First look at the TLEP Physics Case

http://arxiv.org/abs/1308.6176

Patrizia Azzi – INFN Padova For the TLEP Design Study Group tlep.web.cern.ch

"The Higgs must be studied with the best precision we can muster" Nigel Lockyer, Fermilab Director, Seattle, 01-July-2013

TLEP: A long-term strategy for HEP

• In a new 80-100 km circular tunnel :

<u>First step</u>

- Tera-Z : √s~m_z
- Oku-W : √s~2m_w
- Mega-Higgs : √s~240 GeV
- Mega-top : $\sqrt{s} \sim 2m_{top}$

Followed by

VHE-LHC : pp collisions, $\sqrt{s} \sim 100$ TeV with 15T magnets

> 50 years of ee, pp, ep physics

- Follow the successful historical path for high-energy physics
 - TLEP Physics case: Precision measurements sensitive to multi-TeV New Physics
 - With luminosity 10-1000 × larger than projects of similar timescale and cost
 - VHE-LHC Physics case: Direct search for New Physics in the 10-100 TeV range
 - Also allows the HHH coupling to be measured to a few %

The TLEP Design Study

- Excerpt from the CERN Medium Term Plan (2014-2018):
- studies for high-energy proton-proton and electron-positron colliders in a new 80-100 km circular tunnel have already started. The aim is to have available Conceptual Design Reports by the time of the next update of the European Strategy for Particle Physics.
 - ... and another 14 mentions of the TLEP and VHE-LHC
 - Approved by the CERN Council few months ago.
 - Regular meetings:
 - The 5th TLEP Workshop at Fermilab, 25-26 July 2013 https://indico.fnal.gov/internalPage.py?pageId=2&confId=6983
 - Next workshops at CERN, 16-18 October 2013, <u>http://indico.cern.ch/conferenceDisplay.py?confld=257713</u>
 - o ...and in February 2014
 - Publications: "First Look at the Physics Case of TLEP":
 - o http://arxiv.org/abs/1308.6176 and Authorea: http://arxiv.org/abs/1308.6176 and Authorea: https://www.authorea.com/users/1331/articles/2469
 - You can contribute to the design study in the next 4-5 years
 - Join the study at <u>http://tlep.web.cern.ch</u>: Already ~322 collaborators (of which 33 from Italian Institues)

CERN/SPC/1012 CERN/FC/5747 CERN/3069

TLEP + VHE-LHC : Scientific Motivation

- TLEP TLEP Hz^oW⁻W⁺tī Lstituto Nazionale di Fisica Nucleare Sezione di Padova
- A (very) Standard Higgs boson and a (very) Standard Model

- Need to measure Higgs properties and EWSB parameters with high(er) precision
 - "With the best precision we can muster"
 - Linear colliders are limited in luminosity in the Higgs Factory mode
- No new physics up to several 100's GeV (SUSY) or several TeV (Resonances)
 - Next run at 14 TeV will extend the coverage to ~500 GeV (SUSY) or more
 - Very strong incentive to look for and study heavier New Physics
 - Linear Colliders with $\sqrt{s} = o(TeV)$ do not cover this Physics case

Energy and Luminosity at TLEP (1)

At 350 GeV, beams lose 9 GeV / turn by synchrotron radiation

- Need 600 5-cell SC cavities @ 20 MV/m in CW mode
 - Much less than ILC (8000 9-cell cavities@ 31 MV/m)
 - Length ~900 m, similar to LEP (7 MV/m)
- o 200 kW/ cavity in CW : RF couplers are challenging
 - Heat extraction, shielding against radiation, ...

• Achieve luminosity with small vertical beam size : $\sigma_v \sim 100$ nm

- A factor 30 smaller than at LEP2, but much more relaxed than ILC (6-8 nm)
 - TLEP can deliver 1.3×10^{34} cm⁻²s⁻¹ per collision point at $\sqrt{s} = 350$ GeV

• Small beam lifetime due to Bhabha scattering ~ 15 minutes

• Need efficient top-off injection

RF Coupler (ESS/SPL)

BNL 5-cell 700 MHz cavity

•5

Energy and Luminosity at TLEP (2)

- At smaller \sqrt{s} , increase the number of bunches to saturate the RF power
 - Synchrotron radiation decreases like 1 / E⁴
 - Give much less energy to many more bunches

ΙαΡΥ	ρ
$L \sim I_{tot} \wedge I_{tot}$	E_{beam}^3

√s (GeV)	90	160	240	350	
Luminosity (×10 ³⁴ cm ⁻² s ⁻¹)/IP	56	16	5	1.3	
Vertical Beam Size (nm)	270	140	140	100	
RF Cavity Gradient (MV/m)	3	3	10	20	
Number of bunches	4400	600	80	12	
Beam lifetime (mn)	67	25	16	27	M. Koratzinos et
Total AC power (MW)	250	250	260	284	

• (Parameters just published – but already obsolete...)

