{t} \mathrm{t} \sim$ [ QCD ]
ALOHA: aloha creates FFV1 routines
ALOHA: aloha creates FFV1 routines
ALOHA: aloha creates FFV1 routines
ALOHA: aloha creates FFV2 routines
ALOHA: aloha creates FFV5 routines
INFO: Processing color information for process: e+ e- > t t~ [ QCD ]
INFO: Writing files in P0_epem_ttx
INFO: Creating files in directory V0_epem_ttx
INFO: Computing diagram color coefficients
INFO: Drawing loop Feynman diagrams for Process: e+ e- > t t~ [ QCD ]
INFO: Generating born Feynman diagrams for Process: e+ e- > t t~ [ QCD ]
History written to /Users/omatt/Documents/eclipse/2.0.0beta4/PROD_TT2/Cards/proc_card_mg5.dat
Export UFO model to MG4 format
ALOHA: aloha creates FFV2 routines
ALOHA: aloha creates FFV1 routines
ALOHA: aloha creates FFV4 routines
ALOHA: aloha creates FFV5 routines
ALOHA: aloha creates $F F V 2 \_5$ routines
ALOHA: aloha creates FFV2_4 routines
INFO: Use Fortran compiler gfortran
INFO: Generate jpeg diagrams
INFO: Generate web pages
The option group_subprocesses is modified [Auto] but will not be written in the configuration files.
If you want to make this value the default for future session, you can run 'save options --all'
The option complex_mass_scheme is modified [False] but will not be written in the configuration files.
If you want to make this value the default for future session, you can run 'save options --all'
save configuration file to /Users/omatt/Documents/eclipse/2.0.0beta4/PROD_TT2/Cards/amcatnlo_configura1
Type "launch" to generate events from this process, or see
/Users/omatt/Documents/eclipse/2.0.0beta4/PROD_TT2/README
Run "open index.html" to see more information about this process.

- Create your aMC@NLO code
- output PATH
- Run it:
- launch [PATH]

```
INFŌ: w*************************************************************************
```



```
INFO: load configuration from/Users/omatt/.mg5/mg5_configuration.txt
INFO: load configuration from /Users/omatt/Documents/eclipse/2.0.0beta4/PROCNLO_loop_sm_
INFO: load configuration from /Users/omatt/Documents/eclipse/2.0.0beta4/input/mg5_config
INFO: load configuration from /Users/omatt/Documents/eclipse/2.0.0beta4/PROCNLO_loop_sm_
set group_subprocesses Auto
set ignore_six_quark_processes False
set loop_optimized_output True
set gauge unitary
set complex_mass_scheme False
launch auto
The following switches determine which operations are executed:
1 Perturbative order of the calculation:
4 Decay particles with the MadSpin module:
Either type the switch number (1 to 4) to change its default setting,
or set any switch explicitly (e.g. type 'order=L0' at the prompt)
Type ' \(\theta\) ', 'auto', 'done' or just press enter when you are done.
[Q. 1, 2, 3, 4, auto, done, order \(=\) LO, order \(=\) NLO, ...] [60s to answer]
\(>\)
```


## - Create your aMC@NLO code

- output PATH
- Run it:
- launch [PATH]


## First Question:

```
The following switches determine which operations are executed:
    1 \text { Perturbative order of the calculation:}
                order=NLO
    2 Fixed order (no event generation and no MC@[N]LO matching): fixed_order=0FF
    3 Shower the generated events:
    4 \text { Decay particles with the MadSpin module: madspin=0FF}
    Either type the switch number (1 to 4) to change its default setting,
    or set any switch explicitly (e.g. type 'order=LO' at the prompt)
    Type '0', 'auto', 'done' or just press enter when you are done.
    [\underline{0, 1, 2, 3, 4, auto, done, order=LO, order=NLO, ... ][60s to answer]}]
>[timer stopped]
```


## - Create your aMC@NLO code

- output PATH
- Run it:
- launch [PATH]


## Second Question:

```
INFO: will run in mode: aMC@NLO
Do you want to edit a card (press enter to bypass editing)?
    1 / param : param_card.dat
    2 / run : run_card.dat
    3 / madspin : madspin_card.dat
    4 / shower : shower_card.dat
    you can also
    - enter the path to a valid card or banner.
    - use the 'set' command to modify a parameter directly.
        The set option works only for param_card and run_card.
        Type 'help set' for more information on this command.
    [\underline{0, done, 1, param, 2, run, 3, madspin, 4, enter path, ... ][60s to answer]}]
>
```

