

aMC@NLO and top pair production at LC

Olivier Mattelaer

Universite Catholique de Louvain

for the MadGraph/aMC@NLO team

Full list of contributors:

http://amcatnlo.web.cern.ch/amcatnlo/people.htm

Plan of the Talk

- aMC@NLO
 - → MadLoop
 - → MadFKS
 - → NLO+PS
- MadSpin
- DEMO
- top pair production at LC
- Conclusion

aMC@NLO: A Joint Venture

aMC@NLO

- Why automation?
 - → Time: Less tools, means more time for physics
 - → Robust: Easier to test, to trust
 - → Easy: One framework/tool to learn

aMC@NLO

- Why automation?
 - Time: Less tools, means more time for physics
 - → Robust: Easier to test, to trust
 - → Easy: One framework/tool to learn
- Why NLO?
 - Reliable prediction of the total rate
 - → Reduction of the theoretical uncertainty

aMC@NLO

- Why automation?
 - Time: Less tools, means more time for physics
 - → Robust: Easier to test, to trust
 - → Easy: One framework/tool to learn
- Why NLO?
 - Reliable prediction of the total rate
 - Reduction of the theoretical uncertainty
- Why matched to the PS?
 - → Parton are not an detector observables
 - Matching cure some fix-order ill behaved observables

NLO Basics

NLO Virtual Real Born $\sigma^{NLO} = \int_{m} d^{(d)} \sigma^{V} + \int_{m+1} d^{(d)} \sigma^{R} + \int_{m} d^{(4)} \sigma^{B}$

NLO Basics

Need to deal with singularities

$$\sigma^{NLO} = \int_{m} d^{(d)}(\sigma^{V} + \int_{1} d\phi_{1}C) + \int_{m+1} d^{(d)}(\sigma^{R} - C) + \int_{m} d^{(4)}\sigma^{B}$$

O. Mattelaer, LC13 aMC@NLO 5

NLO Basics

Need to deal with singularities

$$\sigma^{NLO} = \int_{m} d^{(d)}(\sigma^{V} + \int_{1} d\phi_{1}C) + \int_{m+1} d^{(d)}(\sigma^{R} - C) + \int_{m} d^{(4)}\sigma^{B}$$

MadLoop

MadFKS

MadGraph

O. Mattelaer, LC13 aMC@NLO 5

The virtual

 decomposition to scalar integrals works at the level of the integrals

$$\mathcal{M}^{\text{1-loop}} = \sum_{i_0 < i_1 < i_2 < i_3} d_{i_0 i_1 i_2 i_3} \operatorname{Box}_{i_0 i_1 i_2 i_3}$$
 $+ \sum_{i_0 < i_1 < i_2} c_{i_0 i_1 i_2} \operatorname{Triangle}_{i_0 i_1 i_2}$
 $+ \sum_{i_0 < i_1} b_{i_0 i_1} \operatorname{Bubble}_{i_0 i_1}$
 $+ \sum_{i_0} a_{i_0} \operatorname{Tadpole}_{i_0}$
 $+ R + \mathcal{O}(\epsilon)$

- decomposition to scalar integrals
 works at the level of the integrals
- If we would know a similar relation at the **integrand** level, we would be able to manipulate the integrands and extract the coefficients without doing the integrals

$$\mathcal{M}^{\text{1-loop}} = \sum_{i_0 < i_1 < i_2 < i_3} d_{i_0 i_1 i_2 i_3} \operatorname{Box}_{i_0 i_1 i_2 i_3}$$
 $+ \sum_{i_0 < i_1 < i_2} c_{i_0 i_1 i_2} \operatorname{Triangle}_{i_0 i_1 i_2}$
 $+ \sum_{i_0 < i_1} b_{i_0 i_1} \operatorname{Bubble}_{i_0 i_1}$
 $+ \sum_{i_0} a_{i_0} \operatorname{Tadpole}_{i_0}$
 $+ R + \mathcal{O}(\epsilon)$

decomposition to scalar integrals
 works at the level of the integrals

$$\mathcal{M}^{\text{1-loop}} = \sum_{i_0 < i_1 < i_2 < i_3} d_{i_0 i_1 i_2 i_3} \operatorname{Box}_{i_0 i_1 i_2 i_3} \operatorname{Box}_{i_0 i_1 i_2 i_3} + \sum_{i_0 < i_1 < i_2} c_{i_0 i_1 i_2} \operatorname{Triangle}_{i_0 i_1 i_2} + \sum_{i_0 < i_1} b_{i_0 i_1} \operatorname{Bubble}_{i_0 i_1} + \sum_{i_0} a_{i_0} \operatorname{Tadpole}_{i_0} + R + \mathcal{O}(\epsilon)$$