Energy and Luminosity at TLEP (3)

- Comparison with linear colliders
 - Bonus : circular colliders can have several IP's

• Ultimate precision measurements possible only at circular colliders

•

٠

Energy and Luminosity at TLEP (5)

- TLEP Upgrades : Energy and luminosity can be further increased
 - Not in the baseline proposal
 - The design study will concentrate on a solid baseline
- Possible TLEP energy upgrade
 - Can reach $\sqrt{s} = 500$ GeV, if justified by scientific arguments
 - By tripling the RF system (12 \rightarrow 35 GV): 1.7 km instead of 600 m of cavities
 - With a luminosity of 0.5×10^{34} cm⁻²s⁻¹ per interaction point
 - Hence similar to the ILC at $\sqrt{s} = 500 \text{ GeV}$

TLEP: Precision Needed

H. Baer et al., ILC TDR

Precision = sensitivity to New Physics

• Typical deviations of SM Higgs couplings: with $|\delta| < 5\%$

(Exact value of δ depend on model & coupling)

- Need at least a per-cent accuracy for a 5 σ observation if $\Lambda_{\rm NP}$ = 1 TeV
- Need sub-per-cent accuracy for multi-TeV New Physics scale
- Need <u>millions</u> of Higgs bosons

TLEP as a Tera-Z & Oku-W Factories (1)

- TLEP repeats the LEP1 physics program every 15 minutes
 - Transverse polarization up to the WW threshold
 - Exquisite beam energy determination with resonant depolarization
 - O Up to 50 keV precision unique at circular e+e[−] colliders
 - Measure m_Z , m_W , Γ_Z , ... with unequalled accuracy

- EW loops sensitive to the existence of weakly-coupled heavy particles
 - For example, LEP predicted $m_{top} = 172 \pm 20$ GeV in 1994 and the top was discovered at FNAL; then EW meas. now predict $m_{H} = 100 \pm 25$ GeV

TLEP as a Tera-Z and Oku-W Factory (2)

• Beam energy measurement at TLEP

- Ultra-precise resonant depolarization method, unique to a ring
 - Precision limited to 2 MeV at LEP1 by the extrapolation to collision conditions

 No extrapolation needed ! $v \sim B \sim E$ 44719 44718 44718.5 44717 44717.5 Pinitia **B**_{dipole} 1993 P_{final}/ Precision 0.5 ~ 2×10⁻⁶ **B**_x 0 -0.5 101.48 101.481 101.482 101.483 101.484 ν

• Ultimate precision better than 0.1 MeV

• (limited to 2 MeV @ LEP1: tides; TGV, rain; + extrapolation)

• Aim at performing one measurement every 20 minutes

F. [MeV]

TLEP as a Tera-Z & Oku-W Factory (3)

• Measurements with Tera-Z

- Caution : TLEP will have 5×10^4 more Z than LEP
- Predicting achievable accuracies with 250 times smaller statistical precision is difficult

Observable	Measurement	Current precision	TLEP stat.	Possible syst.	Challenge
m _z (MeV)	Lineshape	91187.5 ± 2.1	0.005	< 0.1	QED corrections
Γ _Z (MeV)	Lineshape	2495.2 ± 2.3	0.008	< 0.1	QED corrections
R ₁	Peak	20.767 ± 0.025	0.0001	< 0.001	Statistics
R _b	Peak	0.21629 ± 0.00066	0.000003	< 0.00006	g → bb
N _v	Peak	2.984 ± 0.008	0.00004	< 0.004	Lumi meas.
$\alpha_{s}(m_{Z})$	R _I	0.1190 ± 0.0025	0.00001	0.0001	New Physics

NB: ILC limited to a factor > 30 larger errors

- The study is just beginning : errors might get better with increasing understanding
 - Used LEP knowledge so far. Will be revisited with the design study.
 - Much more to do at the Z peak: e.g., asymmetries, flavour physics (> 10^{11} b, > 10^{11} c, > 10^{10} t),
 - rare Z decays, ...