- each beam at 250 GeV


## - The code runs:

```
INFO: For gauge cancellation, the width of 't' has been set to zero.
INFO: Compiling source...
INFO: ...done, continuing with P* directories
INFO: Compiling directories...
INFO: Compiling on 8 cores
INFO: Compiling P0_epem_ttx...
```

INFO: PO_epem_ttx done.
INFO: Checking test output:
INFO: P0_epem_ttx
INFO: Result for test_ME:
INF0: Passed.
INFO: Result for test_MC:
INFO: Passed.
INFO: Result for check_poles:
INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05)
INFO: Starting run
INFO: Using 8 cores
INFO: Cleaning previous results
INFO: Doing NLO matched to parton shower
INFO: Setting up grid
INFO: Idle: 0, Running: 2, Completed: 2 [ current time: 17h19 ]
INFO: Idle: 0, Running: 1, Completed: 3 [ 1.2 s ]
INFO: Idle: 0, Running: 0, Completed: 4 [ 1.3 s ]
INFO: Determining the number of unweighted events per channel

Integration

```
Intermediate results:
```

Random seed: 36
Total cross-section: $\quad 6.232 \mathrm{e}-01+-4.2 \mathrm{e}-03 \mathrm{pb}$
Total abs(cross-section): 7.010e-01 +- $2.5 \mathrm{e}-03 \mathrm{pb}$

INFO: Computing upper envelope

```
INFO: Idle: 0, Running: 2, Completed: 2 [ current time: 17h19 ]
INFO: Idle: 0, Running: 1, Completed: 3 [ 1.3s ]
INFO: Idle: 0, Running: 0, Completed: 4 [ 1.3s ]
INFO: Updating the number of unweighted events per channel
    Intermediate results:
```


## Integration

    Random seed: 36
    Total cross-section: \(\quad 6.183 \mathrm{e}-01+-3.7 \mathrm{e}-03 \mathrm{pb}\)
    Total abs(cross-section): 6.986e-01 +- 1.9e-03 pb
    
# Events Generation 

## Top Decay <br> Top Decay

Random seed: 36
Total abs(cross-section): 6.986e-01 +- $1.9 \mathrm{e}-03 \mathrm{pb}$

```
INFO: Generating events
```

INFO: Generating events
INFO: Idle: 0, Running: 2, Completed: 2 [ current time: 17h19 ]
INFO: Idle: 0, Running: 2, Completed: 2 [ current time: 17h19 ]
INFO: Idle: 0, Running: 1, Completed: 3 [ 0.6s ]
INFO: Idle: 0, Running: 1, Completed: 3 [ 0.6s ]
INFO: Idle: 0, Running: 0, Completed: 4 [ 1.3s ]
INFO: Idle: 0, Running: 0, Completed: 4 [ 1.3s ]
INFO: Doing reweight
INFO: Doing reweight
INFO: Idle: 0, Running: 1, Completed: 3 [ current time: 17h19 ]
INFO: Idle: 0, Running: 1, Completed: 3 [ current time: 17h19 ]
INFO: Idle: 0, Running: 0, Completed: 4 [ 0.74s ]
INFO: Idle: 0, Running: 0, Completed: 4 [ 0.74s ]
INFO: Collecting events
INFO: Collecting events
INFO:
INFO:
Summary:
Summary:
Process e+ e- > t t~ [QCD]
Process e+ e- > t t~ [QCD]
Run at l-l collider (250 + 250 GeV)
Run at l-l collider (250 + 250 GeV)
Total cross-section: 6.183e-01 +- 3.7e-03 pb
Total cross-section: 6.183e-01 +- 3.7e-03 pb
Ren. and fac. scale uncertainty: +1.0% -0.8%
Ren. and fac. scale uncertainty: +1.0% -0.8%
Number of events generated: 10000
Number of events generated: 10000
Parton shower to be used: HERWIG6
Parton shower to be used: HERWIG6
decay_events -from_cards
decay_events -from_cards
INFO: Running MadSpin
INFO: Running MadSpin
INFO: This functionality allows for the decay of resonances
INFO: This functionality allows for the decay of resonances
INFO: in a .lhe file, keeping track of the spin correlation effets.
INFO: in a .lhe file, keeping track of the spin correlation effets.
INFO: BE AWARE OF THE CURRENT LIMITATIONS:
INFO: BE AWARE OF THE CURRENT LIMITATIONS:
INFO: (1) Only a succession of 2 body decay are currently allowed
INFO: (1) Only a succession of 2 body decay are currently allowed
*************************************************************
*************************************************************
WELCOME to M A DS P I N
WELCOME to M A DS P I N
*
*
*
*
************************************************************

```
************************************************************
```