If we would know a similar relation at the **integrand** level, we would be able to manipulate the integrands and extract the coefficients without doing the integrals

$$N(l) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}(l) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i$$

$$+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}(l) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i$$

$$+ \sum_{i_0 < i_1}^{m-1} \left[b_{i_0 i_1} + \tilde{b}_{i_0 i_1}(l) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i$$

$$+ \sum_{i_0}^{m-1} \left[a_{i_0} + \tilde{a}_{i_0}(l) \right] \prod_{i \neq i_0}^{m-1} D_i$$

$$+ \tilde{P}(l) \prod_{i}^{m-1} D_i$$

decomposition to scalar integrals
 works at the level of the integrals

$$\mathcal{M}^{\text{1-loop}} = \sum_{i_0 < i_1 < i_2 < i_3} d_{i_0 i_1 i_2 i_3} \operatorname{Box}_{i_0 i_1 i_2 i_3} \operatorname{Box}_{i_0 i_1 i_2 i_3} + \sum_{i_0 < i_1 < i_2} c_{i_0 i_1 i_2} \operatorname{Triangle}_{i_0 i_1 i_2} + \sum_{i_0 < i_1} b_{i_0 i_1} \operatorname{Bubble}_{i_0 i_1} + \sum_{i_0} a_{i_0} \operatorname{Tadpole}_{i_0} + R + \mathcal{O}(\epsilon)$$

If we would know a similar relation at the **integrand** level, we would be able to manipulate the integrands and extract the coefficients without doing the integrals

$$\begin{split} N(l) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}(l) \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \right. \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}(l) \right] \prod_{j \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b_{i_0 i_1} + \tilde{b}_{i_0 i_1}(l) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[a_{i_0} + \tilde{a}_{i_0}(l) \right] \prod_{i \neq i_0}^{m-1} D_i \\ &+ \tilde{P}(l) \prod_{i}^{m-1} D_i \quad \text{Spurious term} \end{split}$$

[Ossola, Papadopoulos, Pittau 2006]

O. Mattelaer, LC13 aMC@NLO 7

decomposition to scalar integrals
 works at the level of the integrals

$$\mathcal{M}^{\text{1-loop}} = \sum_{i_0 < i_1 < i_2 < i_3} d_{i_0 i_1 i_2 i_3} \operatorname{Box}_{i_0 i_1 i_2 i_3} \operatorname{Box}_{i_0 i_1 i_2 i_3} + \sum_{i_0 < i_1 < i_2} c_{i_0 i_1 i_2} \operatorname{Triangle}_{i_0 i_1 i_2} + \sum_{i_0 < i_1} b_{i_0 i_1} \operatorname{Bubble}_{i_0 i_1} + \sum_{i_0} a_{i_0} \operatorname{Tadpole}_{i_0} + R + \mathcal{O}(\epsilon)$$

If we would know a similar relation at the **integrand** level, we would be able to manipulate the integrands and extract the coefficients without doing the integrals

$$\begin{split} N(l) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d_{i_0 i_1 i_2 i_3} + \widetilde{d}_{i_0 i_1 i_2 i_3}(l) \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \right. \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c_{i_0 i_1 i_2} + \widetilde{c}_{i_0 i_1 i_2}(l) \right] \prod_{j \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b_{i_0 i_1} + \widetilde{b}_{i_0 i_1}(l) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[a_{i_0} + \widetilde{a}_{i_0}(l) \right] \prod_{i \neq i_0}^{m-1} D_i \\ &+ \widetilde{P}(l) \prod_{i}^{m-1} D_i \quad \text{Spurious term} \end{split}$$

 feed cut tools with numerator value and it returns the coeficients

OPP in a nutshell

- In OPP reduction we reduce the system at the integrand level.
- We can solve the system numerically: we only need a numerical function of the (numerator of) integrand. We can set-up a system of linear equations by choosing specific values for the loop momentum I, depending on the kinematics of the event
- OPP reduction is implemented in CutTools (publicly available). Given the integrand, CutTools provides all the coefficients in front of the scalar integrals and the R1 term
- The OPP reduction leads to numerical unstabilities whose origins are not well under control. Require quadruple precision.
- Analytic information is needed for the R2 term, but can be compute once and for all for a given model

