LHCb results on flavour physics and implications to BSM

Christoph Langenbruch¹ on behalf of the LHCb collaboration ¹CERN

LC13, Trento

ECT*

EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

New Physics searches at LHCb New Physics searches at LHCb

- Most New Physics models predict existence of new heavy particles
- New BSM particles can enter loop processes as virtual particles
- Particularly interesting: Flavour Changing Neutral Currents

 $B^0_s-\overline{B}^0_s$ mixing (box diagram) $\qquad B^0\to K^{*0}\mu\mu$ (penguin diagram)

- Compare SM predictions with LHCb's precision measurements → Indirect search for New Physics
- Higher mass scales accessible than with direct searches
- Pattern of deviations hints at the structure of New Physics

San

New Physics searches at LHCb New Physics searches at LHCb

- Most New Physics models predict existence of new heavy particles
- New BSM particles can enter loop processes as virtual particles
- Particularly interesting: Flavour Changing Neutral Currents

 $B^0_s - \overline{B}^0_s$ mixing (box diagram) $B^0 \to K^{*0} \mu \mu$ (penguin diagram)

- Compare SM predictions with LHCb's precision measurements \rightarrow Indirect search for New Physics
- Higher mass scales accessible than with direct searches
- Pattern of deviations hints at the structure of New Physics

San

The LHCb experiment at the LHC

- $b\bar{b}$ produced correlated predominantly in forward (backward) direction → single arm forward spectrometer (2 < η < 5)
- Large $b\bar{b}$ production cross section $\sigma_{b\bar{b}} = (75.3 \pm 14.1) \,\mu b$ [Phys.Lett. B694 (2010)] in acceptance
- Huge $c\bar{c}$ cross section No time to cover LHCb's extensive charm program $\sigma_{c\bar{c}} = (1419 \pm 134) \,\mu\text{b}$ [Nucl. Phys. B871 (2013)] in acceptance

The LHCb detector: Tracking

- Excellent Impact Parameter (IP) resolution $(20 \,\mu\text{m})$ \rightarrow Identify secondary vertices from heavy flavour decays
- \blacksquare Proper time resolution $\sim 40\,{\rm fs}$
 - \rightarrow Resolve fast B_s^0 oscillations
- Excellent momentum ($\delta p/p \sim 0.4 0.6\%$) and inv. mass resolution
 - \rightarrow Low combinatorial background

크 네 크 네 크

DQC

The LHCb experiment

The LHCb detector: Particle identification and Trigger

- Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\% \ \epsilon_{\pi \to \mu} \sim 1-3\%$
- Good $K\pi$ separation via RICH detectors $\epsilon_{K \to K} \sim 95\% \ \epsilon_{\pi \to K} \sim 5\%$ \rightarrow Reject peaking backgrounds
- High trigger efficiencies Muonic modes: $\epsilon_{\text{Trigger}}(B_s^0 \rightarrow \mu^+ \mu^-) \sim 90\%$ Hadronic modes: $\epsilon_{\text{Trigger}}(B^0 \rightarrow h^+ h^-) \sim 50\%$

CP Violation

CP Violation

Hunt for CPV phases induced by NP

Types of CP violation

CPV in decay "direct CP violation"

- interference between decay amplitudes with different weak and strong phases
- different decay rates $B \rightarrow f$ vs. $\bar{B} \rightarrow \bar{f}$

strong phases difficult in theory

CPV in interference of mixing and decay

interference between decay and decay after mixing different decay rates $B \rightarrow f_{\rm CP}$ vs. $\bar{B} \rightarrow f_{\rm CP}$ "golden modes"

C. Langenbruch (CERN), LC13

$\stackrel{_{\mathsf{CP}}}{\mathsf{CPV}}$ in mixing: Flavour specific asymmetry a_{sl}^s

