

Lepton flavour violation at high energies: the LHC and a Linear Collider

Ana M. Teixeira

Laboratoire de Physique Corpusculaire, LPC - Clermont

Linear Collider Workshop - LC13 ECT* Trento, 16 September 2013

Flavour violation in the SM

▶ Quark sector: flavour violated by charged current interactions $V_{ij}^{\mathsf{CKM}} W^{\pm} \bar{q}_i q_j$ Observed in many oscillation/decay processes: very good agreement with SM!

► Lepton sector: neutral & charged lepton flavours strictly conserved

"Observable" cLFV \Rightarrow New Physics in the lepton sector - beyond SM_{m_{ν}}

LFV: which New Physics ?

▶ What is required of a SM extension to have "observable" cLFV?

$$\xrightarrow{l_i} \underset{\text{Physics}}{\overset{l_j}{\longrightarrow}} \longrightarrow \text{BR}(\mu \to e\gamma) = 10^{-12} \times (3 \text{ TeV}/\Lambda)^4 \times (\theta_{\mu e}/0.01)^2$$

 $\begin{array}{c|c} \mathsf{New Physics} \ (\mathsf{beyond} \ \mathsf{SM}_{m_{\boldsymbol{\nu}}}) & + & \mathsf{Lepton} \ \mathsf{Flavour} \ \mathsf{Mixing} \\ \\ \mathsf{cLFV} \ \Leftrightarrow & \mathbf{\Lambda} \sim \mathcal{O}(\mathsf{TeV}) & & \mathsf{non-negligible} \ \theta_{\ell_i \ell_j} \\ \\ & (\mathsf{testable} \ \mathsf{at} \ \mathsf{colliders} \ ?) & (\mathsf{suggested} \ \mathsf{by} \ \mathsf{neutrino} \ \mathsf{mixing} \ \ldots) \end{array}$

Generic cLFV extensions - general MSSM, LHT, RS, 4th generation, ...Examples: $cLFV \text{ from } m_{\nu}$ $\begin{cases} SM \text{ seesaw (TeV scale) - type II & inverse seesaw } \\ Extended frameworks - SUSY seesaw, GUTs, ...$

cLFV: models of New Physics

► All SM extensions introduce new particles, new flavour violating couplings..

Most models predict/accommodate extensive ranges for observables

(no new physics yet discovered, only bounds on new scale!)

cLFV plays a complementary rôle to direct searches:

▶ In the absence of cLFV (and other) signals:

 \Rightarrow constraints on parameter space (scale and couplings)

► cLFV observed: compare with peculiar features of given model
⇒ predictions for cLFV observables

⇒ intrinsic patterns of correlations of observables

Lepton Flavour Violation: Observables

Many candidate observables! (No SM theoretical background!)

- ► Rare leptonic decays and transitions [high-intensity facilities]
- Meson decays: violation of lepton flavour universality, LFV final states lepton Number violating decays [high-intensity; LHCb]
- ► Rare (new) heavy particle decays (typically model-dependent) [colliders] SUSY $\tilde{\ell}_i \rightarrow \ell_j \chi^0$, FV KK-excitation decays, $H \rightarrow \tau \mu$, ... Impact of LFV for new physics searches at colliders, ...
- ▶ Leptonic angular distributions; P- and T-odd asymmetries; leptonic CP violation, ...

Our approach ...

► Consider a high-scale, type I seesaw mechanism

embedded into flavour conserving SUSY models

► Address potential cLFV signals at colliders - LHC and LC

focusing on $\ell = e, \mu$ final states

Explore synergy between low- and high-energy cLFV observables

to probe the SUSY seesaw

Based on: A. Abada, A. Figueiredo, J. Romao and AMT arXiv: 1007.4833 & 1206.2306 A. Figueiredo and AMT, arXiv: 1309.****

M. Gómez talk (tomorrow) on general LFV final states !

New physics models: type I seesaw

Implement mechanism for ν -mass generation

Seesaw mechanism $\leftrightarrow i$ If Majorana ν , a natural explanation for small m_{ν} additional singlet states $N(\nu_R)$; new dynamics

$$\blacktriangleright - \mathcal{L}_{\text{mass}}^{\text{lepton}} = Y^{\ell} \bar{L} \phi e_R + Y^{\nu} \bar{L} \tilde{\phi} \nu_R + \frac{1}{2} \bar{\nu}_R M_R \nu_R^c + \text{h.c.} \qquad [Y^{\ell} = Y_{\ell}^{\text{diag}} \text{ and } M_R = M_R^{\text{diag}}]$$