•13

TLEP as a Tera-Z & Oku-W Factory (4)

Measurements with Oku-W

- Caution : TLEP will have 5×10⁶ more W than LEP at the WW threshold
 - Predicting achievable accuracies with 1000 times smaller statistical precision is difficult

Observable	Measurement	Current precision	TLEP stat.	Possible syst.	ILC precision
m _w (MeV)	Threshold scan	80385 ± 15	0.3	< 0.5	7
N _v	Radiative returns e⁺e⁻→γΖ, Ζ→νν, II	2.92 ± 0.05	0.001	< 0.001	Ś
a _s (m _w)	$B_{had} = (\Gamma_{had} / \Gamma_{tot})_W$	B _{had} = 67.41 ± 0.27	0.00018	< 0.0001	0.002

• Much more W physics to do at the WW threshold and above

 $\circ~$ e.g., $\Gamma_{W},\,\lambda_{W},\,rare$ W decays, diboson couplings, ...

Measurement with longitudinal polarization

- One year data taking with luminosity reduced to 20% of nominal (requires spin rotators)
 - 40% beam longitudinal polarization assumed NB: kept polarization in collisions at LEP

Observable	Measurement	Current precision	TLEP stat.	Possible syst.	Challenge
A _{LR}	Z peak, polarized	0.1514 ± 0.0022	0.000015	< 0.000015	Design Experiment

• LC13, Trento 16-20 Settembre, 2013

NB: ILC limited to a factor 10 larger errors

TLEP as a Mega-Top Factory

• Scanning the tt threshold at $\sqrt{s} \sim 350 \text{ GeV}$

• Much smaller beamstrahlung at TLEP than at Linear Colliders (relaxed beam size)

- No need to measure the luminosity spectrum @ TLEP : much reduced m_{top} uncertainty
- Slightly larger cross section @ TLEP : reduced statistical uncertainty
- Beam energy calibration from $e^+e^- \rightarrow WW$ and m_W ; α_s from Z and W leptonic decays.
- $_{\circ}$ Still need to work on theoretical predictions (40 MeV uncertainty on m_{top})

	Lumi / 5 years	# top pairs	Δm _{top}	$\Delta\Gamma_{top}$	$\Delta \lambda_{top} / \lambda_{top}$		
TLEP	4 × 650 fb ⁻¹	1,000,000	10 MeV	12 MeV	13%	Stat. only	$\left \underbrace{\mathcal{L}, \gamma}{\mathcal{N}} \right $ H
ILC	350 fb ⁻¹	100,000	30 MeV	35 MeV	40%		ī
• LC13, 1	Trento 16-20 Sette	mbre, 2013	Rare to	op decays !			•15

EWSB Precision test at TLEP: Summary(1)

- When m_W , m_{top} and m_H are known with precision ...
 - ... The standard model has nowhere to go !

EWSB Precision test at TLEP: Summary (2)

- Another viewpoint : $m_{\rm H}$ prediction from all EW measurements in the SM
 - \circ $\sigma(m_{H})$ would decrease from ±25 GeV (today) to ±1.4 GeV (with TLEP)

- Need order of magnitude reduction of EW calculations uncertainties
 - And factor 5 improvement of the alpha_{QED} (m_z) precision
 - Within reach at the timescale of TLEP (see later)

• LC13, Trento 16-20 Settembre, 2013

i Fisica Nucleare

TLEP NNN

TLEP as a Mega-Higgs Factory (1)

• Number of Higgs bosons produced at $\sqrt{s} = 240-250 \& 350 \text{ GeV}$

	ILC-250	TLEP-240	ILC-350	TLEP-350	
Lumi / 5 yrs	250 fb ⁻¹	10 ab ⁻¹	350 fb ⁻¹	2.6 ab⁻¹	
Beam Polarization	80%, 30%	_	80%,30% -	_	
# of HZ events	70,000	2,000,000	65,000	325,000	× 1.4
# of WW→H events	3,000	50,000	20,000	65,000	× 2.4

TLEP as a Mega-Higgs Factory (2)

- Choice of the centre-of-mass energy
 - Maximize the number of Higgs events expected for 5 years at 4 IP's
 - With the very specific luminosity profile of TLEP (in 1/E³)

o \sqrt{s} = 240 GeV for HZ, \sqrt{s} = 340-350 GeV for WW → H and the tT threshold scan

TLEP as a Mega-Higgs Factory (3)