- Flavour specific asymmetry $a_{\rm sl}^s = \frac{\Gamma(\bar{B}_s^0(t) \to f) - \Gamma(B_s^0(t) \to \bar{f})}{\Gamma(\bar{B}_s^0(t) \to f) + \Gamma(B_s^0(t) \to \bar{f})}$
- Non-zero if CP is violated in B_s^0 mixing $\operatorname{Prob}(B_s^0 \to \overline{B}_s^0) \neq \operatorname{Prob}(\overline{B}_s^0 \to B_s^0)$

- Tiny in the SM $a_{
 m sl}^s = (1.9 \pm 0.3) \times 10^{-5}$ [A. Lenz arxiv:1205.1444]
- Sensitive to possible NP contributions to B_s^0 mixing
- LHCb uses $f = D_s^- \mu^+ X$ as final state
- Production asymmetry $a_P \sim \mathcal{O}(1\%)$ washed out by rapid B_s^0 oscillation! $A_{\text{raw}} = \frac{N(D_s^- \mu^+) - N(D_s^+ \mu^-)}{N(D_s^- \mu^+) + N(D_s^+ \mu^-)} = \frac{a_{\text{sl}}^s}{2} + \left[a_P - \frac{a_{\text{sl}}^s}{2}\right] \times \underbrace{\frac{\int e^{-\Gamma_s t} \cos(\Delta m_s t)\epsilon(t)}{\int e^{-\Gamma_s t} \cosh(\Delta \Gamma_s t/2)\epsilon(t)}}_{\sum e^{-\Gamma_s t} \cosh(\Delta \Gamma_s t/2)\epsilon(t)}$

 $=2\times10^{-3}$ for LHCb acceptance

글 네 글 네 크 네 크

CPV in mixing: Flavour specific asymmetry a_{s1}^s

Detection asymmetry measured on data using control channels $(b \rightarrow J/\psi X, D^{*+} \rightarrow D^0 \pi^+)$

- $a_{\rm sl}^s = (-0.06 \pm 0.50_{\rm stat} \pm 0.36_{\rm syst})\% \text{ [arxiv:1308.1048]}$ Most precise mesurement of this quantity
- Excellent agreement with the SM
- No confirmation of the D0 same-sign dilepton anomaly

CKM matrix dominant source of CPV in the quark sector

More precise measurement of the SM needed to test for possibly small contributions from NP

CKM angle γ is least well constrained CKM parameter $\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right), \gamma = (68.0^{+8.0}_{-8.5})^{\circ}$ [CKMfitter], $\gamma = (70.8 \pm 7.8)^{\circ}$ [UTfit]

- Determination from tree level $B^- \to D[\to f_D]K^-$ decays with f_D accessible from both D and \bar{D}
- No loop contributions → no NP effects expected

CP violation

γ determination methods depending on D final state

- CP eigenstates K^+K^- , $\pi^+\pi^-$ (Gronau, London, Wyler) [PLB 713 (2012) 351]
- Flavour-specific states K[±]π[∓], K[±]π[∓]π[±]π[∓] (Atwood, Dunietz, Soni) [PLB 713 (2012) 351], [PLB 723 (2013) 44]
- 3-body final states $K_{\rm S}^0 \pi^+ \pi^-$, $K_{\rm S}^0 K^+ K^-$ (Giri, Grossman, Soffer, Zupan) Compare interference patterns in Dalitz plots from B^+ and B^- decays 1 fb⁻¹ [PLB 718 (2012) 43], 3 fb⁻¹ [LHCb-CONF-2013-006]
- \blacksquare Preliminary combination of 1 fb $^{-1}$ GLW/ADS and 3 fb $^{-1}$ GGSZ

Most precise γ measurement to date

• $\gamma = (67 \pm 12)^{\circ}$ [LHCb-CONF-2013-006]

CPV in 2-body charmless B decays

Direct CP violation due to interference of $b \rightarrow u$ tree and $b \rightarrow s(d)$ penguin