    with 400 phase space points
    INFO
NFO
INFO:
INF0: Event 1/75:0.18s
INFO: Event 6/75 : 1 s
INF0: Event $11 / 75$ : 1.9 s
INF0: Event $16 / 75: 2.8 s$
INFO: Event 21/75 : 3.8 s
INFO: Event 26/75 : 4.9s
INF0: Event $31 / 75$ : 5.8 s
INF0: Event $36 / 75: 6.7 \mathrm{~s}$
INF0: Event 41/75 : 8s
INFO: Event $46 / 75$ : 8.9 s
INF0: Event 51/75 : 9.7s
INFO: Event 56/75: 10.8 s
INFO: Event 61/75 : 11.7 s
INFO: Event 66/75 : 12.6 s
INFO: Event 71/75 : 13.6 s
INFO:
INFO: Decaying the events..
INFO: Event nb 1000 2.1s
INFO: Event nb 2000 3.8s
INF0: Event nb 3000 5.6s
INF0: Event nb 4000 7.3s
INFO: Event nb 5000 9.1s
INFO: Event nb 6000 10.8s
INFO: Event nb 7000 12.5s
INFO: Event nb 8000 14.4s
INFO: Event nb 9000 16.1s
INFO: Event nb 10000 17.9s
INFO: Total number of events written: $10000 / 10000$
INFO: Average number of trial points per production event: 10.9322
INFO: Branching ratio to allowed decays: 1
INFO: Number of events with weights larger than max_weight: 0
INF0: Number of subprocesses 8
INF0: Number of failures when restoring the Monte Carlo masses: 1
INF0: Decayed events have been written in /Users/omatt/Documents/eclipse/2.0.
INFO: The decayed event file has been moved to the following location:
INF0: /Users/omatt/Documents/eclipse/2.0.0beta4/PROCNLO_loop_sm_16/Events/rur
INFO: MadSpin Done
INF0: Prepairing MCatNLO run
INF0: Compiling MCatNLO for HERWIG6...
INFO:
INFO: Running MCatNL0 in /Users/omatt/Documents/eclipse/2.0.0beta4/PROCNLO_lc INF0: The file /Users/omatt/Documents/eclipse/2.0.0beta4/PROCNLO_loop_sm_16/E It contains showered and hadronized events in the StdHEP format obtained show
cayed_1/events. Lhe.gz with HERWIG6
quit

## estimation of the maximum weight

adding decay event by event

## Shower

## DEMO

## Is it really automatic?

## DEMO

## Is it really automatic?

## As much as LO!

Top-quark pair production at ILC



## Offshell effect at NLO

- Diagrams with unstable particles present in general an imaginary part in the Dyson-ressumed propagator:

$$
P(p)=\left[p^{2}-m_{0}^{2}+P i\left(p^{2}\right)\right]^{-1}
$$

- Mixing of different perturbative orders breaks gauge invariance. Fine cancellations spoiled, leading to enhanced violation of unitarity
- No pole cancelation at NLO for fix-width scheme
- Solution: Complex Mass-Scheme: $M \rightarrow \sqrt{M^{2}-i M \Gamma}$,

$$
c_{W}^{2}=\frac{M_{w}^{2}+i M_{W} \Gamma_{W}}{M_{Z}^{2}+i M_{Z} \Gamma_{Z}}
$$