• Example : $e^+e^- \rightarrow ZH \rightarrow I^+I^- + anything$

 \circ Measure $\sigma_{\rm H7}$

(TLEP : CMS Full Simulation + some extrapolations for cc, gg)

e ⁺ Z [*]	$H_{\mu} = \frac{1}{2} \frac{1}$
Z -> I+I- with Higgs -> visible	e ⁺ , μ ⁺ CMS Simulation
Signal Signal All backgrounds zz 1400 1200 1200 141- 141-	LEP3, 500 fb ⁻¹ , f≅=240 GeV TLEP-240 1 year 1 detector
1000 800 600 400	
200 0 50 60 70 80 9	0 100 110 120 130 140 150 Higgs mass (GeV)

• LC13, Trento 16-20 Settembre, 2013

	ILC TDR	From P. Azzi et al. arXiV:1208.1662
	ILC-250	TLEP-240
$\sigma_{\rm HZ}$	2.5%	0.4%
σ _{HZ} ×BR(H→bb)	1.1%	0.2%
$\sigma_{\rm HZ} \times BR(H \rightarrow cc)$	7.4%	1.2%
σ _{HZ} ×BR(H→gg)	9.1%	1.4%
σ _{HZ} ×BR(H→WW)	6.4%	0.9%
$σ_{HZ}$ ×BR(H→ττ)	4.2%	0.8%
$\sigma_{HZ} \times BR(H \rightarrow ZZ)$	19%	3.1%
$σ_{HZ}$ ×BR(H→γγ)	35%	3.0%
$σ_{HZ}$ ×BR(H→μμ)	100%	13%
$\Gamma_{ m INV}$ / $\Gamma_{ m H}$	<1%	< 0.2%
m _H	40 MeV	8 MeV

TLEP as a Mega-Higgs Factory (4)

- Determination of the total width
 - From the number of HZ events and of ZZZ events at \sqrt{s} = 240 GeV

$$\Gamma_{H} = \Gamma(H \rightarrow ZZ) / BR(H \rightarrow ZZ) \propto \sigma_{HZ} / BR(H \rightarrow ZZ)$$

• From the bbvv final state at $\sqrt{s} = 350$ GeV (and 240 GeV)

 $\left| \Gamma_{H} \propto \Gamma(H \to WW) / \operatorname{BR}(H \to WW) \propto \sigma_{WW \to H \to bb} / \operatorname{BR}(H \to WW) \times \operatorname{BR}(H \to bb) \right|$

Global fit of the Higgs couplings (1)

Model-independent fit

M. Bachtis

Coupling	g z	gw	g _b	g _c	gg	gτ	g_{μ}	gγ	BR _{exo}
LEP-240	0.16%	0.85%	0.88%	1.0%	1.1%	0.94%	6.4%	1.7%	0.48%
LEP-350	0.15%	0.19%	0.42%	0.71%	0.80%	0.54%	6.2%	1.5%	0.45%
ILC-350	0.9%	0.5%	2.4%	3.8%	4.4%	2.9%	45%	14.5%	2.9%

• NB : Theory uncertainties must be worked out.

	\sim	
Facility	ILC	TLEP (4 IP
Energy (GeV)	500	350
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	+500	+1400
$\Delta\Gamma_h/\Gamma_h$	6.0%	1.0%
$\mathcal{B}_{\mathrm{inv}}$	< 0.69%	< 0.1%
$\Delta g_{\gamma}/g_{\gamma}$	8.4%	1.5%
$\Delta g_{Z\gamma}/g_{Z\gamma}$?	?
$\Delta g_g/g_g$	2.5%	0.8%
$\Delta g_W/g_W$	1.4%	0.19%
$\Delta g_Z/g_Z$	1.3%	0.15%
$\Delta g_{\mu}/g_{\mu}$	_	6.2%
$\Delta g_{ au}/g_{ au}$	2.5%	0.54%
$\Delta g_c/g_c$	3.0%	0.71%
$\Delta g_b/g_b$	1.8%	0.42%
$\Delta g_t/g_t$	18%	13%
Snowmass 2013		

• LC13, Trento 16-20 Settembre, 2013

•22

Global fit of the Higgs couplings (2)

• Model-dependent (seven-parameter) fit a-la-LHC

 $_{\odot}$ Assume no exotic Higgs decays, and κ_{c} = κ_{t}

Global fit of the Higgs couplings (3)