Measures γ in the SM, sensitive to possible NP contributions in the loop

- Exploit U-spin relation between B⁰ and B⁰_s decays to determine strong phases [Fleischer, EPJC 52 (2007) 267]
- 1 Time-integrated CP asymmetry in $B^0 o K^+\pi^-$ and $B^0_s o K^-\pi^+$
- \blacksquare Time-dependent CP asymmetry in $B^0 \to \pi^+\pi^-$ and $B^0_s \to K^+K^-$

12 / 30

DQC

CP violation

Time-integrated CPV in 2-body charmless B decays

- First observation of CPV in B_s^0 decays with 6.5σ significance $A_{\rm CP}(B_s^0 \to K^-\pi^+) = 0.27 \pm 0.04_{\rm stat} \pm 0.01_{\rm syst}$
- Test of U-spin symmetry [Lipkin, PLB 621 (2005) 126] $\Delta = \frac{A_{\rm CP}(B^0 \to K^+ \pi^-)}{A_{\rm CP}(B^0_s \to K^- \pi^+)} + \frac{\mathcal{B}(B^0_s \to K^- \pi^+)}{\mathcal{B}(B^0 \to K^+ \pi^-)} \frac{\tau_d}{\tau_s} = 0$
- LHCb measures $\Delta = -0.02 \pm 0.05_{stat} \pm 0.04_{syst}$

Time-dependent CPV in 2-body charmless B decays

- Time dependent CP asymmetry, e.g. $B^0 \to \pi^+\pi^-$: $A_{\rm CP}(t) = \frac{\Gamma(\overline{B^0} \to \pi^+\pi^-, t) - \Gamma(\overline{B^0} \to \pi^+\pi^-, t)}{\Gamma(\overline{B^0} \to \pi^+\pi^-, t) + \Gamma(\overline{B^0} \to \pi^+\pi^-, t)} \propto -C_{\pi\pi} \cos(\Delta m t) + S_{\pi\pi} \sin(\Delta m t)$
- Use Flavour tagging algorithms to infer B flavour at production

${}^{_{\rm CP \ violation}}$ CP violating phase ϕ_s

- CP violating in interference between mixing and decay: $\phi_s = \phi_M 2\phi_D$
- Precise SM prediction: $\phi_s^{SM} = -(0.0367 \pm 0.0014) \operatorname{rad}$ [CKMfitter]
- BSM particles can affect B^0_s mixing phase: $\phi_s = \phi^{\rm SM}_s + \Delta \phi^{\rm NP}_s$
- Time dependent CP asymmetry $A_{\rm CP}(t) = \frac{\Gamma(\overline{B}_s^0 \to f_{\rm CP}, t) - \Gamma(B_s^0 \to f_{\rm CP}, t)}{\Gamma(\overline{B}_s^0 \to f_{\rm CP}, t) + \Gamma(B_s^0 \to f_{\rm CP}, t)} = \eta_f \frac{\sin \phi_s}{\sin(\Delta m_s t)}$
- Need to resolve fast $B_s^0 \overline{B}_s^0$ oscillation, dedicated measurement of $\Delta m_s = (17.768 \pm 0.023 \pm 0.006) \text{ ps}^{-1}$ [New J. Phys. 15 (2013) 053021]
- η_f CP eigenvalue of $f_{\rm CP}$

DQC

Angular analysis of $B^0_s ightarrow J\!/\!\psi\,\phi$

Final state $J/\psi \phi$ admixture of CP-even and CP-odd \rightarrow Angular analysis to disentangle 3 polarisation amplitudes + S-wave

ϕ_s Result and Implications

• $\phi_s = (0.07 \pm 0.09 \pm 0.01) \,\mathrm{rad}$ $\Delta \Gamma_s = (0.100 \pm 0.016 \pm 0.003) \,\mathrm{ps}^{-1}$

Combined with $B_s^0 \rightarrow J/\psi \pi^+\pi^-$: $\phi_s = (0.01 \pm 0.07 \pm 0.01) \, \text{rad}$