## Gauge dependence at LO

| $\|A\|^{2}-\mid$ Feynman-unitary $\mid /$ unitary | complex mass | fixed width |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $e^{+} e^{-} \rightarrow u \bar{u} d \bar{d}$ | $1.5334067678 \mathrm{e}-15$ | $1.2312200197 \mathrm{e}-09$ |  |  |  |
| $u \bar{u} \rightarrow u \bar{u} d \bar{d}$ | $2.0862057616 \mathrm{e}-16$ | $2.7696013365 \mathrm{e}-10$ |  |  |  |
| $u \bar{u} \rightarrow b \bar{b} e^{+} \nu_{e} \mu^{-} \nu_{\mu}$ (real Yuk) | $1.7934842084 \mathrm{e}-06$ | $2.2832833007 \mathrm{e}-05$ |  |  |  |
| $\sigma($ complex Yuk) |  |  |  | $8.5986902303 \mathrm{e}-16$ | $2.2832833007 \mathrm{e}-05$ |
| $\sigma(p b)$ for $g g \rightarrow b \bar{b} e^{+} \nu_{e} \mu^{-} \overline{\nu_{\mu}}$ |  |  |  |  |  |
| gauge - scheme | complex-mass | fix width |  |  |  |
| feynman | $1.796 \mathrm{e}-05 \pm 2.3 \mathrm{e}-08$ | $1.787 \mathrm{e}-05 \pm 2.5 \mathrm{e}-08$ |  |  |  |
| unitary | $1.792 \mathrm{e}-05 \pm 2.1 \mathrm{e}-08$ | $1.778 \mathrm{e}-05 \pm 2.4 \mathrm{e}-08$ |  |  |  |

## Offshell effect at NLO

$e+e->w+w-b b \sim$


## e+e->t t~



## Conclusion

## - aMC@NLO is

- public
$\Rightarrow$ automatic
- flexible
- MadSpin
- decay with full spin correlations
$\Rightarrow$ keep finite width effect
- complex-mass
- This is only the beginning of this Tool!

|  | Process | $\mu$ | $n_{l f}$ | Cross section (pb) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LO | NLO |
| a. 1 | $p p \rightarrow t \bar{t}$ | $m_{\text {top }}$ | 5 | $123.76 \pm 0.05$ | $162.08 \pm 0.12$ |
| a. 2 | $p p \rightarrow t j$ | $m_{\text {top }}$ | 5 | $34.78 \pm 0.03$ | $41.03 \pm 0.07$ |
| a. 3 | $p p \rightarrow t j j$ | $m_{\text {top }}$ | 5 | $11.851 \pm 0.006$ | $13.71 \pm 0.02$ |
| a. 4 | $p p \rightarrow t \bar{b} j$ | $m_{\text {top }} / 4$ | 4 | $25.62 \pm 0.01$ | $30.96 \pm 0.06$ |
| a. 5 | $p p \rightarrow t \bar{b} j j$ | $m_{\text {top }} / 4$ | 4 | $8.195 \pm 0.002$ | $8.91 \pm 0.01$ |
| b. 1 | $p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e}$ | $m_{W}$ | 5 | $5072.5 \pm 2.9$ | $6146.2 \pm 9.8$ |
| b. 2 | $p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} j$ | $m_{W}$ | 5 | $828.4 \pm 0.8$ | $1065.3 \pm 1.8$ |
| b. 3 | $p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} j j$ | $m_{W}$ | 5 | $298.8 \pm 0.4$ | $300.3 \pm 0.6$ |
| b. 4 | $p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-}$ | $m_{Z}$ | 5 | $1007.0 \pm 0.1$ | $1170.0 \pm 2.4$ |
| b. 5 | $p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} j$ | $m_{Z}$ | 5 | $156.11 \pm 0.03$ | $203.0 \pm 0.2$ |
| b. 6 | $p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} j j$ | $m_{Z}$ | 5 | $54.24 \pm 0.02$ | $56.69 \pm 0.07$ |
| c. 1 | $p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} b \bar{b}$ | $m_{W}+2 m_{b}$ | 4 | $11.557 \pm 0.005$ | $22.95 \pm 0.07$ |
| c. 2 | $p p \rightarrow\left(W^{+} \rightarrow\right) e^{+} \nu_{e} t \bar{t}$ | $m_{W}+2 m_{\text {top }}$ | 5 | $0.009415 \pm 0.000003$ | $0.01159 \pm 0.00001$ |
| c. 3 | $p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} b \bar{b}$ | $m_{Z}+2 m_{b}$ | 4 | $9.459 \pm 0.004$ | $15.31 \pm 0.03$ |
| c. 4 | $p p \rightarrow\left(\gamma^{*} / Z \rightarrow\right) e^{+} e^{-} t \bar{t}$ | $m_{Z}+2 m_{\text {top }}$ | 5 | $0.0035131 \pm 0.0000004$ | $0.004876 \pm 0.000002$ |
| c. 5 | $p p \rightarrow \gamma t \bar{t}$ | $2 m_{\text {top }}$ | 5 | $0.2906 \pm 0.0001$ | $0.4169 \pm 0.0003$ |
| d. 1 | $p p \rightarrow W^{+} W^{-}$ | $2 m_{W}$ | 4 | $29.976 \pm 0.004$ | $43.92 \pm 0.03$ |
| d. 2 | $p p \rightarrow W^{+} W^{-} j$ | $2 m_{W}$ | 4 | $11.613 \pm 0.002$ | $15.174 \pm 0.008$ |
| d. 3 | $p p \rightarrow W^{+} W^{+}{ }_{j}$ | $2 m_{W}$ | 4 | $0.07048 \pm 0.00004$ | $0.1377 \pm 0.0005$ |
| e. 1 | $p p \rightarrow H W^{+}$ | $m_{W}+m_{H}$ | 5 | $0.3428 \pm 0.0003$ | $0.4455 \pm 0.0003$ |
| e. 2 | $p p \rightarrow H W^{+}{ }_{j}$ | $m_{W}+m_{H}$ | 5 | $0.1223 \pm 0.0001$ | $0.1501 \pm 0.0002$ |
| e. 3 | $p p \rightarrow H Z$ | $m_{Z}+m_{H}$ | 5 | $0.2781 \pm 0.0001$ | $0.3659 \pm 0.0002$ |
| e. 4 | $p p \rightarrow H Z j$ | $m_{Z}+m_{H}$ | 5 | $0.0988 \pm 0.0001$ | $0.1237 \pm 0.0001$ |
| e. 5 | $p p \rightarrow H t \bar{t}$ | $m_{\text {top }}+m_{H}$ | 5 | $0.08896 \pm 0.00001$ | $0.09869 \pm 0.00003$ |
| e. 6 | $p p \rightarrow H b \bar{b}$ | $m_{b}+m_{H}$ | 4 | $0.16510 \pm 0.00009$ | $0.2099 \pm 0.0006$ |
| e. 7 | $p p \rightarrow H j j$ | $m_{H}$ | 5 | $1.104 \pm 0.002$ | $1.036 \pm 0.002$ |