• After EW symmetry breaking, an effective neutrino mass matrix M^{ν} [6×6]

$$M^{m{
u}} = egin{pmatrix} 0 & m{m_D} \ m{m_D} & m{m_D} & m{D} \ m{m_D} & m{D} \ m{m_D} & m{M_R} \end{pmatrix}$$
 $m_D o m{D}$ irac mass matrix; $m_D = v Y^{m{
u}} \ m{M_R} \to m{H}$ eavy neutrino mass matrix - diag (m_{R_i})

• Seesaw equation:
$$m_{\nu}^{\text{light}} = -m_D M_R^{-1} m_D^T$$

 $M_R \sim \text{few TeV} \Rightarrow Y^{\nu} \sim Y^{\ell}$
 $Y^{\nu} \sim 1 \Rightarrow M_R \sim \mathcal{O}(10^{15} \text{ GeV})$

experimentally unreachable / untestable (?)

New physics models: supersymmetric type I seesaw

SUSY: appealing theoretically (hierarchy problem, unification of gauge couplings, ...) and experimentally (dark matter candidates, hopefully TESTABLE at colliders!, ...)

Embed the type I seesaw into models of flavour-blind SUSY breaking - e.g. cMSSM only SM sources of flavour and CP violation (Y^f)

High-scale SUSY seesaw: 5 cMSSM parameters (e.g.) $+ \nu$ dynamics

•
$$v_2 Y^{\nu} = i \sqrt{M_R^{\text{diag}}} R \sqrt{m_{\nu}^{\text{diag}}} U_{\text{MNS}}^{\dagger}$$
 (at M_N)

[Casas-Ibarra parameterisation]

 $\begin{cases} U_{\text{MNS}} \left(\theta_{12}, \theta_{23}, \theta_{13}, \delta, \varphi_{1,2}\right) \\ m_{\nu}^{\text{diag}} \left(\Delta m_{\text{sol}}^2, \Delta m_{\text{atm}}^2, \sum m_{\nu_i}\right) \\ M_{R}^{\text{diag}} \text{ heavy neutrino masses} \\ R(\theta_i) \text{ 3 complex angles} \end{cases}$

► Before decoupling, heavy RH neutrinos leave imprint on SUSY parameters (slepton) ⇒Link slepton flavour violation with m_{ν} via high-scale dynamics Type-I SUSY seesaw: flavour violating slepton masses

► mSUGRA-like SUSY seesaw: Y^{ν} unique source of FV

► Even for universal soft-breaking terms RGE running of Y^{ν} ($M_{GUT} \rightarrow M_R$)

induces flavour-violating terms in slepton soft-breaking masses

► Misalignement of flavour and physical eigenstates: $R^{\tilde{\ell} \dagger} M_{\tilde{\ell}}^2 R^{\tilde{\ell}} = \operatorname{diag}(m_{\tilde{\ell}_i}^2)$ $R^{\tilde{\ell}} \neq 1!$ $\{\tilde{e}_L, \tilde{\mu}_L, \tilde{\tau}_L, \tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_R\} \iff \{\tilde{\ell}_1, \dots, \tilde{\ell}_6\}$ LFV manifest in neutral and charged lepton-slepton interactions ℓ_i, ν_i

Expect many interesting flavour violating transitions in charged leptons!

["observables" $\propto (Y^{m{
u}})^{m{n}}$; important degree of correlation ...]

SUSY seesaw: low-energy cLFV observables

• Large Y^{ν} : sizable contributions to cLFV observables

cLFV driven by the exchange of *virtual* **SUSY** particles

	90% C.L. upper-limit	Future Sensitivity
$BR(\mu ightarrow e\gamma)$	5.7×10^{-13} (MEG, '13)	6×10^{-14} (MEG)
$BR(\tau \to \mu \gamma)$	$4.4 imes10^{-8}$ (BaBar, '10)	$10^{-(9-10)}$ (Super-KEKB)
$CR(\mu - e, Ti)$	$4.3 imes 10^{-12}$ (SINDRUM II,'93)	10 ⁻¹⁸ (PRISM/PRIME)
$CR(\mu\text{-}e, Au)$	$7.0 imes 10^{-13}$ (SINDRUM II, '06)	-
$CR(\mu$ - e , Al)	_	10^{-16} (Mu2e/COMET)