Model ind. fit [A. Lenz et al. PRD 86] \rightarrow Good agreement with the SM

590

프 네 프 네

Rare Decays

Searching for the effect of New Particles in rare decays

Rare decays in effective field theory

- Effective Hamiltonian for $b \to s$ FCNC transition $\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i (C_i \mathcal{O}_i + C'_i \mathcal{O}'_i)$
- Wilson coefficients $C_i^{(\prime)}$ encode short-distance physics and possible NP
- \mathcal{O}_i local operators, \mathcal{O}_i' helicity flipped, m_s/m_b suppressed

- Purely leptonic $b \rightarrow s \text{ FCNC} \rightarrow \text{Theoretically and experimentally clean}$
- Very rare decay: Loop, CKM and helicity suppressed
- Sensitive to NP in the scalar and pseudoscalar sector $\mathcal{B}(B_q \to \mu^+ \mu^-) \propto |V_{tb}V_{tq}|^2 [(1 - \frac{4m_{\mu}^2}{M_R^2})|C_S - C'_S|^2 + |(C_P - C'_P) + \frac{2m_{\mu}}{M_R^2}(C_{10} - C'_{10})|^2]$
- SM prediction [A. J. Buras et al. Eur.Phys.J. C72 (2012) 2172] $\mathcal{B}(B_s^0 \to \mu^+\mu^-) = (3.23 \pm 0.27) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+\mu^-) = (1.07 \pm 0.10) \times 10^{-10}$
- Accounting for $\Delta\Gamma_s \neq 0$ [A. J. Buras et al. JHEP07 (2013) 077] $\mathcal{B}(B_s^0 \to \mu^+\mu^-) = (3.56 \pm 0.18) \times 10^{-9}$
- In the MSSM ${\cal B}(B^0_s o \mu^+ \mu^-) \propto an^6 \, \beta/m_A^4$

Rare decavs

20 / 30

- Significance of observed $B^0_s \rightarrow \mu^+\mu^-$ signal 4σ
- Upper limit $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 7.4 \times 10^{-10}$ at 95% CL
- Resulting (time integrated) branching fractions [PRL 111 (2013) 101805] $\mathcal{B}(B^0_s \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}(\text{stat})^{+0.3}_{-0.1}(\text{syst})) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.7^{+2.4}_{-2.1}(\text{stat})^{+0.6}_{-0.4}(\text{syst})) \times 10^{-10}$
- Combination with CMS [arxiv:1307.5025] \rightarrow Observation of $B_s^0 \rightarrow \mu^+ \mu^-$ with $> 5\sigma$ [LHCb-CONF-2013-012]

Rare decavs

 R^0

DQC

 $B^{
m Rare\ decays}_s \to \mu^+\mu^-$ Implications

■ $\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-)$ significantly constrains parameter space of NP models

$B^+ \to K^+ \mu^+ \mu^-$

Rare decavs

- Decay described by $q^2 = m^2(\mu^+\mu^-)$ and one angle θ_ℓ $\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma(B^+ \to K^+\mu^+\mu^-)}{\mathrm{d}\cos\theta_\ell} = \frac{3}{4}(1 - F_\mathrm{H})(1 - \cos^2\theta_\ell) + \frac{1}{2}F_\mathrm{H} + A_\mathrm{FB}\cos\theta_\ell$
- Measure $d\Gamma/dq^2$, $A_{\rm FB}$ and $F_{\rm H}$ in bins of q^2
- Veto charmonium resonances $B^+ \to J/\psi K^+$, $B^+ \to \psi(2S)K^+ \to$ use for normalisation and calibration
- Good agreement with SM predictions
 [Bobeth et al. JHEP 1201 (2012) 107], [Bobeth et al. JHEP07 (2011) 067]

Measure CP asymmetry

$$A_{CP} = \frac{\Gamma(B^- \to K^- \mu^+ \mu^-) - \Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^- \to K^- \mu^+ \mu^-) + \Gamma(B^+ \to K^+ \mu^+ \mu^-)}$$