# Work in Progress in aMC@NLO 

 What to expect in the future
## Perspectives

## Perspectives

- FeynRules@NLO:


## Perspectives

- FeynRules@NLO:
= NLO not only for the SM but for New Physics


## Perspectives

- FeynRules@NLO:
- NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)


## Perspectives

- FeynRules@NLO:
- NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
- MadLoop ready (currently in validation)


## Perspectives

- FeynRules@NLO:
- NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
- MadLoop ready (currently in validation)
- Use ALOHA [OM \& al (201)] for bubble/Tadpole


## Perspectives

- FeynRules@NLO:
- NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
- MadLoop ready (currently in validation)
- Use ALOHA [OM \& al (201)] for bubble/Tadpole
- Full automation of FxFx merging [R. Frederix, S. Frixione (2012)]


$0 \rightarrow 1$ rates in $H^{0}$ and $t \bar{t}$ production


## Perspectives

- FeynRules@NLO:
- NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
- MadLoop ready (currently in validation)
- Use ALOHA [OM \& al (20II)] for bubble/Tadpole
- Full automation of FxFx merging [R. Frederix, S. Frixione (2012)]
- Automation of loop-induced processes


## Perspectives

- FeynRules@NLO:
- NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
- MadLoop ready (currently in validation)
- Use ALOHA [OM \& al (20II)] for bubble/Tadpole
- Full automation of FxFx merging [R. Frederix, S. Frixione (2012)]
- Automation of loop-induced processes
- Interface to Pythia8


## Perspectives

- FeynRules@NLO:
- NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
- MadLoop ready (currently in validation)
- Use ALOHA [OM \& al (20II)] for bubble/Tadpole
- Full automation of FxFx merging [R. Frederix, S. Frixione (20|2)]
- Automation of loop-induced processes
- Interface to Pythia8
- Complex mass scheme


## MC@NLO properties

- Good features of including the subtraction counter terms
I. Double counting avoided:The rate expanded at NLO coincides with the total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the parton shower in the soft/collinear region, while it agrees with the NLO in the hard region
3. Stability: weights associated to different multiplicities are separately finite. The MC term has the same infrared behavior as the real emission (there is a subtlety for the soft divergence)

- Not so nice feature (for the developer):
I. Parton shower dependence: the form of the MC terms depends on what the parton shower does exactly. Need special subtraction terms for each parton shower to which we want to match