Synergy of low-energy observables \Rightarrow hints on seesaw scale $M_R!$

Antusch, Arganda, Herrero and AMT, '06

SUSY seesaw: high-energy cLFV observables

- ▶ cLFV in SUSY neutral current interactions $\chi^0 \tilde{\ell}_i \ell_j$ cascade decays involving $\tilde{\ell}$ (direct production, or favourable decays e.g. χ_2^0)

LHC: $\chi_2^0 \rightarrow \ell^{\pm} \ell^{\mp} + E_{\text{miss}}^T$ cascades $(\chi_2^0 \text{ from } \tilde{q} \text{ production})$ $\begin{cases} \text{flavoured slepton mass differences } (\tilde{e} - \tilde{\mu}) \\ \text{multiple edges in dilepton mass distributions } m_{\ell\ell} \\ \text{direct FV final states } \chi_2^0 \rightarrow \ell_i \ell_j \chi_1^0 \end{cases}$ M. Gómez talk

 $\mathsf{LC:} \quad \tilde{\ell}^{\pm} \to \ell^{\pm} + E_{\mathsf{miss}}^{T} \text{ decays} \quad \begin{cases} \mathsf{multiple edges in } m_{\ell\ell} \\ \\ \mathsf{direct FV decays} \\ e^{-}e^{-} \to e^{\pm}\mu^{\mp} + 2\chi^{0} \\ e^{-}e^{-} \to e^{-}\mu^{-} + 2\chi^{0} \\ \\ \text{"golden channel" } e^{-}e^{-} \to \mu^{-}\mu^{-} + 2\chi^{0} \end{cases}$

And many others: flavour violating Higgs decays, Lepton Number violating decays, etc ...

cLFV at the LHC: dilepton mass distributions

- **★** At the LHC: $\tilde{\ell}$ production from χ_2^0 decays $(\tilde{q} \to \chi_2^0 \to \tilde{\ell})$
 - ► Consider dilepton invariant mass distributions from $\chi_2^0 \rightarrow \tilde{\ell}_{L,R} \ell \rightarrow \chi_1^0 \ell \ell$
 - $\blacktriangleright \text{ Shape of } m_{\ell\ell} \Rightarrow \text{ info on } \tilde{\ell} \text{ spectrum } \begin{cases} \text{ position of edges } \rightsquigarrow \text{ determine } m_{\tilde{\ell}} \\ \text{ number of edges } \rightsquigarrow \text{ number of } \tilde{\ell} \end{cases}$

 \bigstar cMSSM (no seesaw): $\chi_2^0 \rightarrow \tilde{\ell}_{L,R}^i \ell^i \rightarrow \chi_1^0 \ell_i^+ \ell_i^-$

- ► Identical flavour opposite-sign final state leptons
- **Two edges** in di-lepton mass distributions; superimposed m_{ee} , $m_{\mu\mu}$ (degenerate \tilde{e} , $\tilde{\mu}$)
- ★ Impact of a type-I SUSY seesaw: $\chi_2^0 \rightarrow \tilde{\ell}_{L,R}^i \ell^j \rightarrow \chi_1^0 \ell_j^+ \ell_k^-$
 - ► Displaced m_{ee} , $m_{\mu\mu}$ edges \Rightarrow slepton mass splittings $\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{e}_L, \tilde{\mu}_L)$

► New edges in di-lepton mass distributions:

$$\chi_{2}^{0} \rightarrow \left\{ \begin{array}{c} \tilde{\ell}_{L}^{i} \ell_{i} \\ \tilde{\ell}_{R}^{i} \ell_{i} \\ \tilde{\ell}_{X}^{j} \ell_{i} \end{array} \right\} \rightarrow \chi_{1}^{0} \ell_{i} \ell_{i}$$

cLFV at the LHC: dilepton mass distributions

★ cMSSM (no seesaw)

- ▶ Double-triangular distributions: intermediate $\tilde{\mu}_L$ and $\tilde{\mu}_R$ in $\chi_2^0 \rightarrow \chi_1^0 \mu \mu$
- ► Approximately superimposed $\tilde{\ell}_{L,R}$ edges for $m_{\mu\mu}$ and m_{ee} : "degenerate" $\tilde{\mu}, \tilde{e}$

★ Impact of type-I SUSY seesaw: an example

► Displaced
$$m_{\mu\mu}$$
 and m_{ee} edges $(\tilde{\ell}_L)$
 \Rightarrow sizable $\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{e}_L, \tilde{\mu}_L)$ [\rightsquigarrow flavour non-universality (?)]