= 0.000 ± 0.033_{stat} ± 0.005_{syst} ± 0.07_{norm}
Good agreement with SM prediction
Details in [arxiv:1308.1340]

Observation of $\mu^+\mu^-$ resonance at high q^2

- Mass 4191^{+9}_{-8} MeV/ c^2 , width 65^{+22}_{-16} MeV/ c^2
- Compatible with known $\psi(4160)$
- Amounts to $\sim 20\%$ of $K^+\mu^+\mu^-$ at high q^2
- Could affect angular distributions at high q^2
- Details in [arxiv:1307.7595]

- Differential branching fraction: 3 decay angles θ_{ℓ} , θ_K , $\Phi \to 8$ observables $\frac{1}{\Gamma} \frac{d^3(\Gamma + \bar{\Gamma})}{d\cos\theta_{\ell}d\cos\theta_K d\Phi} = \frac{9}{32\pi} \left[\frac{3}{4}(1 - F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \frac{1}{4}(1 - F_L)\sin^2\theta_K\cos2\theta_\ell - F_L\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\Phi + S_4\sin2\theta_K\sin2\theta_\ell\cos\Phi + S_5\sin2\theta_K\sin^2\theta_\ell\cos\Phi + \frac{4}{3}A_{FB}\sin^2\theta_K\cos\theta_\ell + S_7\sin2\theta_K\sin\theta_\ell\sin\Phi + S_8\sin2\theta_K\sin2\theta_\ell\sin\Phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_\ell\sin2\Phi$
- $F_{\rm L}(q^2)$, $A_{\rm FB}(q^2)$, $S_i(q^2)$ functions of Wilson coefficients $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$
- q^2 dependence given by hadronic ______ form factors \rightarrow large part of theory uncertainty
- Simultaneous fit not possible with $1 \, {\rm fb}^{-1}$ \rightarrow Angular foldings, e.g. $\Phi \rightarrow \Phi + \pi$ for $\Phi < 0$ cancels terms $\propto S_{4,5,7,8}$

→ E → < E → </p>

200

Rare decavs

$B^{ m Rare \ decays} B^0 ightarrow K^{*0} \mu^+ \mu^-$ angular observables

 Results [JHEP08 (2013) 131] in good agreement with the SM predictions [C. Bobeth et al. JHEP07 (2011) 067]

3

DQC

$B^{ m Rare \ decays} B^0 ightarrow K^{*0} \mu^+ \mu^-$ angular observables

- Remaining angular observables determined by different angular folding
- Less form-factor dependent param. [S. Descotes-Genon et al. JHEP05 (2013) 137]
- **3.7** σ discrepancy in P'_5 , Probability in 1/24 bins: 0.5% [arxiv:1308.1707]

LHCb results on flavour physics

C. Langenbruch (CERN), LC13

$B^{\rm \tiny Rare \ decays} B^0 \to K^{*0} \mu^+ \mu^-$ Implications

S. Descotes-Genon et al. see improved agreement with a reduced C_9

 W. Altmannshofer et al. combine with other experiments/channels Best fit result with shifts of C₉ and C'₉

Need update with full $3 \, \text{fb}^{-1}$ LHCb data sample sample to clarify

•
$$B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$$
 a radiative FCNC

- Angle Θ carries information on γ polarization (left handed in SM)
- In New Physics models,

 γ can have right handed component

Up-down asymmetry
$$A_{\rm ud} = \frac{\int_0^1 \frac{d\Gamma}{d\cos\Theta} d\cos\Theta - \int_{-1}^0 \frac{d\Gamma}{d\cos\Theta} d\cos\Theta}{\int_{-1}^1 \frac{d\Gamma}{d\cos\Theta} d\cos\Theta}$$

- $A_{\rm ud} = -0.085 \pm 0.019_{\rm stat} \pm 0.003_{\rm syst}$ $\rightarrow 4.6\sigma \text{ evidence for } \gamma \text{ polarization}$
- First determination of CP asymmetry in the decay $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ $A_{\rm CP} = -0.007 \pm 0.015_{\rm stat} \pm 0.008_{\rm syst}$