- Quantitative added value from ILC - wrt HL-LHC does not stick out clearly.
 - In contrast, sub-per-cent TLEP potential is striking for all couplings
- Only TLEP is sensitive to (multi-)TeV new physics with Higgs measurements
 - Much theoretical progress is needed to reduce accordingly theory uncertainties

Best Fit Predictions

- Measurements at higher energy
 - $\circ~\sqrt{s}>350~GeV$ does not do much for couplings to c, b, g, Z, W, $\gamma,\,\mu$ and $\Gamma_{tot}.$ (slide 15)
 - Invisible width best done at $\sqrt{s} = 240 \text{ GeV}$
 - The ttH coupling benefits from higher energy
 - TLEP 350 : 13%
 - ILC 500 : 14% ; ILC 1 TeV : ~4% ; CLIC : ~4%
 - The HL-LHC will already do the measurement with 5% precision (and improving)
 - Sub-per-cent precision will need the ultimate pp machine at 100 TeV : VHE-LHC

TLEP

Higgs Physics with $\sqrt{s} > 350 \text{ GeV}$? (2)

• Measurements at higher energy (cont'd)

 \circ Higgs tri-linear self coupling λ very difficult for all machines

• Summary

- For the study of H(126), the case for e⁺e[−] collisions above 350 GeV is not compelling.
 - A stronger motivation will exist if a new particle found (or inferrred) at LHC
 - o IF e⁺e⁻ collisions can bring substantial new information about it

TLEP Cost (Very Preliminary) Estimate

Cost in billion CHF

Bare tunnel	3.1 ⁽¹⁾
Services & Additional infrastructure (electricity, cooling, service cavern, RP, ventilation, access roads)	1.0 ⁽²⁾
RF system	0.9 ⁽³⁾
Cryo system	0.2 (4)
Vacuum system & RP	0.5(5)
Magnet system for collider & injector ring	0.8(6)
Pre-injector complex SPS reinforcements	0.5
Total	7.0

- (1): J. Osborne, Amrup study, June 2012
- (2): Extrapolation from LEP
- (3): O. Brunner, detailed estimate, 7 May 2013
- (4): F. Haug, 4th TLEP Days, 5 April 2013
- (5): K. Oide : factor 2.5 higher than KEK, estimated for 80 km ring
- (6): 24,000 magnets for collider & injector; cost per magnet 30 kCHF (LHeC);
 - LC13, Trento 16-20 Settembre, 2013

Cost for the 80 km version : the 100 km version might be cheaper.)

As a self-standing project : Same order of magnitude as LHC As an add-on to the VHE-LHC project : Very cost-effective : about 2-3 billion CHF

Note: detector costs not included – count 0.5 per detector (LHC)

Cost per Higgs boson : 1 - 3 kCHF / Higgs (ILC cost : 150 k\$ / Higgs) [NB : 1CHF ~ 1\$]

TLEP Cost (Very Preliminary) Estimate

TLEP NN Hz⁰W⁻W⁺tť

Cost in billion CHF

Cost for the 80 km version : the 100 km version might be cheaper.)

- (1): J. Osborne, Amrup study, June 2012
- (2): Extrapolation from LEP
- (3): O. Brunner, detailed estimate, 7 May 2013
- (4): F. Haug, 4th TLEP Days, 5 April 2013
- (5): K. Oide : factor 2.5 higher than KEK, estimated for 80 km ring
- (6): 24,000 magnets for collider & injector; cost per magnet 30 kCHF (LHeC);
 - LC13, Trento 16-20 Settembre, 2013

Cost per Higgs boson : 1 - 3 kCHF / Higgs (ILC cost : 150 k\$ / Higgs) [NB : 1CHF ~ 1\$]

TLEP Possible Timescale

- Similar timescales for TLEP and ILC
 - o ILC aims for Physics in 2027-2028
- TLEP
 - Design study : 2013-2017

- Next European Strategy Workshop : 2017-2018
- Decision to go and start digging : 2018-2019
- Start installation in parallel with HL-LHC running : 2023 ...
- Start running at the end of HL-LHC running : 2030 ..., for 12-15 years.