Diagram Generation

Diagram Generation

- Diagram Generation
 - → Generate diagramswith 2 extra particles
 - Need to filter result

- Diagram Generation
 - → Generate diagramswith 2 extra particles
 - Need to filter result

→ OpenLoops technique [S. Pozzorini & al.(2011)]

$$\mathcal{N}(l^{\mu}) = \sum_{r=0}^{r_{max}} C_{\mu_0 \mu_1 \dots \mu_r}^{(r)} l^{\mu_0} l^{\mu_1} \dots l^{\mu_r}$$

MADFKS

The real

FKS substraction

- Find parton pairs i, j that can give collinear singularities
- Split the phase space into regions with one collinear singularities
- Integrate them independently
 - with an adhoc PS parameterization
 - can be run in parallel
- # of contributions ~ n^2

O. Mattelaer, LC13 aMC@NLO

MC@NLO Matching to the shower

Sources of double counting

- There is double counting between the real emission matrix elements and the parton shower: the extra radiation can come from the matrix elements or the parton shower
- There is also an overlap between the virtual corrections and the Sudakov suppression in the zeroemission probability

MC@NLO procedure

 Double counting is explicitly removed by including the "shower subtraction terms"

Four-lepton production

4-lepton invariant mass is almost insensitive to parton shower effects.
 4-lepton transverse momenta is extremely sensitive

[Frederix, Frixione, Hirschi, maltoni, Pittau & Torrielli (2011)]

results

- Errors are the MC integration uncertainty only
- Cuts on jets, γ*/Z decay products and photons, but no cuts on b quarks (their mass regulates the IR singularities)
- Efficient handling of exceptional phase-space points: their uncertainty always at least two orders of magnitude smaller than the integration uncertainty
- Running time: two weeks on ~150 node cluster leading to rather small integration uncertainties

	Process	μ	n_{lf}	Cross section (pb)	
			Ţ	LO	NLO
a.1	$pp \rightarrow t\bar{t}$	m_{top}	5	123.76 ± 0.05	162.08 ± 0.12
a.2	$pp \rightarrow tj$	m_{top}	5	34.78 ± 0.03	41.03 ± 0.07
a.3	$pp \rightarrow tjj$	m_{top}	5	11.851 ± 0.006	13.71 ± 0.02
a.4	$pp \rightarrow t\bar{b}j$	$m_{top}/4$	4	25.62 ± 0.01	30.96 ± 0.06
a.5	$pp \rightarrow t \bar{b} j j$	$m_{top}/4$	4	8.195 ± 0.002	8.91 ± 0.01
b.1	$pp \to (W^+ \to) e^+ \nu_e$	m_W	5	5072.5 ± 2.9	6146.2 ± 9.8
b.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e j$	m_W	5	828.4 ± 0.8	1065.3 ± 1.8
b.3	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e jj$	m_W	5	298.8 ± 0.4	300.3 ± 0.6
b.4	$pp \rightarrow (\gamma^*/Z \rightarrow)e^+e^-$	m_Z	5	1007.0 ± 0.1	1170.0 ± 2.4
b.5	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+e^-j$	m_Z	5	156.11 ± 0.03	203.0 ± 0.2
b.6	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+e^-jj$	m_Z	5	54.24 ± 0.02	56.69 ± 0.07
c.1	$pp \to (W^+ \to) e^+ \nu_e b\bar{b}$	$m_W + 2m_b$	4	11.557 ± 0.005	22.95 ± 0.07
c.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e t\bar{t}$	$m_W + 2m_{top}$	5	0.009415 ± 0.000003	0.01159 ± 0.00001
c.3	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+e^-b\bar{b}$	$m_Z + 2m_b$	4	9.459 ± 0.004	15.31 ± 0.03
c.4	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+e^-t\bar{t}$	$m_Z + 2m_{top}$	5	0.0035131 ± 0.0000004	0.004876 ± 0.000002
c.5	$pp \rightarrow \gamma t \bar{t}$	$2m_{top}$	5	0.2906 ± 0.0001	0.4169 ± 0.0003
d.1	$pp \rightarrow W^+W^-$	$2m_W$	4	29.976 ± 0.004	43.92 ± 0.03
d.2	$pp \rightarrow W^+W^-j$	$2m_W$	4	11.613 ± 0.002	15.174 ± 0.008
d.3	$pp \rightarrow W^+W^+jj$	$2m_W$	4	0.07048 ± 0.00004	0.1377 ± 0.0005
e.1	$pp \rightarrow HW^+$	$m_W + m_H$	5	0.3428 ± 0.0003	0.4455 ± 0.0003
e.2	$pp \rightarrow HW^+ j$	$m_W + m_H$	5	0.1223 ± 0.0001	0.1501 ± 0.0002
e.3	$pp \rightarrow HZ$	$m_Z + m_H$	5	0.2781 ± 0.0001	0.3659 ± 0.0002
e.4	$pp \rightarrow HZj$	$m_Z + m_H$	5	0.0988 ± 0.0001	0.1237 ± 0.0001
e.5	$pp \rightarrow Ht\bar{t}$	$m_{top} + m_H$	5	0.08896 ± 0.00001	0.09869 ± 0.00003
e.6	$pp \rightarrow Hb\bar{b}$	$m_b + m_H$	4	0.16510 ± 0.00009	0.2099 ± 0.0006
e.7	$pp \rightarrow Hjj$	m_H	5	1.104 ± 0.002	1.036 ± 0.002