∃ ∃ ≥

- The precision measurement of CP violation and the study of rare FCNC decays constitute powerful probes for New Physics Complementary to direct searches, high mass scales accessible
- Good agreement with the SM expectations seen so far Strong constraints on several NP models
- Interesting deviation in one angular observable in $B^0 \to K^{*0} \mu^+ \mu^-$ Updated study with full data sample needed to confirm
- Most presented results are statistically limited and do not yet use the full data sample
 - \rightarrow Stay tuned for more exciting results!

→ 문 → → 문 → - 문

Sar

500

 $B^{\scriptscriptstyle ext{Backup}}_{(s)} o \mu^+ \mu^-$ analysis strategy

- Select two well identified muons with good common vertex separated from all pp vertices
- Classify events as signal/background via
 - II Multivariate classifier (BDT): Calibrate signal: $B \rightarrow h^+h^-$ data Calibrate bkg.: dimuon sidebands
 - Invariant $\mu^+\mu^-$ mass: Resolution from J/ψ , Υ resonances
- Normalise using $B^+ \to J/\psi K^+$ and $B^0 \to K^+\pi^-$, consistent results

Perform extended unbinned ML fit in BDT bins

C. Langenbruch (CERN), LC13

- Similar to $B^0
 ightarrow K^{*0} \mu^+ \mu^-$, but in the B^0_s system
- Not self-tagging \rightarrow reduced number of untagged observables, but cleaner
- Angular observables in good agreement with predictions, ${\cal B}$ low

Kiele C. Langenbruch (CERN), LC13

LHCb results on flavour physics

nan

$\overline{B}^{\scriptscriptstyle m Backup} o \overline{K}^{*0} \mu^+ \mu^-$ in detail

- Following [Altmannshofer et. al], [Bobeth et. al]
- Differential decay rate for $\overline{B}{}^0 \to \overline{K}{}^{*0}\mu^+\mu^-$:

$$\Gamma(\overline{B}^0 \to \overline{K}^{*0} \mu^+ \mu^-) = \frac{9}{32\pi} \Big[J_1^s \sin^2 \theta_K + J_1^c \cos^2 \theta_K \\ + (J_2^s \sin^2 \theta_K + J_2^c \cos^2 \theta_K) \cos 2\theta_\ell \\ + J_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\Phi + J_4 \sin 2\theta_K \sin 2\theta_\ell \cos \Phi \\ + J_5 \sin 2\theta_K \sin \theta_\ell \cos \Phi \\ + J_6^s \sin^2 \theta_K \cos \theta_\ell + J_7 \sin 2\theta_K \sin \theta_\ell \sin \Phi \\ + J_8 \sin 2\theta_K \sin 2\theta_\ell \sin \Phi + J_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\Phi \Big]$$

- For $B^0 \to K^{*0} \mu^+ \mu^-$: Replace $J_{1,2,3,4,7} \to +\bar{J}_{1,2,3,4,7}$ and $J_{5,6,8,9} \to -\bar{J}_{5,6,8,9}$ (depends on angular convention)
- Angular observables $J_i(q^2)$ depend on decay amplitudes $A^{L,R}_{0,\parallel,\perp}$ which in turn depend on the Wilson coefficients and form factors
- Alternative $S_i = (J_i + \bar{J}_i) / \frac{d\Gamma + \bar{\Gamma}}{dq^2}$, $A_i = (J_i \bar{J}_i) / \frac{d\Gamma + \bar{\Gamma}}{dq^2}$