► Appearance of new edge in $m_{\mu\mu}$: intermediate $\tilde{\tau}_2$ [\rightsquigarrow flavour violation!]

• LFV at the LHC:
$$\chi_2^0 \rightarrow \tilde{\tau}_2 \mu \rightarrow \chi_1^0 \mu \mu$$

cLFV at the LHC: slepton mass splittings

▶ Prospects for slepton mass reconstruction at the LHC from $\chi_2^0 \rightarrow \tilde{\ell}$ decays

[imposing 2013 experimental bounds: direct searches, SM-like H and flavour]

Comparison of strict mSUGRA-like with flavour-conserving relaxed universality

► cMSSM: $\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{e}_L, \tilde{\mu}_L) \gtrsim 1\% \Rightarrow m_{\tilde{\ell}} \gtrsim 2.5 \text{ TeV}$ [small region of $m_0 - M_{1/2}$ plane]

► Relaxed universality (lighter slepton sector, alleviates m_h tension): $\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{e}_L, \tilde{\mu}_L) \gtrsim \mathcal{O}(0.5\%)$ for $m_{\tilde{\ell}} \sim \text{TeV}$ and $\text{BR}(\mu \to e\gamma)$ at MEG!

► LHC slepton studies: consider semi-constrained SUSY models → "X"

cLFV at the LHC: synergy with low-energy observables

► Probe the type I SUSY seesaw via interplay of low- and high-energy cLFV

(assume SUSY discovery - relaxed universality, explore full RH neutrino dynamics)

Sizable contributions to high- and low-energy observables - well within exp reach!

- ► Isolated cLFV manifestations ⇒ high-scale SUSY seesaw is not unique cLFV source e.g. $\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{e}_L, \tilde{\mu}_L) \gtrsim \mathcal{O}(0.5\%)$ and $\mu \to e\gamma|_{\mathsf{MEG}} \times$: disfavours seesaw hypothesis
- "Compatible" cLFV observations \Rightarrow strengthens seesaw hypothesis ! $\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{e}_L, \tilde{\mu}_L) \gtrsim \mathcal{O}(0.5\%)$ and $\mu \to e\gamma|_{\mathsf{MEG}} \checkmark !!$ Hints on the seesaw scale: $M_R \sim 10^{14} \text{ GeV}$

cLFV at high-energies: a Linear Collider

\bigstar Linear Colliders: ideal laboratory for slepton studies - LFV included (if sizable \sqrt{s} ...)

- **Exact nature of colliding particles is known;** e^{\pm} beam options; beam polarisation ...
- ▶ Direct $\tilde{\ell}$ production! Study $\tilde{\ell} \rightarrow \ell$ decays in "short" chains
- ► Beam polarisation: background suppression; explore chirality aspects of cLFV
- ▶ New cLFV signals: e^-e^- beam option $\leftrightarrow \Rightarrow$ study "clean" signals for LFV
- ► cLFV analysis analogous to LHC: new & displaced edges in $m_{\ell\ell}$, direct FV in decays "Clean" environement \Rightarrow better resolution in mass determination, sharper edges...

► Here: study
$$e^{\pm}e^{-} \rightarrow \ell^{\pm}\mu^{-} + E_{\text{miss}}^{T}$$
 $(E_{\text{miss}}^{T} = \chi_{1}^{0}, \chi_{1}^{0} + \nu, \nu)$

LC operating at 500 GeV $\lesssim \sqrt{s} \lesssim 3$ TeV; benchmark $\mathcal{L} = 0.5$, 3 ab⁻¹

cLFV at a future **LC**: e^+e^- and e^-e^- beams

► Consider
$$e^{\pm} e^{-} \rightarrow e^{\pm} \mu^{-} + E_{\text{miss}}^{T} \iff \begin{cases} e^{\pm} \mu^{-} + 2\chi_{1}^{0} & \text{(signal)} \\ e^{\pm} \mu^{-} + 2\chi_{1}^{0} + (2, 4)\nu & \text{(SUSY backg)} \\ e^{\pm} \mu^{-} + (2, 4)\nu & \text{(SM}_{m_{\nu}} \text{ backg)} \end{cases}$$