MadSpin Decay with Full Spin correlation

[P.Artoisenet, R. Frederix, OM, R. RietKerk (2012)]

- WISH-LIST:
 - → For a sample of events include the decay of unstable final states particles.
 - → Keep full spin correlations and finite width effect
 - → Keep unweighted events

- WISH-LIST:
 - → For a sample of events include the decay of unstable final states particles.
 - → Keep full spin correlations and finite width effect
 - → Keep unweighted events
- Solution:

[Frixione, Leanen, Motylinski, Webber (2007)]

- Fully automatic
 - → Fully integrated in MG5 [LO and NLO]
 - → Can be run in StandAlone

- Fully automatic
 - → Fully integrated in MG5 [LO and NLO]
 - Can be run in StandAlone
- we are going to release a speed up version (15x faster)

- Fully automatic
 - → Fully integrated in MG5 [LO and NLO]
 - → Can be run in StandAlone
- we are going to release a speed up version (15x faster)
- Example t t~ h:

O. Mattelaer, LC13 aMC@NLO

DEMO

Is it really automatic?

DEMO

I) Download the code

DEMO

- launch the code [./bin/mg5]
 - → Exactly like MG5 !!!

- You can enter ANY process!
 - → add [QCD] for NLO functionalities
 - ◆ generate p p > t t~ [QCD]
 - generate p p > e+ e- mu+ mu- [QCD]
 - generate e+ e- > t t~ [QCD]

```
mg5>generate e+ e- > t t\sim [QCD]
Switching from interface MG5 to aMC@NLO
The default sm model does not allow to generate loop processes. MG5 now loads 'loop_sm' instead.
import model loop sm
INFO: load particles
INFO: load vertices
INFO: Restrict model loop_sm with file models/loop_sm/restrict_default.dat .
INFO: Run "set stdout_level DEBUG" before import for more information.
INFO: Change particles name to pass to MG5 convention
Kept definitions of multiparticles l- / j / vl / l+ / p / vl~ unchanged
Defined multiparticle all = g gh gh\sim d u s c d\sim u\sim s\sim c\sim a ve vm vt e- mu- ve\sim vm\sim vt\sim e+ mu+ b t b\sim t\sim z w+ h
INFO: Generating FKS-subtracted matrix elements for born process: e+ e- > t t~ [ QCD ]
INFO: Generating virtual matrix elements using MadLoop:
INFO: Generating virtual matrix element with MadLoop for process: e+ e− > t t~ [ QCD ]
INFO: Generated 1 subprocesses with 4 real emission diagrams, 2 born diagrams and 2 virtual diagrams
aMC@NL0>
```