Angular observables $J_i(q^2)$ for $\overline{B}{}^0 \to \overline{K}{}^{*0}\mu^+\mu^-$

$$\begin{split} J_{1}^{s} &= \frac{(2+\beta_{\mu}^{2})}{4} \Big[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + (L \to R) \Big] + \frac{4m_{\mu}^{2}}{q^{2}} \Re(A_{\perp}^{L}A_{\perp}^{R*} + A_{\parallel}^{L}A_{\parallel}^{R*}) \\ J_{1}^{c} &= |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{\mu}^{2}}{q^{2}} \Big[|A_{t}|^{2} + 2\Re(A_{0}^{L}A_{0}^{R*}] \\ J_{2}^{s} &= \frac{\beta_{\mu}^{2}}{4} \Big\{ |A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + (L \to R) \Big\} \\ J_{2}^{c} &= -\beta_{\mu}^{2} \Big\{ |A_{0}^{L}|^{2} + (L \to R) \Big\} \\ J_{3} &= \frac{\beta_{\mu}^{2}}{2} \Big\{ |A_{\perp}^{L}|^{2} - |A_{\parallel}^{L}|^{2} + (L \to R) \Big\} \\ J_{4} &= \frac{\beta_{\mu}^{2}}{\sqrt{2}} \Big\{ \Re(A_{0}^{L}A_{\parallel}^{L*}) + (L \to R) \Big\} \\ J_{5} &= \sqrt{2}\beta_{\mu} \Big\{ \Re(A_{0}^{L}A_{\perp}^{L*}) - (L \to R) \Big\} \\ J_{6} &= 2\beta_{\mu} \Big\{ \Re(A_{0}^{L}A_{\perp}^{L*}) - (L \to R) \Big\} \\ J_{7} &= \sqrt{2}\beta_{\mu} \Big\{ \Im(A_{0}^{L}A_{\parallel}^{L*}) + (L \to R) \Big\} \\ J_{8} &= \frac{\beta_{\mu}^{2}}{\sqrt{2}} \Big\{ \Im(A_{0}^{L}A_{\parallel}^{L*}) + (L \to R) \Big\} \\ J_{9} &= \beta_{\mu}^{2} \Big\{ \Im(A_{\parallel}^{L}A_{\perp}^{L}) + (L \to R) \Big\} \\ \end{bmatrix}$$

Backup

Decay amplitudes for $\overline B{}^0 o \overline K{}^{*0} \mu^+ \mu^-$

$$\begin{split} A_{\perp}^{L(R)} &= N\sqrt{2\lambda} \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} + \mathbf{C}_{9}^{\prime\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} + \mathbf{C}_{10}^{\prime\text{eff}}) \right] \frac{\mathbf{V}(\mathbf{q}^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C}_{7}^{\text{eff}} + \mathbf{C}_{7}^{\prime\text{eff}}) \mathbf{T}_{1}(\mathbf{q}^{2}) \bigg\} \\ A_{\parallel}^{L(R)} &= -N\sqrt{2} (m_{B}^{2} - m_{K^{*}}^{2}) \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} - \mathbf{C}_{9}^{\prime\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}^{\prime\text{eff}}) \right] \frac{\mathbf{A}_{1}(\mathbf{q}^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C}_{7}^{\text{eff}} - \mathbf{C}_{7}^{\prime\text{eff}}) \mathbf{T}_{2}(\mathbf{q}^{2}) \bigg\} \\ A_{0}^{L(R)} &= -\frac{N}{2m_{K^{*}}\sqrt{q^{2}}} \bigg\{ \left[(\mathbf{C}_{9}^{\text{eff}} - \mathbf{C}_{9}^{\prime\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}^{\prime\text{eff}}) \right] \left[(m_{B}^{2} - m_{K^{*}}^{2} - q^{2})(m_{B} + m_{K^{*}}) \mathbf{A}_{1}(\mathbf{q}^{2}) - \lambda \frac{\mathbf{A}_{2}(\mathbf{q}^{2})}{m_{B} + m_{K^{*}}} \right] \\ &+ 2m_{b} (\mathbf{C}_{7}^{\text{eff}} - \mathbf{C}_{7}^{\prime\text{eff}}) \left[(m_{B}^{2} + 3m_{K^{*}} - q^{2}) \mathbf{T}_{2}(\mathbf{q}^{2}) - \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2}} \mathbf{T}_{3}(\mathbf{q}^{2}) \right] \bigg\} \\ A_{t} &= \frac{N}{\sqrt{q^{2}}} \sqrt{\lambda} \bigg\{ 2(\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}^{\prime\text{eff}}) + \frac{q^{2}}{m_{\mu}} (\mathbf{C}_{P}^{\text{eff}} - \mathbf{C}_{P}^{\prime\text{eff}}) \bigg\} \mathbf{A}_{0}(\mathbf{q}^{2}) \\ A_{S} &= -2N\sqrt{\lambda} (\mathbf{C}_{S} - \mathbf{C}_{S}) \mathbf{A}_{0}(\mathbf{q}^{2}) \end{split}$$