TLEP : Possible Physics Program

- Higgs Factory mode at $\sqrt{s} = 240$ GeV: 5+ years
 - Higgs boson properties, WW and ZZ production.
 - Periodic returns at the Z peak for detector and beam energy calibration
- Top Threshold scan at $\sqrt{s} \sim 350$ GeV: 5+ years
 - Top quark mass, width, Yukawa coupling; top quark physics; more Higgs boson studies.
 - Periodic returns at the Z peak for detector and beam energy calibration
- Z resonance scan at $\sqrt{s} \sim 91$ GeV: 1-2 years
 - Get 10¹² Z decays @ 15 kHz/IP. Repeat the LEP1 Physics Programme every 15 minutes.
 - Transverse polarization of "single" bunches for precise E_{beam} calibration
- WW threshold scan at $\sqrt{s} \sim 161$ GeV: 1-2 years
 - Get 10⁸ W decays; Measure the W mass; Precise W studies.
 - Transverse polarization of single bunches and returns to the Z peak.
- Longitudinally polarized beams at $\sqrt{s} = m_{z}$: 1 year
 - Get 10¹¹ Z decays, and measure A_{LR} , A_{FB}^{pol} , etc.
 - Polarization wigglers, spin rotators
- Luminosity, Energy, Polarization upgrades
 - If justified by scientific arguments (with respect to the upgrade to VHE-LHC)

Design Study (2013 – 2018) : People

- 318 subscribers from 24 countries (+CERN)
 - Distribution reflects the level of awareness in the different countries
 - Subscribe at <u>http://tlep.web.cern.ch</u> !

• Remarkable balance between accelerator, experiment and phenomenolgy

Design Study (2013 – 2018) : Events

Web Site: <u>http://tlep.web.cern.ch</u>

- Next event : Sixth TLEP workshop 16-18 October 2013 @CERN <u>http://indico.cern.ch/conferenceDisplay.py?ovw=True&confld=257713</u>
- Joint VHE-LHC + TLEP kick-off meeting in February 2014

• LC13, Trento 16-20 Settembre, 2013

Concluding Remarks (1)

- The discovery of H(126) brought new light on the next large machine
 - Prospects for the future now look very promising
 - The HL-LHC is already an impressive Higgs factory, with great potential
 - The run at 13-14 TeV may discover something else, likely beyond ILC reach
- It is important to choose the right machine for the future
 - We should not mortgage the future of HEP before knowing the results at 13TeV
 - The right machine must bring order(s) of magnitude improvement wrt LHC
 - o Both in precision measurements and in discovery potential
 - The ILC project might not fulfill these needs
- A large e⁺e⁻ circular collider could be the best complement to LHC
 - Per-mil precision on Higgs couplings; Unbeatable precision on EWSB parameters
 - Rare W,Z,t,H decays; N_v measurement to < 10⁻³; Direct α_s measurement; ...
 - Most mature technology : supported by progress of e⁺e⁻ factories for 20 years
 - SuperKEKB will be a precious demonstrator
 - Based on this experience, cost, power, and luminosity predictions will be reliable
 - It is a first step towards a 100 TeV pp collider and a long-term vision for HEP
 - Together with VHE-LHC it offers the most appealing "precision and discovery" package on the market

Concluding Remarks (2)

• The design study of TLEP has started

- In close collaboration with the VHE-LHC design study
- With worldwide collaboration (subscribers from Asia, Europe and USA)
- With full support from the CERN Council
 - The study is now acted in the approved CERN MTP (2014-2018)
- The first proposed step is a design study report in 2015 ...
 - ... towards a CDR + cost estimate in 2018
 - For an informed decision to be taken in full knowledge of the LHC results
 - And with operational experience of SuperKEKB
- A solid backbone exists for both the Design and the Physics case of TLEP
 - The physics case is very rich, but demanding
 - We need you for the many challenges, and their solutions

• TLEP could be ready for physics in 2030

It is time to join now and enjoy the work together

Someone said it well...

- From 5th TLEP workshop (FNAL, 25-26 July 2013)
 - o "Perspectives at a 100 TeV pp collider" by Nima Arkani-Hamed

(Slide 22)This alone fully justifies the march to lootel, in my view Tera-ZQTLEP plays very important complementary role

(Slide 41)

BACKUP

 $\bullet \quad \bullet \quad \bullet$

• LC13, Trento 16-20 Settembre, 2013

TLEP as a Tera-Z and Oku-W Factory (5)

• Polarization in collisions

- Often claimed to be impossible in e⁺e⁻ rings because of depolarizing effects
 - It was actually achieved at LEP, and kept for several hours

- Longitudinal polarization Daytime
 - Was achieved at HERA with dedicated spin rotators
 - The feasibility at TLEP needs to be studied
 - Challenges : continuous top-up injection, large natural polarization time

Design Study (2013 – 2018) : Structure

<u>26 Working Groups</u>: Accelerator / Experiment / Phenomenology