Born

e+ t~ 4

born diagram 1 QCD=0, QED=2

born diagram 2 QCD=0, QED=2

real

Virtual

- Create your aMC@NLO code
 - → output PATH

Create your aMC@NLO code

→ output PATH

```
INFO: Writing out the aMC@NLO code, using optimized Loops
INFO: initialize a new directory: PROD_TT2
INFO: remove old information in PROD_TT2
INFO: Generating real emission matrix-elements...
INFO: Generating Helas calls for FKS process: e+ e- > t t~ [ QCD ]
ALOHA: aloha creates FFV1 routines
ALOHA: aloha creates FFV1 routines
ALOHA: aloha creates FFV1 routines
ALOHA: aloha creates FFV2 routines
ALOHA: aloha creates FFV5 routines
INFO: Processing color information for process: e+ e- > t t~ [ QCD ]
INFO: Writing files in P0_epem_ttx
INFO: Creating files in directory V0_epem_ttx
INFO: Computing diagram color coefficients
INFO: Drawing loop Feynman diagrams for Process: e+ e- > t t~ [ QCD ]
INFO: Generating born Feynman diagrams for Process: e+ e- > t t~ [ QCD ]
History written to /Users/omatt/Documents/eclipse/2.0.0beta4/PROD_TT2/Cards/proc_card_mg5.dat
Export UFO model to MG4 format
ALOHA: aloha creates FFV2 routines
ALOHA: aloha creates FFV1 routines
ALOHA: aloha creates FFV4 routines
ALOHA: aloha creates FFV5 routines
ALOHA: aloha creates FFV2_5 routines
ALOHA: aloha creates FFV2_4 routines
INFO: Use Fortran compiler gfortran
INFO: Generate jpeg diagrams
INFO: Generate web pages
The option group_subprocesses is modified [Auto] but will not be written in the configuration files.
If you want to make this value the default for future session, you can run 'save options --all'
The option complex_mass_scheme is modified [False] but will not be written in the configuration files.
If you want to make this value the default for future session, you can run 'save options --all'
save configuration file to /Users/omatt/Documents/eclipse/2.0.0beta4/PROD_TT2/Cards/amcatnlo_configurat
Type "launch" to generate events from this process, or see
/Users/omatt/Documents/eclipse/2.0.0beta4/PROD_TT2/README
Run "open index.html" to see more information about this process.
```


- Create your aMC@NLO code
 - → output PATH
- Run it:
 - launch [PATH]

```
WELCOME to MADGRAPH 5
         VERSION 2.0.0.beta4
                                     2013-06-22
    The MadGraph Development Team - Please visit us at
                http://amcatnlo.cern.ch
              Type 'help' for in-line help.
**************************************
INFO: load configuration from /Users/omatt/.mg5/mg5_configuration.txt
INFO: load configuration from /Users/omatt/Documents/eclipse/2.0.0beta4/PROCNLO_loop_sm_
INFO: load configuration from /Users/omatt/Documents/eclipse/2.0.0beta4/input/mg5_config
INFO: load configuration from /Users/omatt/Documents/eclipse/2.0.0beta4/PROCNLO_loop_sm_
set group_subprocesses Auto
set ignore_six_quark_processes False
set loop_optimized_output True
set gauge unitary
set complex_mass_scheme False
launch auto
The following switches determine which operations are executed:
1 Perturbative order of the calculation:
                                                                  order=NL0
2 Fixed order (no event generation and no MC@[N]LO matching):
                                                            fixed_order=OFF
3 Shower the generated events:
                                                                 shower=0N
                                                                madspin=OFF
4 Decay particles with the MadSpin module:
 Either type the switch number (1 to 4) to change its default setting,
 or set any switch explicitly (e.g. type 'order=L0' at the prompt)
 Type '0', 'auto', 'done' or just press enter when you are done.
[0, 1, 2, 3, 4, auto, done, order=LO, order=NLO, ...] [60s to answer]
```


- Create your aMC@NLO code
 - → output PATH
- Run it:
 - → launch [PATH]

First Question:

```
The following switches determine which operations are executed:

1 Perturbative order of the calculation:

2 Fixed order (no event generation and no MC@[N]LO matching): fixed_order=OFF

3 Shower the generated events:

4 Decay particles with the MadSpin module:

Either type the switch number (1 to 4) to change its default setting,
or set any switch explicitly (e.g. type 'order=LO' at the prompt)

Type '0', 'auto', 'done' or just press enter when you are done.

[0, 1, 2, 3, 4, auto, done, order=LO, order=NLO, ...] [60s to answer]
>[timer stopped]
```

O. Mattelaer, LC13 aMC@NLO 25

- Create your aMC@NLO code
 - → output PATH
- Run it:
 - → launch [PATH]

Second Question:

- each beam at 250 GeV

• The code runs:

```
INFO: For gauge cancellation, the width of 't' has been set to zero.
INFO: Compiling source...
INFO:
               ...done, continuing with P* directories
INFO: Compiling directories...
INFO: Compiling on 8 cores
     Compiling P0_epem_ttx...
INFO:
INFO:
          P0 epem ttx done.
INFO: Checking test output:
INFO: P0_epem_ttx
INFO: Result for test_ME:
INFO:
         Passed.
INFO: Result for test_MC:
INFO: Passed.
INFO: Result for check poles:
         Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05)
INFO:
ANFO: Starting run
INFO: Using 8 cores
INFO: Cleaning previous results
INFO: Doing NLO matched to parton shower
INFO: Setting up grid
INFO: Idle: 0, Running: 2, Completed: 2 [ current time: 17h19 ]
INFO: Idle: 0, Running: 1, Completed: 3 [ 1.2s ]
INFO: Idle: 0, Running: 0, Completed: 4 [ 1.3s ]
INFO: Determining the number of unweighted events per channel
      Intermediate results:
      Random seed: 36
      Total cross-section: 6.232e-01 +- 4.2e-03 pb
      Total abs(cross-section): 7.010e-01 +- 2.5e-03 pb
```

Compilation

Check Poles cancelation

Integration


```
INFO: Computing upper envelope
INFO: Idle: 0, Running: 2, Completed: 2 [ current time: 17h19 ]
INFO: Idle: 0, Running: 1, Completed: 3 [ 1.3s ]
INFO: Idle: 0, Running: 0, Completed: 4 [ 1.3s ]
INFO: Updating the number of unweighted events per channel
     Intermediate results:
     Random seed: 36
     Total cross-section: 6.183e-01 +- 3.7e-03 pb
     Total abs(cross-section): 6.986e-01 +- 1.9e-03 pb
INFO: Generating events
INFO: Idle: 0, Running: 2,
                           Completed: 2 [ current time: 17h19 ]
                           Completed: 3 [ 0.6s ]
INFO: Idle: 0, Running: 1,
INFO: Idle: 0, Running: 0, Completed: 4 [ 1.3s ]
INFO: Doing reweight
INFO: Idle: 0, Running: 1, Completed: 3 [ current time: 17h19 ]
INFO: Idle: 0, Running: 0, Completed: 4 [ 0.74s ]
INFO: Collecting events
INFO:
     Summary:
     Process e+e->tt\sim [OCD]
     Run at l-l collider (250 + 250 GeV)
     Total cross-section: 6.183e-01 +- 3.7e-03 pb
     Ren. and fac. scale uncertainty: +1.0% -0.8%
     Number of events generated: 10000
     Parton shower to be used: HERWIG6
decay_events -from_cards
INFO: Running MadSpin
INFO: This functionality allows for the decay of resonances
INFO: in a .lhe file, keeping track of the spin correlation effets.
INFO: BE AWARE OF THE CURRENT LIMITATIONS:
     (1) Only a succession of 2 body decay are currently allowed
*****************
          WELCOME to MADSPIN
```

Integration

Events Generation

Top Decay


```
INFO:
         Estimating the maximum weight
INFO:
INFO:
           Probing the first 75 events
INFO:
           with 400 phase space points
INFO:
INFO: Event 1/75 : 0.18s
INFO: Event 6/75: 1s
INFO: Event 11/75 : 1.9s
INFO: Event 16/75 : 2.8s
INFO: Event 21/75 : 3.8s
INFO: Event 26/75: 4.9s
INFO: Event 31/75 : 5.8s
INFO: Event 36/75 : 6.7s
INFO: Event 41/75: 8s
INFO: Event 46/75: 8.9s
INFO: Event 51/75: 9.7s
INFO: Event 56/75 : 10.8s
INFO: Event 61/75: 11.7s
INFO: Event 66/75 : 12.6s
INFO: Event 71/75 : 13.6s
INFO:
INFO: Decaying the events...
INFO: Event nb 1000 2.1s
INFO: Event nb 2000
                    3.8s
INFO: Event nb 3000
INFO: Event nb 4000
                   7.3s
INFO: Event nb 5000
INFO: Event nb 6000 10.8s
INFO: Event nb 7000
INFO: Event nb 8000 14.4s
INFO: Event nb 9000 16.1s
INFO: Event nb 10000 17.9s
INFO: Total number of events written: 10000/10000
INFO: Average number of trial points per production event: 10.9322
INFO: Branching ratio to allowed decays: 1
INFO: Number of events with weights larger than max_weight: 0
INFO: Number of subprocesses 8
INFO: Number of failures when restoring the Monte Carlo masses: 1
INFO: Decayed events have been written in /Users/omatt/Documents/eclipse/2.0.
INFO: The decayed event file has been moved to the following location:
INFO: /Users/omatt/Documents/eclipse/2.0.0beta4/PROCNLO_loop_sm_16/Events/rur
INFO: MadSpin Done
INFO:
         Prepairing MCatNLO run
INFO:
         Compiling MCatNLO for HERWIG6...
INFO:
INFO: Running MCatNLO in /Users/omatt/Documents/eclipse/2.0.0beta4/PROCNLO_lc
INFO: The file /Users/omatt/Documents/eclipse/2.0.0beta4/PROCNLO_loop_sm_16/E
It contains showered and hadronized events in the StdHEP format obtained show
cayed_1/events.lhe.gz with HERWIG6
quit
```