- Wilson coefficients $C_{7,9,10,S,P}^{(\prime)\text{eff}}$
- Seven form factors: $V(q^2), A_{0,1,2}(q^2), T_{1,2,3}(q^2)$
- Low recoil (OPE, HQET): $f_{\perp,\parallel,0}$ (helicity form factors)
- Large recoil (QCDF, SCET): $\xi_{\perp,\parallel}$ (soft form factors)
- Additional corrections: Spectator interactions
 - \rightarrow Non-factorizable effects, weak annihilation [Beneke et. al]

Backup LHCb upgrade schedule

year	$\int \mathcal{L} dt$				
2010	$0.037 {\rm fb}^{-1}$ @ 7 TeV				
2011	1fb^{-1} @ 7 TeV				
2012	2fb^{-1} @ 8 TeV				
2013	LHC LS1				
2014					
2015					
2016	$5{ m fb}^{-1}$ @ 13 ${ m TeV}$				
2017					
2018	LHC LS2,				
2019	LHCb upgrade				
2020					
2021	$5{ m fb}^{-1}/{ m year}$				
2022					

- No clear deviations from the SM
- LHCb results statistically limited
- More statistics needed \rightarrow LHCb upgrade
- Details in [CERN-LHCC-2012-007]

DQC

LHCb upgrade sensitivity

Type	Observable	Current	LHCb	Upgrade	Theory		
		precision	2018	(50fb^{-1})	uncertainty		
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003		
	$2\beta_s \ (B^0_s \rightarrow J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01		
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [18]	$0.6 imes 10^{-3}$	0.2×10^{-3}	0.03×10^{-3}		
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	-	0.17	0.03	0.02		
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02		
	$2\beta^{\text{eff}}(B^0 \rightarrow \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02		
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$		0.09	0.02	< 0.01		
currents	$\tau^{\text{eff}}(B^0_s \rightarrow \phi \gamma) / \tau_{B^0_s}$	-	5 %	1 %	0.2%		
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02		
penguin	$s_0 A_{FB}(B^0 \rightarrow K^{*0} \mu^+ \mu^-)$	25 % [14]	6 %	2%	7 %		
	$A_{I}(K\mu^{+}\mu^{-}; 1 < q^{2} < 6 \text{ GeV}^{2}/c^{4})$	0.25 [15]	0.08	0.025	~ 0.02		
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8 %	2.5%	$\sim 10 \%$		
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}		
penguin	$\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) / \mathcal{B}(B^0_s \rightarrow \mu^+ \mu^-)$	-	$\sim 100 \%$	$\sim 35 \%$	$\sim 5 \%$		
Unitarity	$\gamma \ (B \to D^{(*)}K^{(*)})$	$\sim 10 12^{\circ} [19, 20]$	4°	0.9°	negligible		
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible		
angles	$\beta (B^0 \rightarrow J/\psi K_S^0)$	0.8° [18]	0.6°	0.2°	negligible		
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	0.07×10^{-3}	_		
CP violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	_		

[CERN-LHCC-2012-007]

999

Э

回下 メミト メミト