► Signal events: dominated by LFV SUSY neutral currents

SUSY & SM_{m_{ν}} backg: cLFV from charged currents - low-energy leptonic mixing

cLFV at a future LC: e^+e^- beam option

► Dominant $SM_{m_{\nu}}$ backg (disentangled from SUSY events - cuts, etc); Polarisation: enhance signal; reduce (remove) $SM_{m_{\nu}}$ (SUSY) backg

► Significance for SUSY [-] and SUSY+SM_{m_{ν}} [···] backg ⇒ typically $S \gtrsim 10$ (unpolarised)

► For $\sqrt{s} = 2$ TeV and seesaw scale $M_R \sim 10^{12}$ GeV: $\mathcal{O}(10^3)$ events for $\mathcal{L} = 0.5$ ab⁻¹ $\mathcal{O}(10^4)$ events for $\mathcal{L} = 3$ ab⁻¹

cLFV at a future LC: e^-e^- beam option

► Consider
$$e^- e^- \to e^- \mu^- + E_{\text{miss}}^T \iff \begin{cases} e^- \mu^- + 2\chi_1^0 & \text{(signal)} \\ e^- \mu^- + 2\chi_1^0 + (2, 4)\nu & \text{(SUSY backg)} \\ e^- \mu^- + (2, 4)\nu & \text{(SM}_{m_{\nu}} \text{ backg)} \end{cases}$$

Signal events: $\tilde{\ell}$ production via t-channel χ^0 exchange

no s-channel exchanges (absence of doubly charged particles)

► SUSY & SM_{*m*_{*ν*}} backg: dominated by *W*-strahlung (tiny " $0\nu 2\beta$ "-like...)

► Same $\tilde{\ell}$ production for signal and background: smaller effect from beam polarisation Still expect a large number of events - $\mathcal{O}(10^3 - 10^5)$ events for $\sqrt{s} = 2$ TeV

► Ideal beam option for a "golden channel" of cLFV at Linear Colliders ...

cLFV at a future LC: the "golden channel"

► Consider
$$e^-e^- \rightarrow \mu^-\mu^- + E^T_{miss} \iff \begin{cases} \mu^-\mu^- + 2\chi_1^0 & (signal) \\ \mu^-\mu^- + 2\chi_1^0 + (2,4)\nu & (SUSY backg) \end{cases}$$

 SM_{m_ν} backg negligible ...
a cLFV signal
a SUSY backg
+, × → unpolarised
*, $\Box \rightarrow e_L^- e_L^-$
► Reduced backgs: subdominant SUSY $\mathcal{O}(10^{-4})$
► 500 - 3000 events for $\mathcal{L} = 0.5 - 3$ ab⁻¹

► Ideal cLFV discovery channel $\Rightarrow e^-e^- \rightarrow \mu^-\mu^- + E_{\text{miss}}^T$ [provided \sqrt{s} large ...]

► Confirm t-channel exchange of Majorana particle

▶ RR-polarised e^- can test seesaw hypothesis: $\tilde{\ell}$ cLFV predominantly LL phenomenon

Summary

- ▶ Observable cLFV \Rightarrow evidence for New Physics beyond SM_{m_{ν}}
 - cLFV complementary to direct searches: bounds on NP scale and couplings
- ► Type I SUSY seesaw: one source of LFV ↔ correlated cLFV observables
- ► LFV at the LHC: new edges in $m_{\ell\ell}$; synergy between $\Delta m_{\tilde{e}_L,\tilde{\mu}_L}$ and low-energy cLFV constrained SUSY scenarios worse prospects for LFV at the LHC (heavy $\tilde{\ell}$ spectrum)
- ► Linear Collider: ideal for slepton and cLFV studies if \sqrt{s} sufficiently large! expect many $e^{\pm}e^{-} \rightarrow e^{\pm}\mu^{-} + E_{\text{miss}}^{T}$ events; beam polarisation to reduce backgs
- ► Ideal cLFV discovery channel at a LC: $e^-e^- \rightarrow \mu^-\mu^- + E_{miss}^T$