estimation of the maximum weight

adding decay event by event

Shower

DEMO

Is it really automatic?

DEMO

Is it really automatic?

As much as LO!

Top-quark pair production at ILC

Preliminary

Offshell effect at NLO

• Diagrams with unstable particles present in general an imaginary part in the Dyson-ressumed propagator:

$$P(p) = [p^2 - m_0^2 + Pi(p^2)]^{-1}$$

- Mixing of different perturbative orders breaks gauge invariance. Fine cancellations spoiled, leading to enhanced violation of unitarity
- No pole cancelation at NLO for fix-width scheme
- Solution: Complex Mass-Scheme: $M \to \sqrt{M^2 iM\Gamma}$,

$$c_W^2 = \frac{M_w^2 + iM_W \Gamma_W}{M_Z^2 + iM_Z \Gamma_Z}$$

Gauge dependence at LO

$ A ^2$ - Feynman-unitary /unitary	complex mass	fixed width
$e^+e^- o uar u dar d$	1.5334067678e-15	1.2312200197e-09
$u\bar{u} o u\bar{u}d\bar{d}$	2.0862057616e-16	2.7696013365e-10
$u ar u o b ar b e^+ u_e \mu^- u_\mu$ (real Yuk)	1.7934842084e-06	2.2832833007e-05
"(complex Yuk)	8.5986902303e-16	2.2832833007e-05

$\sigma(pb)$ for $gg o bar{b}e^+ u_e\mu^-ar{ u_\mu}$							
gauge - scheme	complex-mass	fix width	no width				
feynman	1.796 e-05 \pm 2.3e-08	1.787 e-05 \pm 2.5e-08					
unitary	1.792 e-05 \pm 2.1e-08	1.778 e-05 \pm 2.4e-08	1.810 e-05 \pm 2.4e-08				

O. Mattelaer, LC13 aMC@NLO 33

Offshell effect at NLO

Conclusion

- aMC@NLO is
 - → public
 - automatic
 - → flexible
- MadSpin
 - decay with full spin correlations
 - keep finite width effect
- complex-mass
- This is only the beginning of this Tool!

	Process	μ	n_{lf}	Cross section (pb)	
				LO	NLO
a.1	$pp \rightarrow t\bar{t}$	m_{top}	5	123.76 ± 0.05	162.08 ± 0.12
a.2	$pp \rightarrow tj$	m_{top}	5	34.78 ± 0.03	41.03 ± 0.07
a.3	$pp \rightarrow tjj$	m_{top}	5	11.851 ± 0.006	13.71 ± 0.02
a.4	$pp \rightarrow t \bar{b} j$	$m_{top}/4$	4	25.62 ± 0.01	30.96 ± 0.06
a.5	$pp \rightarrow t\bar{b}jj$	$m_{top}/4$	4	8.195 ± 0.002	8.91 ± 0.01
b.1	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e$	m_W	5	5072.5 ± 2.9	6146.2 ± 9.8
b.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e j$	m_W	5	828.4 ± 0.8	1065.3 ± 1.8
b.3	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e jj$	m_W	5	298.8 ± 0.4	300.3 ± 0.6
b.4	$pp \rightarrow (\gamma^*/Z \rightarrow)e^+e^-$	m_Z	5	1007.0 ± 0.1	1170.0 ± 2.4
b.5	$pp \rightarrow (\gamma^*/Z \rightarrow)e^+e^-j$	m_Z	5	156.11 ± 0.03	203.0 ± 0.2
b.6	$pp \rightarrow (\gamma^*/Z \rightarrow)e^+e^-jj$	m_Z	5	54.24 ± 0.02	56.69 ± 0.07
c.1	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e b\bar{b}$	$m_W + 2m_b$	4	11.557 ± 0.005	22.95 ± 0.07
c.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e t\bar{t}$	$m_W + 2m_{top}$	5	0.009415 ± 0.000003	0.01159 ± 0.00001
c.3	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+e^-b\bar{b}$	$m_Z + 2m_b$	4	9.459 ± 0.004	15.31 ± 0.03
c.4	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+e^-t\bar{t}$	$m_Z + 2m_{top}$	5	0.0035131 ± 0.0000004	0.004876 ± 0.000002
c.5	$pp \rightarrow \gamma t \bar{t}$	$2m_{top}$	5	0.2906 ± 0.0001	0.4169 ± 0.0003
d.1	$pp \rightarrow W^+W^-$	$2m_W$	4	29.976 ± 0.004	43.92 ± 0.03
d.2	$pp \rightarrow W^+W^-j$	$2m_W$	4	11.613 ± 0.002	15.174 ± 0.008
d.3	$pp \rightarrow W^+W^+jj$	$2m_W$	4	0.07048 ± 0.00004	0.1377 ± 0.0005
e.1	$pp \rightarrow HW^+$	$m_W + m_H$	5	0.3428 ± 0.0003	0.4455 ± 0.0003
e.2	$pp \rightarrow HW^+ j$	$m_W + m_H$	5	0.1223 ± 0.0001	0.1501 ± 0.0002
e.3	$pp \rightarrow HZ$	$m_Z + m_H$	5	0.2781 ± 0.0001	0.3659 ± 0.0002
e.4	$pp \rightarrow HZj$	$m_Z + m_H$	5	0.0988 ± 0.0001	0.1237 ± 0.0001
e.5	$pp \rightarrow H t \bar{t}$	$m_{top} + m_H$	5	0.08896 ± 0.00001	0.09869 ± 0.00003
e.6	$pp \! o \! Hbar{b}$	$m_b + m_H$	4	0.16510 ± 0.00009	0.2099 ± 0.0006
e.7	$pp \rightarrow Hjj$	m_H	5	1.104 ± 0.002	1.036 ± 0.002

Work in Progress in aMC@NLO

What to expect in the future

• FeynRules@NLO:

- FeynRules@NLO:
 - → NLO not only for the SM but for New Physics

- FeynRules@NLO:
 - → NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)

- FeynRules@NLO:
 - → NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
 - → MadLoop ready (currently in validation)

- FeynRules@NLO:
 - → NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
 - MadLoop ready (currently in validation)
 - → Use ALOHA [OM & al (2011)] for bubble/Tadpole

- FeynRules@NLO:
 - → NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
 - MadLoop ready (currently in validation)
 - → Use ALOHA [OM & al (2011)] for bubble/Tadpole
- Full automation of FxFx merging [R. Frederix, S. Frixione (2012)]

 $0 \rightarrow 1$ rates in H^0 and $t\bar{t}$ production

- FeynRules@NLO:
 - → NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
 - → MadLoop ready (currently in validation)
 - → Use ALOHA [OM & al (2011)] for bubble/Tadpole
- Full automation of FxFx merging [R. Frederix, S. Frixione (2012)]
- Automation of loop-induced processes

- FeynRules@NLO:
 - → NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
 - → MadLoop ready (currently in validation)
 - → Use ALOHA [OM & al (2011)] for bubble/Tadpole
- Full automation of FxFx merging [R. Frederix, S. Frixione (2012)]
- Automation of loop-induced processes
- Interface to Pythia8

- FeynRules@NLO:
 - → NLO not only for the SM but for New Physics
- ElectroWeak corrections (matched to the shower)
 - → MadLoop ready (currently in validation)
 - → Use ALOHA [OM & al (2011)] for bubble/Tadpole
- Full automation of FxFx merging [R. Frederix, S. Frixione (2012)]
- Automation of loop-induced processes
- Interface to Pythia8
- Complex mass scheme

MC@NLO properties

- Good features of including the subtraction counter terms
 - 1. **Double counting avoided**: The rate expanded at NLO coincides with the total NLO cross section
 - 2. **Smooth matching**: MC@NLO coincides (in shape) with the parton shower in the soft/collinear region, while it agrees with the NLO in the hard region
 - 3. **Stability**: weights associated to different multiplicities are separately finite. The *MC* term has the same infrared behavior as the real emission (there is a subtlety for the soft divergence)
- Not so nice feature (for the developer):
 - 1. **Parton shower dependence**: the form of the *MC* terms depends on what the parton shower does exactly. Need special subtraction terms for each parton shower to which we want to match